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1. INTRODUCTION 
 
In the beginning of 1960’s the Nobel Prize winner R. Feymann pointed to 
enormous opportunities of miniaturization in technology [1]. In his historical 
speech he intrigued the community of scientists with the question: Why cannot 
we write the entire 24 volumes of the Encyclopedia Britannica on the head of a 
pin? Posteriorly, it can be concluded that his lecture was the starting point of 
miniaturization progress in technology. In 1986 K. E. Drexler [2] proposed a 
word nanotechnology as a common definition to any technology in nanoscale 
[3]. The term quickly acquired enormous prestige. Nowadays it can be firmly 
said that realizing things in nanoscale, in some of cases also at one molecule 
level is the greatest challenge of technologies. In 2000 another Nobel Prize 
winner R. Smalley exalted nanotechnologies saying: “The combination of high 
tech gee whiz, high social impact, and economic good sense gives the dream of 
nanotechnology the ability to inspire our nation’s youth toward science unlike 
any event since Sputnik” [4]. 

Nowadays, the structure, properties and preparation of nanomaterials are 
among the hottest topics in technology and science. Wires and layers minimized 
down to molecular size are more and more often put into practice [5] in 
electronics [6], optics [7, 8] and medicine [9]. It has to be pointed out that 
nanoscale structures are not just very little bulk systems, but have certain 
extraordinary properties proceeding from their dimensions. For example,  
Si-crystals show light emitting properties if their dimensions are less than 8 nm. 
Moreover, the wavelength of emitted light depends on the size of a particle [10]. 

To realize low-scale structuring the most widely accepted method is 
lithography. Conventional optical lithography methods have been put into use to 
enable micron scale structuring. Nowadays more complex methods enable 
patterning the structures down to 37 nm in width. To pattern even smaller 
features, photolithography requires further advances, such as decreasing the 
imaging wavelength to 157 nm or to even soft x-rays [11]. As these changes 
turn the process more expensive, most of the leading scientists believe that 
optical lithography will not be cost effective below 30 nm size structuring.  

During the recent decade many alternative concepts have been proposed for 
lithography to pass the pokey spots. For example, cheap processes like soft-
lithography [12], molding and embossing [11], dip-pen lithography [13,14] and 
others [11] are proved to enable structuring below 30 nm resolution. The most 
important of these methods is replica-molding, part of a large pool of chemically 
inspired soft-lithography fabrication techniques [15].  

Several researchers believe also that bottom-up will be accepted as the main 
approach for nanoscale structuring [11]. Metaphorical bottom in term is labeling 
the level of single particles, which is origin of self-initiatives at nanoscale. It is 
well known that orientation, association, dissociation and organization of 
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nanoparticles are caused by molecular forces. Therefore, control over these 
processes could open the gate for potential technological applications [16]. 

There is no reason to wonder that oxide nanostructures have attracted much 
attention, being now extensively studied group of nanomaterials. Applications 
of bulk oxides have been mostly related to their optical and semiconducting 
[17], and mechanical properties. Shaping the same materials to nanosized films, 
fibres and particles can widen the scope of applications to nano-sensors, NEMS, 
NFO, etc. 

For shaping silicon oxide (silica glass) into desired forms, molding of high 
temperature melts has been widely used technology over ages. Also sintering of 
powders pressed or molded to certain shapes is industrially applicable process. 
Still, both processes are too robust for preparing most of the nanoscale 
structures.  

Totally new trend, which remarkably changed the situation, started around 
1970’s when many authors suggested novel methods for shaping the oxides. 
Proposed methods based on sols transformation to gels as a result of chemical 
hydrolysis and condensation processes. Due to the phase shift from sol to gel 
those technologies were called sol-gel technologies [18]. 

Typical sol precursors in sol-gel technology contain only some percent of 
solid in large amount of solvent. Therefore their physical properties do not 
differ significantly from the properties of pure solvents, which makes these 
systems easy to handle and applicable for preparing e.g. coatings. However, 
there are also many drawbacks that limit their applications – for instance, 
decrease of volumes during post treatment processes and need for large amount 
of solvents.  

In opposite to the above-mentioned mainstream trend in sol-gel technology, 
a study on applicability of highly viscous and extremely moisture sensitive 
alkoxide based precursors and development of their application methods are the 
objects of the current thesis.  
 
 



 11

2. SOL-GEL TECHNOLOGY 
 

2.1. Chemistry of sol-gel processes 
 
Formation of sols from alkoxides and their further gelation is related to 
hydrolysis and condensation reactions as follows: 
 

Hydrolysis: M-OR + H2O → MOH + ROH 
 

Condensation: MOH + ROM → M-O-M + ROH 
 
Condensed species are formed as these reactions proceed leading to 
oxopolymers and then hydrous oxides MOn, x H2O when excess of water is 
added. Hydroxylated species are usually involved and sol-gel reaction can be 
described as the nucleophilic substitution (SN2) of alkoxide groups [19]:  
 

M(OR)n + mXOH → [M(OR)n–m(OX)m] + mROH 
 
where X stands for hydrogen H (hydrolysis), a metal atom M (condensation) or 
an organic ligand L (complexation). The chemical reactivity of metal alkoxides 
towards hydrolysis and condensation depends mainly on the positive charge of 
the metal atom and its ability to increase its coordination number. Therefore the 
reactivity of alkoxides increases when going down the periodic table as 
electronegativity of M decreases and the size of M increases. For example: 
reactivity of the corresponding alkoxides increases if going down the periodic 
table: Si→Ti→Zr→Ce. If silicon alkoxides gel in several days after addition of 
water, then alkoxides of titanium, zirconium and cerium gel immediately due to 
higher coordination number [19]. High reactivity of transition metal alkoxides 
turn the handling of these compounds very complicated. Since precipitation of 
condensate appears immediately if exposed to humid atmosphere the 
manipulations of these material must be carried out in dry atmosphere or closed 
vessels. 
 
 

2.2. Preparation of sol precursors 
 
Sols are often classified as polymeric (solutions of oligomeric or polymeric 
particles) or colloidal types according to the shape of the particles [20].  

Metal oxide colloidal sols are usually obtained by hydrolysis and conden-
sation of alkoxides or salts (chlorides, nitrates, sulphates etc.) [20]. Stability of 
these sols is fairly well described by DLVO theory [21, 22]. 

Metal oxide polymeric sols are usually prepared from alkoxides. Success in 
obtaining polymeric sols depends mainly on controlling hydrolysis and 
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condensation rates. Processes can be often influenced by catalyst (acid, base) 
concentrations. 

Most widely studied silica sols are usually prepared from Si(OMe)4 or 
Si(OEt)4 [18, 20]. To obtain sols, proper amount of solvent, water and 
acid/alkali must be added to these alkoxides. Depending on their mutual ratios 
either linear or branched particles are formed. If large excess of water is added 
or alkali catalyst is used then highly branched clusters start to grow in solution 
and colloidal sols are obtained. In opposite case, if solution is acidified and 
water is added up to molar ratio r = H2O / Si(OR)4 < 4 then mainly linear shape 
particles form in the solution and polymeric sol is obtained.  

As relationship between particle size and viscosity is well known [23, 24], 
the viscosity measurements enable determination of the rate of condensation 
processes that occur in solutions [25]. The release of alkoxy groups due to 
hydrolysis and condensation is often visualized by IR spectroscopy [26]. 
 
 

2.3. Gelation of sols 
 
Alkoxide sols are instable systems. Their ageing at room temperature typically 
results in 3-dimensional cross-linking of sol particles. Sols where particles are 
organized to network are called structured sols or gels. If physical properties of 
sols at macro scale are close to properties of liquids, then gels show elastic 
behaviour. As solid content of gels is very low (usually 1–2%) then they have 
also retained some liquid properties. For example, diffusion of solvent particles 
is still quite intense and similar to corresponding sols being just very slightly 
affected by 3-dimensional gel network [18]. Convection on the other hand does 
not proceed in gels due to the network of particles. 

As gelation usually occurs at room temperature the sol-gel technology 
enables to prepare ceramics doped with organic additives like organic dyes, 
which are unstable at higher temperatures [27], DNA and living cells [28], etc. 
This makes possible to prepare such novel groups of materials like 
ORMOCERS and ORMOSILS [29]. In recent years many researchers are 
focused on ceramics and glasses doped by carbon nanotubes and fullerenes 
[30]. These materials often have extraordinary mechanical and sensor 
properties. 
 
 

2.4. Shaping of gels 
 
If the purpose is to substantiate gels in desired shape then sol precursor is let to 
gel in suitable shape [18]. Most common sol-gel materials are prepared in the 
shapes of thin films on substrate, fibres and monoliths (bulks). For preparing the 
films a sample surface is coated with highly diluted sols. After gelling and 
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evaporation of solvents thin (usually in nanoscale) amorphous films are 
obtained. For preparing fibres the precursor is pulled or pressed to slender jets. 
The solid fibres are obtained due to gelation of the jet in humid environment. To 
prepare the bulk monoliths, a sol is gelled in desired shape molds. After the 
gelation a self-standing body is released from the mold. Figure 1 explains the 
main paths for preparing different shape gel-bodies and their usual post 
treatment steps. 

 
Figure 1. The main paths for preparing sol-gel materials. 
 
 

2.5. Post treatment steps 
 
To obtain amorphous or crystalline structure of oxides a post treatment of gels 
is carried out. A process called ageing is carried out for removing solvents from 
the gel structure. Baking is typically applied after the ageing and is required for 
crystallization and densification of oxide materials. 
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2.5.1. Ageing (drying) 
 
Duration of the aging in air depends on the size of oxide body and can take 
from minutes up to several years. Careful and long-time ageing is needed to 
avoid cracks in gel body.  

Widely accepted explanation of the formation of cracks in sol-gel structures 
is related to development of capillary pressures [31]. In a drying gel there are 
different size pores and caps (Figure 2). The liquid tends to occupy positions 
ensuring the minimum energy of the system as a whole. A wetting liquid forms 
menisci. Capillary forces act on the curved liquid-gas surface and on the three-
phase liquid-solid-gas contact lines pulling and pushing apart neighbouring 
particles. The magnitude of the capillary forces depends on the size of the 
particles in system and generates stresses that may reach to considerable values. 
If stresses exceed the strength of gel structure then cracks appear. 
 

 
 
 
Figure 2. Formation of cracks in gel body during the drying. 
 

To avoid cracking, organic additives are advised to add into alkoxide sols for 
turning structure of gels more uniform. It is showed that if formamide, glycerol 
or organic acids are used as drying control chemical additives, then oxide 
monoliths up to some tens of centimetres could be prepared [18]. The effect of 
these additives is related to formation of much more uniform size colloidal 
particles and pores, which therefore lead to lower mechanical stresses during 
the drying process. 

An alternative and very powerful method for removing solvents out from gel 
bodies is supercritical fluid extraction [32]. Since at supercritical conditions no 
liquid-gas surface exists then the mechanical stresses cannot develop. This 
method has been applied for drying of bulk gels in dimensions more than tens 
of centimetres [33]. As a result of the process, solvent free aerogels are 
obtained. Silica aerogels for example are materials, which have several 
extraordinary properties like very low thermal conductivity, low density and 
refractive index (1,03–1,08), and remarkable mechanical properties [34].  
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2.5.2. Baking 
 
Gels are most often densified by a baking process. For local densification, 
focused laser beams are also used. The principal process involved in 
densification is the viscous sintering. Two models have been employed to 
describe that process [35]. The first model is applicable at late stages of the 
densification when pores are closed and isolated [36]. The second, suggested for 
very open structures of high porosity was originally developed to describe 
sintering of soots produced by flame hydrolysis [37, 38]. 

Most critical aspect of the baking is that all solvents, organic groups and 
decomposition products are to be removed prior to micropores collapse due to 
the sintering. Oxide is formed as a result of the following processes: 
carbonisation of organic groups, desorption of absorbed solvents and water 
from the walls of micropores, polymerisation, collapse of micropores, sintering 
and densification. 

Sintering can be observed by several analytical techniques. Probably the best 
apparatus for the on-line control is the termogravimetric analysis [39]. IR 
spectroscopy is used to study chemical bonds in the sample and also to identify 
gasses released from the sample during the baking. Sometimes oxide materials 
are analysed by NMR, but it is technically complicated [40]. 
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3. RESULTS 
 

3.1. Aims of the study 
 
The aim of the study was to find new approaches for preparing nanostructured 
oxide materials. The particular objectives of the study were: 

• Elaboration of methods for preparation of suitable precursors for 
preparing nanostructured oxides. 

• Elaborating different methods applicable for preparation of controlled 
shape nanostructured oxides from the precursors. 

• Theoretical analysis of the formation of oxide structures. 
• Characterization of the oxide structures. 

 
 

3.2. Discussion 
 

3.2.1. Conductive and transparent oxide fibres 
 
Our interest in technologies that are used for nanometer level shaping of 
transition metal oxides were initially related to an idea to use those materials as 
transparent and conducting SPM sensors. The most critical aspect in designing 
this kind of SPM sensors is sharpening the needles of these materials down to 
nanometer level. As a precursor we selected high viscosity (100 to some 
thousand poises) partially polymerized alkoxides as those materials are widely 
used as precursors in preparing fibres of transient metal oxides. 

There are just a few solid materials known that are electrically conductive 
and transparent in the optical range. Widely used materials are: ITO [41, 42], 
ATO and ZnO. Our choice was settled on ATO, which is also mechanically 
stable material that is very important property of SPM sensors [43]. 
 
 

3.2.2. Precursors [papers I–VI] 
 
Tin butoxide (Sn(OBu)4) was synthesized as described in [44]. Due to their 
suitable reactivity butoxides are among widely utilized alkoxides in sol-gel 
fabrication of transient metal oxides [18-20]. We preferred normal butoxy 
compound instead of tertiary one due to it is higher viscosity caused by 
complexation of monomers [19]. It is also known that alkoxides, which have 
normal chain ligands around metal center are much more reactive in reaction 
with water. That is important factor as the jet, which is pulled into air is to be 
gelled thereafter. 

In our first papers (I–II) we used thermal treatment in vacuum for partial 
polymerization of Sn(OBu)4 similarly as described by D. C. Bradley [45]. His 
purpose was to distil Sn(OBu)4 in high vacuum, but it resulted unexpectedly in 
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decomposition of the compound at 120°C. However, he did not suggest residue 
material for fibres pulling, which we considered having excellent properties for 
that. The mechanism of thermal decomposition and polymerization processes of 
Sn(OBu)4 are discussed in detail in paper [I]. 

It is known that if water is added to acidified silicon alkoxides then 
spinnable materials (materials suitable for fibres pulling) can be obtained. In 
paper [II] we describe analogous reaction, which resulted in preparation of 
spinnable matter based on Si(OEt)4. Likewise, by adding sufficient amounts of 
water we prepared spinnable materials from Ti(OBu)4 and from Sn(OBu)4. In 
all cases, if water was used to polymerize alkoxides, highly viscous precursors 
for further experiments were obtained after concentration (evaporation solvents 
out of material) of material in vacuum. We also tested possible thermal 
polymerization of Si(OEt)4 and Ti(OBu)4 as in the above-mentioned case of 
Sn(OBu)4 but it resulted in distillation in the case of Si(OEt)4 and in rapid 
precipitation of oxide at temperatures above 200 °C in the case of Ti(OBu)4. We 
concluded that preparation of homogeneous precursors by thermal treatment of 
those compounds was impossible. This is in good correspondence with earlier 
results, which pointed out that silicon and titanium alkoxides are much more 
stable compounds compared to tin alkoxide [19].  

In papers [III–VI] we used water treatment of alkoxides due to the simplicity 
compared to polymerization via thermal treatment. In these papers just some 
minor changes are suggested for preparing suitable precursors. The structure of 
precursor materials is discussed mostly in papers [I, II] and [V]. 
 
 

3.2.3. Sharp oxide fibres [I–V] 
 
We described the preparation of oxide fibres first in [46]. Fibres were prepared 
using a glass rod method, which has been widely used for preparing fibres from 
sols of transient alkoxides. After aging and baking the transparent Sb doped 
SnO2 fibres were sufficiently electrically conductive for STM applications. As 
the next step we tested variety of methods for their sharpening. The simple 
pinch-off of thermally treated Sn(OBu)4 based precursors in air turned to be the 
best method since sharp and conical needles can be prepared in one-step 
process. All other processes included two steps, preparing and sharpening the 
fibres. The pinch-off also yielded the sharpest needles. TEM imaging of those 
fibres revealed that in some cases the needles had tip radii down to ~50 nm 
(paper [I]).  

For more detailed studies of formation of sharp fibres an equipment was 
constructed that enabled to vary the pulling speed and atmospheric humidity. It 
was designed to enable the generation and exposure of free surface of the jets to 
air environment just at the moment when pulling of the material was started. 
Typical fibres obtained with this instrument had conical shape and length  
3–10 mm (paper [V]). 
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In paper [IV] we present sharp fibres that were prepared at controlled pulling 
speeds from alkoxy precursors. Already the first results proved that the shape of 
the needles notably depended on pulling speed.  

In paper [V] the influence of pulling speed, precursor viscosity and humidity 
of atmosphere on the sharpness and shape of the fibres is demonstrated. It is 
shown that regular needles can be pulled from precursors in range of some 
hundred up to one thousand poises. Experiments showed that the speed of 
gelation, which is determined by atmosphere humidity, was the key factor 
influencing the formation of the needles. Optimal gelation speed at room 
temperature was found to occur at 2–5% relative humidity. Different pulling 
speeds at this humidity range enabled reproducible preparation of needles with 
different cone angles.  

Similarly, highly viscous Si(OEt)4 and Ti(OBu)4 based precursors were pin-
ched in air to control the applicability of the method in preparing sharp SiO2 and 
TiO2 fibres. Experiments were successful in the case of Ti(OBu)4 based precur-
sors due to its sufficiently high reactivity. As Si(OEt)4 precursors polymerized 
much more slowly in air, drops due to surface tension quickly formed at the top of 
the fibres, which considerably dragged down their sharpness (paper II). 

Applicability of needles as STM probes was demonstrated in collaboration 
with M. Kreiter’s group from Max Planck Institute for Polymer Research (Mainz, 
Germany). 1–2 nm resolution in lateral and atomic resolution in vertical direction 
on surface of crystalline gold test sample could be obtained (paper [III]). The 
result can be explained by inhomogeneous nanostructure of the fibres (paper 
[III]). As ATO material is both conductive and transparent the fibres were also 
tested as probes for local excitation of electroluminescence. The emission of light 
was detected and found to be non-influenced by metal sensor (paper [III]). 

In paper [V] we suggest also that oxide needles can help to understand the 
phenomena of pinching. As jets can be solidified quickly after pinching the 
nanoscopic images can be obtained using e.g. TEM leading to better under-
standing of nanometer level dynamics of viscous liquid treads. 
 
 

3.3. Tape casting of alkoxide concentrates [Paper VI] 
 
Tape casting is a method where a material is smeared onto a surface with a 
structured blade (known also as a doctor blade technology). We used structured 
glass slide and etched monocrystalline (100) silicon pieces as the blade and 
smeared the precursor onto the surface of another glass slide. Thus, linearly 
oriented oxide structures on the glass surface were formed. After the smearing, 
the films were exposed to humid air, which gelled the structures. The structured 
surfaces were imaged with AFM, TEM and optical microscopy verifying that 
the smearing with structured blades enables to coat flat surfaces with well-
defined linear oxide structures. We suggest that these structures can be utilized 
in different technological fields. 
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4. CONCLUSIONS 
 
The description of and discusses about an easy method for preparing nanometer 
level homogeneous Sn(OBu)4 based concentrates, suitable as precursors for 
preparing nanometer level structured oxide materials was presented in the 
current thesis.  
 
Two approaches were suggested for preparing defined shape micro/nano 
structures from those precursors: 

• The pinching of precursor jets at room temperature in humid air 
were demonstrated for the first time as reproducible way for preparing 
novel structures – nanometer level sharp metal oxide needles. Electron 
microscopy images demonstrated good quality and high sharpness of the 
needles. Needles shape correlated liquid jet profiles, measured and 
simulated in several earlier studies. The knowledge about pinching 
phenomenon of metal alkoxide jets may lead to better understanding of 
nanometer level dynamics of viscous liquid treads as needles were 
formed in process of quick solidification of alkoxide jets. To prove their 
applicability, needles were used as STM probes enabling 1–2 nm lateral 
and atomic vertical resolution. 

• Tape casting of precursors by structured silicon blades was 
demonstrated to be suitable for preparing a few micron wide oxide lines 
on solid surfaces. 

The formation of structures was explained by rapid solidification of used 
precursors in humid air that prevented destruction of the structures by surface 
tension. 

Electrical conductivity and optical transparency of prepared ATO materials 
were caracterized in temperature range from 5.5 K to room temperature. Tensile 
strenght of prepared materials were measured on tin and titanum oxide fibres. 
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SUMMARY IN ESTONIAN 
 

Kõrgviskoosssed Sn(OBu)4 oligomeersed kontsentraadid  
ja nende tehnoloogilised rakendused 

 
Tehnilistele probleemidele lahenduste otsimine miniaturiseerimise läbi on 

olnud suundumuseks alates 1960. aastatest. Kaasajaks on mitmete kompo-
nentide (näiteks transistoride) mõõtmed kahanenud alla 100 nm piiri, millest 
alates ei räägita kokkuleppeliselt enam mitte mikro-, vaid nanotehnoloogiatest. 
Jõudmine selliste suurusjärkudeni on aktualiseerinud nii otsingud uute 
tehnoloogiate järele kui ka tõstatanud diskussiooni molekulaartasemel tehno-
loogiate võimalikkusest. 

Käesolev doktoritöö on inspireeritud neist üldistest suundumustest. 
Uurimuse põhieesmärgina keskendutakse nanomeetrilises skaalas terava ja defi-
neeritud kujuga oksiidsete nõelstruktuuride valmistamisele. Välja pakutakse ka 
uudne, sobivast lähtematerjalist ja selle vormimise metoodikast koosnev 
kompleks mikroskaalas defineeritud kujuga oksiidsete jadastruktuuride saami-
seks. Nõel- ja jadastruktuuride saamise omavaheline seos seisneb samade lähte-
materjalide – alkoksiidsete oligomeerkontsentraatide kasutamises. 

Töö sissejuhatavas osas antakse ülevaade nanostruktureerimise erinevatest 
võimalustest, millele järgneb sügavam sool-geel tehnoloogia olemuse selgita-
mine. Töö diskussiooni osa seob omavahel dissertatsiooni osaks olevates 
teadusartiklites käsitlust leidnud temaatika ja tulemused.  
 
Töö oluliseimad tulemused on järgmised:  

• Välja on töötatud metoodika nanoskaalas homogeensete SnO2 lähte-
materjalide valmistamiseks Sn(OBu)4 baasil. 

• Näidatud on, et lähtematerjali joa katkestamisel niiske õhu keskonnas 
katkemiskoht geelistub, säilitades katkemispunkti nanomeetrilise tera-
vuse. Vastavate struktuuride termilisel töötlusel saadud tinaoksiidseid 
nõelstruktuure on edukalt kasutatud STM-i sensorina lateraalse lahutuse 
1–2 nm ja aatomkihi täpsusega vertikaalsuunalise lahutuse tasemel. 

• Näidatud on, et laialt kasutatav määrimismetoodika (doctor blade; tape 
casting) on sobilik mikrojadade kandmiseks siledatele pindadele. 
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