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Chapter 1

Introduction

The A5/1 stream cipher is an encryption algorithm used in the GSM stan-
dard of mobile communications. The standard originally incorporated two
ciphers: A5/1 was used mainly in Europe, whereas A5/2, an intentionally
weaker version of the A5 algorithm was created for export. Recent cryptan-
alytic attacks against A5/2 have caused 3GPP (3rd Generation Partnership
Project, [3GP]), who is currently responsible for maintaining and developing
GSM technical specifications, to withdraw A5/2 from the standard. Accord-
ing to [GSM04], there were over 1.7 billion GSM subscribers as of March
2006. With 3G networks still under development and A5/2 in removal, a
vast majority of those users will rely on A5/1 to protect the confidentiality
of their voice communications during the coming years.

The history of GSM dates back to the 1980s and the A5/1 encryption
algorithm was developed already at the end of the same decade. The first
initiative to create a pan-European mobile communications network was met
in 1982, when the Groupe Spéciale Mobile was established and development
of the new digital cellular standard begun. This was also the birth of the
GSM acronym: only later was the original French acronym changed to Global
System for Mobile Communications. In 1989, the responsibility for specifica-
tion development passed to the newly created European Telecommunications
Standards Institute (ETSI); during the next year, most of the GSM speci-
fications were published. However, the encryption algorithms were initially
kept secret in hope to increase security. The “security through obscurity”
principle did not prove a very good idea: the general design of GSM cipher-
ing algorithms leaked in 1994, and by 1999, both A5/2 and A5/1 algorithms
had been reverse-engineered.

The subject of this work is the cryptanalysis of A5/1, with special focus on
attacks that could benefit from hardware assistance. Special-purpose hard-
ware has proved useful for example in cracking the DES block cipher [Fou98].
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The goal of this Master’s thesis is to analyse whether it is also possible to
speed up the cryptanalysis of the A5/1 stream cipher with the aid of hard-
ware, in particular, field programmable gate arrays (FPGAs). The nature of
the thesis is theoretical: descriptions of attack algorithms and estimates on
their time and memory complexity are meant to help a hardware specialist
in selecting the method most suitable for hardware implementation. Also,
we are aware of one previous hardware implementation of a cryptanalytic
attack against A5/1, which we cover in Section 4.1.4.

The thesis is organised as follows: Chapter 2 introduces the reader to
the general architecture of GSM security and gives necessary background
about other aspects of GSM voice transmission. The first part of Chapter 3
describes the A5/1 encryption algorithm. The second part summarises some
general concepts in the cryptanalysis of stream ciphers. This concludes the
introductory part.

The major part of our original work is presented in Chapter 4. In this
chapter, we analyse three different attacks against A5/1, belonging to a
generic class of attacks known as guess-and-determine attacks. Apart from
reviewing work done by other authors, our own contribution is the following.
First, in Section 4.1, we give a detailed complexity analysis for the Anderson-
Keller-Seitz attack presented in this section. Keller and Seitz have attempted
such analysis in [KS01], however, we have found that their analysis is impre-
cise, and present our exact results. Second, we have also implemented the
attack in software. The implementation enables us to verify our theoretical
results as well as to give an estimate on the time complexity of the attack on
a PC. Implementation results are presented in the end of the section.

Next, we also use our results from Section 4.1 to give a precise estimate
on the complexity of the Biham-Dunkelman attack, presented in Section 4.2.
Also, as a smaller original contribution, we generalise the Biham-Dunkelman
attack by proposing a trade-off curve between the amount of required plain-
text and computational complexity.

Chapter 5 proceeds with reviewing other known attacks against A5/1.
In each section of this chapter, we describe the key ideas of one attack and
provide implementation details, where available. We conclude each section by
discussing possibilities for hardware implementation. Finally, in Chapter 6,
we give a comparison table of the parameters for all of the presented attacks.
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Chapter 2

Introduction to GSM Security

This chapter gives a general introduction to the GSM system. We start
by giving information about speech encoding, error correction coding and
speech transmission in GSM. In the next section, we move on to the more
specific field of security in the GSM system. This chapter is meant to give
necessary background information for understanding the security of the A5/1
encryption algorithm. We do not analyse the security of the GSM system
as a whole and all security claims that we make later in this thesis will only
concern the cryptographic strength of the A5/1 cipher.

2.1 GSM Speech Transmission

Speech in GSM is digitally coded at a rate of 13 kbps, so-called full-rate
speech coding. The speech signal is divided into 20 millisecond samples, so
one block of the GSM speech codec output is 260 bits long. Each block
is then protected from errors, using cyclic and convolutional encoding, and
the output size of the encoder is 456 bits. Before transmission, this data
is encrypted, using a bitwise exclusive-or (XOR) operation with a pseudo-
random bit sequence generated by the encryption algorithm. The fact that
the encrypted data is redundant—260 bits of actual data are expanded into
456 bits by the encoder—has been exploited to mount a ciphertext-only at-
tack on the encryption algorithm. For more details on GSM error-correction
coding, we refer the reader to the relevant standard [ETSa].

The GSM system uses Time Division Multiple Access (TDMA) to allow
several users to share the same channel. The time unit of the TDMA system
is a burst, which lasts 3/5200 seconds (approximately 0.577 ms). One burst
is capable of carrying 114 data bits, and so the size of a burst is 25% of the
size of an error correction coded block, or equivalently 5 ms of conversation.
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0 8 16 24 . . . 448 burst N
1 9 17 25 . . . 449 burst N+1
2 10 18 26 . . . 450 burst N+2
3 11 19 27 . . . 451 burst N+3

4 12 20 28 . . . 452 burst N+4
5 13 21 29 . . . 453 burst N+5
6 14 22 30 . . . 454 burst N+6
7 15 23 31 . . . 455 burst N+7

Figure 2.1: The block diagonal interleaver of the GSM system

However, the division of a block into bursts is slightly more complicated.
While error correction codes employed in the GSM system make it possi-

ble to detect and correct bit errors, they cannot guard against disturbances
causing a large number of consecutive erroneous bits—a situation common
to the radio interface. To further protect against such errors, each 456-bit
speech sample is interleaved before transmission. First, the 456 bits are
divided into 8 blocks of 57 bits each: bits 0, 8, . . . , 448 form block I, bits
1, 9, . . . , 449 form block II etc, until the last block of 57 bits (block VIII) will
then contain the bits numbered 7, 15, . . . , 455. The first four blocks of 57 bits
are then placed in the even-numbered bits of four consecutive bursts. The
other four blocks of 57 bits are placed in the odd-numbered bits of the next
four bursts. This type of interleaver is called the block diagonal interleaver
(see Figure 2.1).

Since a burst can carry 114 data bits, each burst carries blocks from two
consecutive samples, and one sample is distributed over eight bursts. This
means that even if an entire burst is lost during transmission, the loss for a
sample block is only 12.5% of the total number of bits.

A burst also contains some fixed bits to control modulation, so the total
length of one burst is 156.25 bits. However, only the 114 data bits are
encrypted before transmission. Encryption takes place as a final step after
interleaving and before modulation; decryption is carried out symmetrically
after demodulation. The steps of speech processing before modulation are
depicted in Figure 2.2.

In addition to digitally encoded speech, the mobile and the network also
exchange signalling data during the set-up phase of a call, and also during the
call itself, e.g., to report signal strength. While speech data is exchanged on
traffic channels, signalling data is sent on dedicated control channels. Both
types of channels are bidirectional, i.e., data is sent and received simultane-
ously. Signalling data is protected from errors with similar error correction
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Speech

Speech encoder

Error correction coding Ciphering

Interleaving Channel

260 bits 456 bits 114 bits 114 bits

Figure 2.2: Speech coding in the GSM system

methods, but the input to the encoder is now a message of fixed length 184
bits and the output block size is again 456 bits. Interleaving is done in a
slightly different manner. Namely, the first four blocks of 57 bits are again
placed in the even-numbered bits of four consecutive bursts, but the other
four blocks are placed in the odd-numbered bits of the same four bursts.
Hence, a burst of signalling data carries data from only one signalling mes-
sage. This type of interleaver is called the block rectangular interleaver.
Finally, the 114 significant bits of a signalling data burst are encrypted in
exactly the same way as bits of speech data.

Bursts in GSM are sent in frames. One TDMA frame contains eight
bursts from eight different users and consecutively lasts approximately 4.62
milliseconds. The difference between the frame length and the corresponding
length of conversation (5 ms) is compensated by the fact that not all frames
carry speech data. Of each 26 consecutive TDMA frames, 24 are reserved for
traffic channels, one frame is used for signalling data on the Slow Associated
Control Channel (SACCH) and the last frame is an idle frame, i.e., nothing
is transmitted at all.

This structure is called the TDMA 26-Multiframe. In this multiframe
structure, there are separate channels for uplink and downlink information,
so the total number of information bits transmitted on a channel within each
frame is 2 · 114 = 228 bits per user. Now, for each user, 26 frames carry
24 blocks of (uplink and downlink) speech data of 114 bits, or equivalently,
24 · 5 = 120 milliseconds of conversation. We see that the total duration of
the 26 frames, together with the data frame and the idle frame, is also 120
milliseconds, as expected.
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Figure 2.3: User authentication in the GSM system

2.2 Security in the GSM System

For each user i in the GSM network, there exists a permanent 128-bit secret
key Ki that is stored in two locations: the user’s Subscriber Identity Module
(SIM) card and the Authentication Centre (AuC) of the network. The key is
never supposed to leave either of these locations. Checking whether the user
has access to his key Ki (and is hence, hopefully, a legitimate user) is done
by challenging the SIM card to do a computation that can only be done with
the correct key Ki. The base transceiver station (BTS) can do this without
obtaining knowledge of the secret key Ki in the following way.

When a mobile station (MS)—a user—logs on to the network, the BTS
requests an authentication triplet from the AuC of the user’s Home Location
Register (HLR). The HLR/AuC first selects a 128-bit random value RAND.
It then computes an authentication value XRES (eXpected RESponse) and
the session key Kc from RAND and the user’s permanent secret key Ki (recall
that the AuC is the only other party in possession of the key Ki).

The three values—the 128-bit RAND, the response value XRES and the
64-bit session key Kc—form the authentication triplet that the HLR/AuC
sends to the BTS. The BTS forwards RAND to the MS. The MS performs
the same computations as the HLR/AuC did before. It obtains two values:
the session key Kc and the authentication value SRES (Signed RESponse),
and sends the latter to the BTS. If the MS is in possession of the correct
secret key Ki, the value of SRES will match the expected value XRES. Vice
versa, it should be the case that if the value of SRES matches the expected
value XRES, then the MS is indeed in possession of the correct key. If the
values match, authentication succeeds and the key Kc, now known by both
the user and the BTS, is used for encryption until the next authentication
occurs (see Figure 2.3).

The response value and the session key are generated by the HLR and the
MS with two one-way functions A3 and A8, respectively. Neither of these
algorithms is specified in the GSM specifications; rather, they are left for
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the service provider to implement. In practice, they are usually implemented
together as COMP128, a “reference implementation” from the GSM specifi-
cations, or one of its later, improved versions. An overview of security issues
related to COMP128 can be found at [COM].

Authentication in GSM systems is one-way: the user is authenticated to
the base station, but not vice versa. This opens up possibilities for active
attacks with a fake base station.

After the session key Kc has been generated and the encryption process
has been initialised, ciphering takes place at both the mobile station and the
base station. The encryption algorithm of GSM is called A5. Each frame, the
A5 algorithm produces the same pseudorandom sequence of 2 × 114 bits at
both ends. Encryption is achieved by simple bitwise XOR with the plaintext
block; the decryption operation is obviously identical to encryption. The
first 114-bit block output by the algorithm is now used to encrypt data on
the network side and, once received, to decrypt it on the mobile station side.
The second block is used analogously to encrypt data transmitted from the
mobile station to the base station.

As explained above, encryption of calls in the GSM system is not end-
to-end. Radio traffic between the end user and the nearest base station is
encrypted; however, base stations have access to plaintext, and on (landline)
links between network stations, data is sent in the clear. Moreover, control
data, including the session key used for ciphering, is sent to the base station
unencrypted. This is one of the most criticised properties of GSM security.
Also, session key setup, which is triggered by the authentication procedure,
may occur as often—or as rarely—as the network operator wishes. In prac-
tice, the same key may be in use for days. As we shall see from some of the
attacks, a large amount of data encrypted with the same key increases the
vulnerability of the cipher.

The ciphering procedure described above applies to GSM security. GPRS
connections are secured using a different encryption algorithm (GEA), which
is not publicly known. Readers interested in other aspects of GPRS security
may read [eK01].
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Chapter 3

The A5/1 Encryption
Algorithm

In this chapter, we describe the A5/1 encryption algorithm. The description
was first obtained by methods of reverse engineering and can be found at
[And94], together with a reference software implementation in C program-
ming language [BGW99]. According to [BSW01], the GSM organisation has
confirmed the correctness of the algorithm. We end this chapter by intro-
ducing the general concept of the cryptanalysis of stream ciphers.

3.1 The A5 Family of Stream Ciphers

There are multiple versions of the encryption algorithm referred to as A5:

• A5/0 is a dummy cipher that provides no encryption;

• A5/1 (the subject of this Master’s thesis) is the original A5 algorithm
used in Europe but also in North America and increasingly all over the
world;

• A5/2 is an intentionally weaker encryption algorithm created for ex-
port;

• A5/3 is a strong encryption algorithm created as part of the 3rd Gen-
eration Partnership Project (3GPP).

Following the principle of “security through obscurity”, the designs of
A5/2 and A5/1 were initially kept secret. Sketchy designs leaked in 1994
and the exact designs were reverse engineered in 1999. A recent ciphertext-
only attack on A5/2 by Barkan, Biham and Keller [BBK03] requires less
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than 5.5 hours of one-time precomputation and recovers the session key in
less than a second on a regular PC. Attacking A5/1 still requires notably
more time and memory resources. The development of A5/3 has been public
from the start and there are no known security problems with the algorithm,
which is based on the KASUMI block cipher.

A5/2 was designed intentionally weak due to export limitations. Follow-
ing the publication of the Barkan-Biham-Keller attack, the 3GPP organisa-
tion recently withdrew A5/2 from its standard. Export limitations have been
removed and 3GPP is encouraging networks to remove A5/2 support at the
earliest opportunity [3GP04]. Since support for A5/3 version is present only
in Third Generation networks, and Second Generation networks are gradu-
ally dismissing the weak A5/2 version, A5/1 will be the prevailing algorithm
of GSM encryption almost all over the world during the coming years. More-
over, 3G networks will have to ensure backwards compatibility with A5/1
until old handsets are no longer used, so the cryptanalysis of A5/1 is still an
important topic of research.

3.2 The A5/1 Stream Cipher

A5/1 is a generic (as opposed to block cipher based) synchronous stream
cipher. Three linear feedback shift registers (LFSRs) R1, R2 and R3 of lengths
19, 22 and 23 bits, respectively, are used as its main building blocks. Table
3.1 shows the primitive (i.e., maximal length) feedback polynomials of the
registers.

Register Feedback polynomial tap positions period
R1 x19 ⊕ x5 ⊕ x2 ⊕ x ⊕ 1 18, 17, 16, 13 219 − 1
R2 x22 ⊕ x ⊕ 1 21, 20 222 − 1
R3 x23 ⊕ x15 ⊕ x2 ⊕ x ⊕ 1 22, 21, 20, 7 223 − 1

Table 3.1: Feedback polynomials of the LFSRs in the A5/1 construction

A schematic description of the A5/1 cipher is given in Figure 3.1. Through-
out this thesis, we refer to bits 18, 21 and 22—leftmost bits in the figure—of
registers R1, R2 and R3, respectively, as the most significant bits of the
respective registers. Conversely, the bits at position 0—rightmost in the
figure—are referred to as the least significant bits.

When a register is clocked, the bits at its tap positions are XORed to-
gether and stored in the least significant bit of the register, after its bits have
been shifted one position to the left. The most significant bit of each register

14
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Figure 3.1: The three LFSRs of the A5/1 stream cipher

is its output bit. The output of the A5/1 generator is at each clocking cycle
obtained by XORing the output bits of the three registers.

The algorithm takes as input two parameters: a 64-bit secret session key
Kc and a 22-bit counter Fn, derived from the publicly known TDMA frame
number. During the operation of the cipher, the contents of the three reg-
isters are re-initialised with a new counter before the encryption/decryption
of each frame.

In the initialisation phase, all registers are clocked regularly at each cycle.
During the first 64 clockings, the 64 bits of the session key Kc—from least
significant bit (lsb) to most significant bit (msb)—are XORed into the lsb of
each of the registers in parallel. During the next 22 cycles, the frame number
Fn is mixed into the registers analogously. In the key setup phase, the cipher
produces no output. The state of the three registers after key setup is called
the initial state of frame n. Due to the way the contents of the registers
are initialised, the initial state is a linear combination of the publicly known
frame counter Fn and the secret session key Kc. Hence, when the initial state
of any given frame is known, the secret key is revealed.

After initialisation, an irregular clocking rule is introduced. The middle
bits of the three registers—bits 8, 10 and 10, denoted by C1, C2 and C3,
respectively—are the clocking bits used to determine the stop/go clocking.
At each step, the majority of the three bits is calculated and only those
registers for which the clocking bit agrees with the majority are clocked.
Hence, if C1 = C2 = C3, all registers are clocked; if C1 = C2 = C3 ⊕ 1,
registers R1 and R2 are clocked, and so on. The probability for an individual
LFSR to be clocked is 3/4 and the majority clocking rule guarantees that at
least two of the three registers are clocked at each cycle.

With the stop/go clocking started, the registers are first clocked for 100
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clock cycles without producing any output. Finally, the registers are stop/go
clocked for 228 cycles and an output bit is produced after each clock cycle.
Hence, the first output bit is produced after the registers have been clocked
irregularly for 101 clock cycles. Half of the produced 228 bits are then used
to encrypt uplink traffic, while the remaining bits are used to decrypt down-
link traffic in the current frame. The amount of discarded bits is crucial in
correlation attacks against the cipher (c.f. Chapter 5, Section 5.2).

One more observation should be made about encryption. Namely, the
GSM protocol is implemented in such a way that if one of the conversation
parties is silent, transmission from that side is cut. In this case, only half of
the 228 bits are actually used in encryption; the other half is just discarded.
For the cryptanalyst, this brings bad news, since it reduces the amount of
available ciphertext and plaintext. In all complexity estimates throughout
this thesis, we assume that from each time frame during the conversation all
228 bits of keystream can be extracted.

At any moment during the operation of the cipher, the contents of the
three registers form the internal state of the cipher. Note that the internal
state size of A5/1 is equal to the secret key length. In modern stream ciphers
(e.g., SNOW 2.0), the state size is usually at least twice the key size. This
requirement is also pointed out in the ECRYPT Call for Stream Cipher
Primitives, published in November 2004, as a prevention measure for time-
memory trade-off attacks [ECR]. All known attacks against A5/1 are internal
state recovery attacks, followed by initial state reconstruction and session key
recovery.

3.3 Cryptanalysis of the A5/1 Stream Cipher:

Generic Ideas

Cryptanalysis of a stream cipher is usually based on the known plaintext
assumption. This means that the attacker has access to a certain amount of
corresponding pairs of plaintext and ciphertext. Assume that the attacker
holds a chunk of plaintext X = (x0, x1, . . . , xn) and a corresponding chunk
of ciphertext Y = (y0, y1, . . . , yn) (where xi and yi are bits, 0 ≤ i ≤ n). The
encryption operation of a stream cipher is typically—and also in the case of
A5/1—simple bitwise exclusive-or of the plaintext X = (x0, x1, . . . , xn) and
keystream Z = (z0, z1, . . . , zn):

(y0, y1, . . . , yn) = (x0, x1, . . . , xn) ⊕ (z0, z1, . . . , zn)

= (x0 ⊕ z0, x1 ⊕ z1, . . . , xn ⊕ zn) ,

16



or briefly,
Y = X ⊕ Z . (3.1)

This means that the attacker can immediately deduce the keystream pro-
duced by the cipher by rewriting (3.1) as

Z = X ⊕ Y ,

i.e.,
(z0, z1, . . . , zn) = (x0 ⊕ y0, x1 ⊕ y1, . . . , xn ⊕ yn) .

The task of the attacker is now to find the key that was used to produce
this output. In the following sections, we use the terms known plaintext and
known keystream as synonyms, since knowledge of one reveals the other.

In the case of the A5/1 cipher, access to known plaintext then means
either direct access to the keystream generator or access to the output of
the speech codec (or signalling data). Some ideas for obtaining plaintext are
presented in Chapter 5, Section 5.3.

If an attack is mounted without any knowledge of the plaintext, only
using the encrypted data, it is called a ciphertext-only attack. In the case of
the A5/1 cipher, such an attack would require only passive eavesdropping on
radio channels to obtain encrypted data and would hence be very powerful.
On the other hand, a ciphertext-only attack still requires some (statistical)
knowledge of the plaintext. If nothing about the plaintext is known, then
in (3.1), Z can be any keystream produced with a valid key and X can be
anything. Hence, any keystream will yield a valid plaintext and there is no
way to decide which of the keys was actually used for encryption.

In real-life settings, plaintext is never “anything”. In the case of A5/1
in the GSM setting, plaintext is digitally encoded speech or signalling data.
Moreover, as was described in Section 2.1 of Chapter 2, all data is expanded
by employing error-correction coding. This means that although output from
the speech codec is compressed, input to the encryption algorithm is redun-
dant. In Section 5.3, we describe how the redundancy can be exploited to
mount a ciphertext-only attack on the cipher.

In the following chapters, several types of attacks against the A5/1 cipher
are described. When comparing these attacks from the viewpoint of efficiency
and practical threat to security, the following four parameters should be
considered:

• Data complexity. In the common known plaintext model, data
complexity means known plaintext requirement—the amount of
plaintext-ciphertext pairs needed to complete the attack with a given
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success probability. In the case of a ciphertext-only attack, data com-
plexity simply means the amount of ciphertext needed. In practical
settings, there is usually an upper limit to the amount of plaintext
encrypted using the same key. In the case of A5/1, we know that
the amount of plaintext encrypted, using the same session key and
frame number combination, is 228 bits. The amount of conversation
encrypted, using the same session key but different frame numbers de-
pends on the frequency of authentication. In any case, obtaining sec-
onds of known plaintext or minutes of known ciphertext might be fea-
sible, whereas re-authentication makes obtaining hours of conversation
from one session an impossible task.

• Time complexity. In the theory of cryptanalysis, time complexity is
usually given as a number of operations needed to complete the attack.
The worst-case time complexity of an exhaustive search is equivalent
to the size of the keyspace—264 in the case of A5/1—and the efficiency
of any other attack can be compared to this measure. If an attack
succeeds in finding the key in less than 264 time, the cipher is said to
be broken.

In practical settings, we are of course interested in the actual wall clock
time needed to carry out the attack. The attack time then depends on
the type of operations referred to in the theoretical calculations, and an
attack requiring 240 cipher clockings is in practice somewhat faster than
an attack requiring 240 steps of “solving a system of linear equations”.

The time needed to complete an attack can be divided into precom-
putational complexity and attack-time complexity. Precompu-
tations are usually done only once, before the attack is launched, so
time requirements are slightly more relaxed. An attack requiring a
month of one-time precomputations, but thereafter finding the key in
seconds during actual attack time is more feasible than an attack re-
quiring a month of computations each time a new key is attacked.

Finally, we distinguish worst-case complexity and average-case
complexity. Worst-case complexity is the time after which the attack
is bound to finish, whereas average-case complexity refers to the time
after which the attack is expected to finish. For example, in the case of
an exhaustive search over 264 possible keys, the right key will definitely
be found after 264 tests, but it is expected to be found after half of the
tests, i.e., in time 263.

• Memory complexity. The required amount of memory needed to
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perform the attack is most often crucial if the attack has a precompu-
tation stage. Memory complexity is directly related to precomputation
time complexity: large memory requirement infers long precomputa-
tion time.

• Success probability. We consider two types of attacks. Deterministic
attacks are guaranteed to succeed within time T , given an amount D
of plaintext, using M memory. Probabilistic attacks, on the contrary,
have success probability p < 1 for fixed parameters T , M and D.
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Chapter 4

Guess-And-Determine Attacks

This chapter, which forms the core of the thesis, deals with a certain class of
attacks against stream ciphers in general and the A5/1 cipher in particular,
namely, guess-and-determine attacks. Guess-and-determine attacks were the
first attacks proposed against A5/1; they are also probably the easiest to
understand. Later, several other attacks with significantly lower computa-
tional complexity have been found. However, guess-and-determine attacks
still prevail in one area—the amount of known plaintext required. We be-
lieve that in the real world, obtaining known plaintext may be more difficult
than obtaining a sufficient amount of computation power, and so guess-and-
determine attacks are still worth investigating, despite their relatively high
computational complexity.

4.1 Anderson-Keller-Seitz Attack

In this section, we discuss the first proposed guess-and-determine attack
against the A5/1 stream cipher. The core of a guess-and-determine attack lies
in guessing part of the cipher’s internal state and deriving the remaining un-
known state bits from known keystream. Thus, this attack is a known plain-
text attack. The proposed attack requires only one or two frames of known
plaintext, no precomputation and, correspondingly, no notable amount of
memory. On the other hand, the computational complexity of such an at-
tack is quite high—over 250 A5/1 clock cycles, which amounts to over two
years of computation time on our test platform PC.

The next three sections focus on theoretical attack models and their com-
plexity. Section 4.1.1 introduces the main concept of the attack, which was
first mentioned by Anderson [And94]. In Section 4.1.1, we analyse a con-
crete attack model that was used in a hardware implementation by Keller

20



and Seitz [KS01]. From now on, we refer to this attack as the Anderson-
Keller-Seitz (AKS) attack. Section 4.1.1 contains original theoretical results
on the computational complexity of the attack. A previous attempt at com-
plexity analysis by Keller and Seitz is discussed in Section 4.1.3—we show
that their case study is incomplete and, as a consequence, they underestimate
the complexity of the attack over 4 times.

In the final section, we compare two implementations of the AKS attack.
First, we describe our own implementation of the attack in software. We
include some notes on implementation and a time complexity estimate. Then,
we discuss the hardware implementation by Keller and Seitz and compare
the efficiency of the two implementations.

4.1.1 Key Ideas of the Attack

Even before the exact design of the A5/1 algorithm was reverse engineered,
first attacks against the cipher were published. When the sketchy design
leaked, Anderson immediately pointed out that a trivial guess-and-determine
attack, where the contents of two linear feedback shift registers are guessed
and the content of the last register is then derived from known keystream,
has computational complexity of about 240 tests.

(Un)fortunately, the complexity estimate given by Anderson is too op-
timistic. Namely, the contents of two registers are not sufficient to derive
the contents of the third register in a straightforward manner, since it is not
possible to determine, which registers are being clocked each cycle, without
knowing the clocking bit of the third register. A rough approach would be to
additionally guess the 11 less significant bits of the third register. This would
reveal the clocking sequence and would allow to determine the remaining 12
bits of the internal state. Since the combined length of the two shortest LF-
SRs is 41 bits, the worst-case complexity of the attack would now increase
to 252 tests, where each test consists of deriving the remaining 12 bits of the
third register and further checking the solution against known keystream to
eliminate false possibilities. The average-case complexity of the same attack
is then 251 tests, since we can expect to examine half of the possibilities
before we find the right state.

This attack can be slightly improved by noting that some of the 211 pos-
sibilities for the less significant bits of the third register lead to an early
contradiction with the known keystream even before all the remaining un-
known bits have been recovered. Keller and Seitz have taken advantage of
this improvement and implemented the attack in hardware. In the next sec-
tion, we proceed to describe the attack in more detail and present a detailed
complexity analysis for both hardware and software implementations.
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We stress that the internal state of the cipher recovered by this attack
does not directly reveal the secret session key. The attack recovers the state
of the registers at the moment when the cipher starts producing output, i.e.,
after 100 bits of discarded output. Techniques for reversing the algorithm
for 101 cycles to recover the initial state and derive the session key were first
proposed by Golić and are discussed in the end of Section 4.1.2.

An Improvement of the Attack

We shall now present a concrete attack model from [KS01] and give a theo-
retical complexity analysis of the model. First, we present the stages of the
attack step-by-step. Then, we compute the average-case complexity of the
attack in high-level operations. Finally, we give two implementation-specific
complexity estimates in A5/1 clock cycles.

Our computations throughout this thesis will be based on the assumption
that the LFSR sequences are mutually independent and uniformly random.
Although this is not the case, the randomness assumption is reasonable, since
the individual LFSR sequences of A5/1 are maximum-length sequences with
good statistical pseudo-random properties. In particular, it is known that
the output sequence of a maximum-length LFSR satisfies a set of properties
known as Golomb’s randomness postulates. Also, it should be noted that the
output function of A5/1—a ternary exclusive-or with inputs from the outputs
of its three registers—is maximum-order correlation immune. Recall that an
n-ary Boolean function is maximum order correlation immune if its output is
statistically independent of any n−1 inputs to the function, and exclusive-or
clearly satisfies this property. A nice explanation of both Golomb’s postulates
and correlation immunity can be found in e.g. [MvOV96]. Furthermore, the
results of our practical simulations, discussed in Section 4.1.4 also support
the reasonableness of such assumptions.

The Precise Attack Model

We start by giving some notations. Let our time unit be an A5/1 clock cycle
and let the time when the first output bit is produced be t = 0. Denote
the (unknown) most significant bits of registers R1, R2 and R3 at time t by
O1(t), O2(t) and O3(t), respectively. Denote the clocking bits of the registers
at time t by C1(t), C2(t) and C3(t), respectively. Finally, suppose that we
are given the known keystream sequence Z(t) = Z(0), Z(1), . . . , Z(227) from
one frame. Our task is then to determine the internal state of the cipher
that generates this sequence. Note that at each cycle, the following relation
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holds:
Z(t) = O1(t) ⊕ O2(t) ⊕ O3(t) . (4.1)

We proceed as follows. First, we guess the contents of registers R1 and
R2 at time t = 0. Equation (4.1) can then be rewritten as

O3(t) = Z(t) ⊕ O1(t) ⊕ O2(t) , (4.2)

where the right-hand-side is now known, provided that the clocking sequence
is known. In particular, we can immediately determine the unknown bit
O3(0) from the first known output bit Z(0) and the guessed bits O1(0) and
O2(0). In general, every time the third register is clocked, the next output
bit of R3 is determined by known keystream. Finally, when the entire state
of register R3 has been derived, we can continue to clock the registers and
compare the output against known keystream to eliminate false possibilities
for the internal states of registers R1 and R2.

The difficulty here lies in the fact that the clocking sequence of the reg-
isters depends not only on the guessed states of R1 and R2, but also on the
11 less significant bits (bits 0 to 10) of R3. Hence, we would need to guess
11 more bits, yielding the aforementioned worst-case complexity of 252 tests.

Fortunately, it turns out that we can do a little better. Namely, some
of the 252 partial internal states cannot be completed to a full 64-bit state
that produces the required keystream. Therefore, we proceed to derive the
contents of the third register bit-by-bit. As we shall soon see, this enables us
to eliminate inconsistent guesses early on in the search.

The search, depicted in Figure 4.1 goes as follows. First, since Z(0),
O1(0) and O2(0) are known, bit O3(0) can immediately be derived from (4.2).
Next, we guess the clocking bit C3(0) and clock the registers according to
the majority rule.

At any time t, when guessing bit C3(t), there are two possible cases.
First, assume that the clocking bits C1(t) and C2(t) of registers R1 and R2

are different. In this case, C3(t) agrees with either C1(t) or C2(t) and, due to
the majority rule, register R3 is definitely clocked. There are two possibilities
for the clocking bit C3(t) and we need to check both of them. Either case
leads us back to the beginning of the loop depicted in Figure 4.1 and we
proceed to derive the next output bit of R3.

Second, suppose that registers R1 and R2 have identical clocking bits
at some time t, i.e., C1(t) = C2(t). Then these registers are both clocked.
Now, consider the guess C3(t) = C1(t)⊕ 1, i.e., assume that the clocking bit
C3(t) disagrees with the majority and, consequently, the third register is not
clocked. Then the most significant bit of R3 remains the same during the
next clock cycle, i.e., O3(t + 1) = O3(t). The next keystream bit Z(t + 1)
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can then be compared to the XOR of the most significant bits of R1, R2 and
R3. If these bits differ, the guessed internal state does not produce correct
keystream, so the option C3(t) = C1(t)⊕1 can be eliminated. In other words,
it has to be that C3(t) = C1(t) = C2(t) and register R3 is clocked. Now, the
clocking bit C3(t) is uniquely determined. The probability that a random
guess for C3(t) leads to such a contradiction in one clock cycle is thus

Pr[fail(1)] = Pr[C1(t) = C2(t) 6= C3(t)] ·
Pr[Z(t + 1) 6= O1(t + 1) ⊕ O2(t + 1) ⊕ O3(t)]

=
1

2
· 1

2
· 1

2
=

1

8
.

Here, the probability is taken over all possible values for bits C1(t), C2(t),
C3(t), O1(t + 1), O2(t + 1) and O3(t) = Z(t) ⊕ O1(t) ⊕ O2(t), assuming that
the LFSR sequences of R1 and R2 are mutually independent and uniformly
random.

Observe that at most one of the two guesses for C3(t) leads to a contra-
diction. Thus, by mutual exclusivity, the probability that either of the two
guesses for C3(t) leads to a contradiction (so that C3(t) is uniquely deter-
mined) is 1/4. Therefore, the average number of possibilities that we need
to consider is at most (1 · 1/4 + 2 · 3/4)11 = (7/4)11 ≈ 471, so the heuristic
reduces the number of tests approximately 4 times.

However, we can refine this search a bit further. Namely, what if R3 is
not clocked at cycle t but the keystream bit and the XOR bit are identical, so
that we do not get a contradiction? Then, the clocking bit of R3 remains the
same during the next cycle, so we can look one step further. If R3 is clocked
at cycle t+1, we cannot determine whether our initial guess C3(t) = C1(t)⊕1
was right or not. If R3 is not clocked, we can again perform the output bit
check. Continuing analogously, one of the two things is bound 1 to happen:
either R3 is clocked or we get a contradiction in the output bit check. In the
latter case, we know that R3 had to be clocked at cycle t, so we have reduced
the possibilities for the clocking bit C3(t) from two to one. In the former
case, we cannot outrule either guess for the clocking bit of R3 at cycle t, so
we must keep both possibilities.

Figure 4.1 gives a schematic description for the search. The search has
two end states: FAIL means that our last guess for C3(t) is inconsistent with

1
Unless registers R1 and R2 are both in the constant all-zero state, register R3 will

definitely be clocked after a finite number of cycles. If it indeed happens that registers R1

and R2 are both in the all-zero state, then for a certain (constant) keystream the test will

“hang” until we run out of available keystream. However, our test will finish with very

high probability and avoiding the contrary is just a simple matter of implementation.
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All bits derived?

START

Guess the clocking bit C3 of R3

Clock registers

Register R3 clocked?

Yes

Yes

No

No

No

END

Yes

FAIL

Derive the most significant bit of R3

Output bits coincide?

Figure 4.1: A schematic description of the improved guess-and-determine
search

the output keystream, hence, the algorithm must return to the point where
the last assumption about the clocking bit C3(t) was made. END means that
we have found a complete candidate internal state for the three registers and
continue to check the solution. We shall call these internal states candidate
solutions.

In Figure 4.2, an example of a contradictory guess is given. If the output
sequence is Z = 0, 0, 1, . . ., the most significant bit of R3 must be 1. Now,
the clocking bit C3(t) is uniquely determined: C3(t) = 1. Indeed, if we set
C3(t) = 0, then register R3 is not clocked for two consecutive cycles and
the output produced is Z ′ = 0, 0, 0, . . ., so the second clock cycle yields a
contradiction.
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Figure 4.2: A contradictory state for the output sequence Z = 0, 0, 1, . . .

0 1

10 1

11 0 1

0 1

10 1

11 0 100

0

Figure 4.3: A binary solution tree for n = 3. Here, (001), (011), (110) and
(111) are valid solutions, whereas (000), (010) and (10) lead to a contradic-
tion.

4.1.2 Average-Case Complexity of the Attack

In the following, we shall use a binary solution tree to model our search
algorithm. Obviously, for each guess of registers R1 and R2, we can use a full
binary tree of depth 11 to represent all possible choices for the 11 clocking
bits of register R3. In our search, we then start from the root and step down
one level in the tree every time register R3 is clocked. If we did not eliminate
contradictions on the fly, our search algorithm would need to go through the
entire binary tree 241 times, once for every guess of registers R1 and R2.

Now, in order to model contradictions, we need to build a tree of consis-
tent solutions. Such a tree can be obtained by pruning the full binary tree
at the nodes where a contradiction is found. A toy example of such a pruned
tree is given in Figure 4.3: the tree on the left is a pruned solution tree; the
tree on the right also contains deleted edges. It should be noted that we
always prune at most one of the two subtrees of a node, since at most one
guess for the clocking bit of register R3 can lead to a contradiction. Hence,
in our binary solution tree, all leaves are located at level 11. Each path to
a leaf (or shortly, each leaf) corresponds to one consistent choice for the 11
bits of register R3, and vice versa.
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In order to calculate the complexity of the AKS attack, we need to find the
average number of leaves in a solution tree. For this, we first find the average
number of children of a non-leaf node. As stated above, all computations in
this chapter will be based on the (essentially false but practically reasonable)
assumption that the output sequences produced by the three LFSRs are
mutually independent and uniformly random. For example, when we make
a random guess for the 19 bits of R1 at t = 0, we assume that R1 produces
random bits even for t ≥ 19 (while, in reality, each bit is a linear combination
of previous bits). We are now ready to formulate and prove the first result.

Proposition 4.1. Assume that the bits entering the clock control of registers
R1 and R2 and the output bits produced by registers R1 and R2 are mutually
independent and uniformly random for all t ≥ 0. A non-leaf node in a binary
solution tree then has 12/7 children on average, where the average is taken
over all solution trees defined by the known keystream Z(t) and all possible
bit combinations for R1 and R2.

Proof. We need to count the average number of edges leaving a non-leaf
node. Thus, we need to determine the probability of a contradiction, i.e.,
the probability that an edge is deleted. The probability that we run into a
contradiction during the first cycle is

Pr[fail(1)] = Pr[C1(t) = C2(t) 6= C3(t)] ·

Pr[Z(t + 1) 6= O1(t + 1) ⊕ O2(t + 1) ⊕ O3(t)] =
1

8
.

The probability that we run into a contradiction during the second cycle is

Pr[fail(2)] = Pr[C1(t) = C2(t) 6= C3(t)] ·
Pr[Z(t + 1) = O1(t + 1) ⊕ O2(t + 1) ⊕ O3(t)] ·
Pr[C1(t + 1) = C2(t + 1) 6= C3(t)] ·
Pr[Z(t + 2) 6= O1(t + 2) ⊕ O2(t + 2) ⊕ O3(t)]

=
1

4
· 1

2
· 1

4
· 1

2
=

1

82
.

Analogously, a contradiction takes place during the ith cycle if (a) register
R3 is not clocked for i cycles; (b) no contradiction is found for i − 1 cycles;
and (c) a contradiction is found during the ith cycle, so

Pr[fail(i)] =
1

4i
· 1

2i−1
· 1

2
=

1

8i
. (4.3)

The overall probability of a contradiction is then

Pr[fail] =

∞
∑

i=1

Pr[fail(i)] =

∞
∑

i=1

1

8i
=

1

7
. (4.4)
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Here, working under the randomness assumption means, amongst other
things, that our computations do not take into account the upper bound for
the number of cycles that register R3 can remain unclocked, but the difference
in probabilities is clearly very small.

Now, since the probability of deleting an edge is 1/7, we delete one of the
two edges of a non-leaf node with probability 2/7. Indeed, we always prune
at most one of the two subtrees, so the two events corresponding to deleting
the two edges are mutually exclusive.

We conclude that a non-leaf node of a solution tree has 1 · 2/7 +2 · 5/7 =
12/7 children on average.

As an easy consequence, we can now state the main result of the com-
plexity analysis.

Corollary 4.2. Assume that the conditions of Proposition 4.1 hold. Assume
also that all 264 internal states occur with equal probability 2−64. The average-
case complexity of the AKS attack is then approximately 248.6 tests.

Proof. From Proposition 4.1, it follows that a binary solution tree has on
average (12/7)n nodes at depth n. Since the number of candidate solutions
is equal to the number of leaves in the tree, we conclude that we get on
average

E[solns] =

(

12

7

)11

≈ 376 (4.5)

candidate solutions for each of the 241 tests. We can expect to perform half of
the tests before we find the right internal state, which gives us a complexity
estimate

E[T] = 241 · E[solns] · 1

2
≈ 248.6 .

In other words, we have shown that the effective key length of the A5/1
cipher is reduced from 64 bits to less than 50 bits.

This result is different from the complexity analysis of the same attack
model by Keller and Seitz [KS01]. In Section 4.1.3, we discuss their analysis
and point out the corrections we have made. We have also verified our results
in a practical implementation; our theoretical and simulation results agree
completely.
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A Complexity Estimate in A5/1 Clock Cycles

When we turn our interest to implementations, we are more interested in find-
ing the time complexity of the attack in low-level operations. In the current
case, a natural choice for the operation is one A5/1 cipher clock cycle. The
term “clock cycle” should be handled with care here—during the attack, each
cycle involves other operations than just shifting the three registers. Nev-
ertheless, for a hardware implementation, an estimate in clock cycles gives
a direct relation between the implementation clock frequency and the total
expected complexity in wall clock time. In a software implementation, an
A5/1 clock cycle is more vague, since one A5/1 clock cycle involves several
CPU clock cycles. Still, these estimates are helpful when planning an im-
plementation strategy. We shall give two different complexity estimates that
correspond to a typical software and hardware implementation, respectively.

We shall again use the solution tree model to explain the results. Re-
call that a binary solution tree represents the search corresponding to one
choice for the 41 bits of registers R1 and R2: non-leaf nodes correspond to
intermediate internal states of the cipher; edges mark consecutive guesses for
the bits of R3; and leaves correspond to candidate solutions. The tree has
been pruned in such a way that if a guess is contradictory, the corresponding
edge (together with the whole subtree) has been deleted. However, since we
are counting clock cycles, we must also take into account the time spent on
finding contradictions. Therefore, we use the tree model with deleted edges
(see Figure 4.3, right).

We divide the attack into three phases. Phase 1 consists of finding candi-
date solutions. Phase 2 consists of eliminating false solutions by comparing
the output generated by a candidate internal state against further known
keystream. When a candidate solution passes Phase 2, its correctness should
be verified by rewinding the algorithm to the initial state and comparing
against another frame—this is Phase 3. The time complexity of Phase 1
is estimated in the following section. Phase 2 is inspected in Section 4.1.2.
Techniques for Phase 3 are also briefly discussed in the same section, although
the time complexity is in this case notably smaller.

Software-Oriented Strategy

Suppose first that the implementation is a simple depth-first traversal of the
tree, and the intermediate states of the registers are kept in memory, as it is
feasible in a software implementation. Then, each edge in the tree is traversed
once and the time required to complete one of the 241 tests is proportional
to the number of edges in the tree. Let us start with some simple facts.

29



Proposition 4.3. Assume that the bits entering the clock control of registers
R1 and R2 and the output bits produced by registers R1 and R2 are mutually
independent and uniformly random for all t ≥ 0. A binary solution tree
then has approximately 525 non-leaf nodes and approximately 1050 edges on
average, where deleted edges are included in the count and the average is
taken over all solution trees defined by the known keystream Z(t) and all
possible bit combinations for R1 and R2.

Proof. Since a non-leaf node was shown to have 12/7 children on average,
and all leaf nodes are located at level 11, the average number of non-leaf
nodes is

E[nl − nodes] =

10
∑

i=0

(

12

7

)i

≈ 525,

as desired. Furthermore, each non-leaf node has exactly two outgoing edges,
provided that we count deleted edges. Thus, the average number of edges in
a tree is E[edges] ≈ 1050.

Consider now a non-leaf node in a tree and the corresponding internal
state of the registers. We will find the average number of cycles needed
to process a guess for the next clocking bit of R3, i.e., the average number
of cycles spent before register R3 is clocked. In solution tree terms, we are
evaluating the average number of cycles required to traverse an edge, counting
also for the deleted edges leading to a contradiction. Multiplying the result
with the number of edges will give us the desired complexity estimate.

Proposition 4.4. Assume that the bits entering the clock control of registers
R1 and R2 and the output bits produced by registers R1 and R2 are mutually
independent and uniformly random for all t ≥ 0. Also, assume that each edge
in a solution tree is traversed exactly once. Traversing one edge in a solution
tree with deleted edges then takes 8/7 A5/1 clock cycles on average, where
the average is taken over all solution trees defined by the known keystream
Z(t) and all possible bit combinations for R1 and R2.

Proof. Let cycles be the number of cycles required to traverse an edge. Pro-
cessing a guess for the next clocking bit of R3 always takes at least one clock
cycle, so Pr[cycles ≥ 1] = 1. Next, processing a guess takes at least two clock
cycles if and only if the following events take place: (a) register R3 stops for
the first clock cycle, i.e., C1(t) = C2(t) 6= C3(t); and (b) no contradiction is
found after the first clock cycle, i.e., Z3(t+1) = O1(t+1)+O2(t+1)+O3(t).
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Since R3 stops with probability 1/4 and the output bit check fails with prob-
ability 1/2, we conclude that

Pr[cycles ≥ 2] = Pr[C1(t) = C2(t) 6= C3(t)] ·
Pr[Z3(t + 1) = O1(t + 1) + O2(t + 1) + O3(t)]

=
1

4
· 1

2
=

1

8
.

In general, traversing an edge takes at least i cycles if (a) register R3 is not
clocked for i−1 cycles; and (b) no contradiction is found for i−1 consecutive
checks. Therefore, the probability that traversing an edge takes at least i
cycles is

Pr[cycles ≥ i] =
1

4i−1
· 1

2i−1
=

1

8i−1
, (4.6)

where the first term in the product corresponds to event (a) and the second
to event (b). Conclusively, traversing an edge takes

E[cycles] =
∞
∑

i=1

Pr[cycles ≥ i] =
∞
∑

i=1

1

8i−1
=

8

7

cycles on average.

Therefore, the average time required to traverse a solution tree is

E[tree] = E[cycles] ·E[edges] ≈ 1199

A5/1 clock cycles. It is now straightforward to give a complexity estimate in
A5/1 clock cycles for a typical software implementation.

Corollary 4.5. Assume that the conditions of Propositions 4.3 and 4.4 hold.
Assume also that all 264 internal states occur with equal probability 2−64. The
average-case time complexity of Phase 1 in a software-oriented attack is then
250.2 A5/1 clock cycles.

Proof. We can expect to perform half of the tests before we find the right
internal state. Multiplying the number of tests, the average number of edges
in a tree, the average number of clock cycles required to traverse an edge and
dividing the result by 2 yields

E[Tsoft

1
] = 241 · E[tree] · 1

2
≈ 250.2 .

Finally, we remark that on average 3.2 clock cycles are spent on finding
each candidate solution.
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Hardware-Oriented Strategy

In the depth-first search used in the software-oriented strategy, we need to
store in memory the internal states of registers R1 and R2 for each level in
the tree, in order to be able to backtrack to the last branching point. Since
the efficiency of a hardware implementation depends on the area used up
by the test, a different strategy might prove useful for a hardware imple-
mentation. Namely, instead of keeping up to 11 backtracking points, it is
possible to keep a simple 11-bit counter to record which 11-bit combinations
for the bits of R3 have already been checked. The state of the counter then
represents 11 consecutive guesses for the bits of R3: every time we reach a
leaf node in the tree (i.e., we find a candidate solution), registers R1 and R2

are re-initialised and the counter is increased by 1. That is, each check is
started over from the root node. For example, assume that the 11 consecutive
guesses (00101010111) yield a candidate solution. Then we would proceed
by setting the clocking bits of R3 to (00101011000) for the next check. Con-
tradictions can be processed analogously: suppose that the counter is set to
(00101010111), but at level 5 we encounter a contradiction, so that (00101)
cannot be completed to a full solution. Then, the remaining guesses begin-
ning with the contradictory prefix (00101) should be skipped and the counter
should be set to (00110000000) for the next check.

We proceed to compute the time complexity of the attack in A5/1 clock
cycles. Note that while in case of a software-oriented strategy, each edge is
traversed once, in case of the current strategy, each path is traversed once.
This means that edges closer to the root are traversed more often. Thus,
we need to recompute the expected number of cycles required to traverse an
edge, taking into account the weights of the edges.

Proposition 4.6. Assume that the bits entering the clock control of registers
R1 and R2 and the output bits produced by registers R1 and R2 are mutually
independent and uniformly random for all t ≥ 0. Also, assume that each
path in a solution tree is traversed exactly once. Traversing a solution tree
with deleted edges then takes approximately 6374 A5/1 clock cycles on aver-
age, where the average is taken over all solution trees defined by the known
keystream Z(t) and all possible bit combinations for R1 and R2.

Proof. First, we show that the average number of cycles required to traverse
an edge is independent of the fact whether the edge is a deleted edge (i.e.,
one leading to a contradiction) or not. According to (4.4), the probability of
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an edge being deleted is Pr[fail] = 1/7. Analogously, according to (4.3),

Pr[cycles ≥ i & fail] =

∞
∑

j=i

Pr[fail(j)] =

∞
∑

j=i

1

8i
=

1

8i−1
· 1

7

= Pr[cycles ≥ i] · Pr[fail] ,

where the last equality is obtained from (4.6). Thus,

E[cycles|fail] = E[cycles] =
8

7
.

Next, note that each deleted edge is traversed exactly once. For all other
edges, the number of times an edge is traversed equals the number of leaves
in the subtree hanging from that edge. The average number of such leaves,
in turn, depends only on the level the edge is located at. Thus, the weighted
average for the number of clock cycles required to traverse an edge is still
E[cycles] = 8/7.

Finally, we count the total number of edge traversals E[trav]. There are
two types of paths: paths of length 11 ending with a leaf and paths of various
lengths ending with a deleted edge. The average number of paths of length
11 equals the average number of leaves in a tree, that is, (12/7)11 ≈ 376.
The average number of paths of length i ending with a deleted edge equals
the average number of one-child nodes at depth i−1, that is, (12/7)i−1 · 2/7.
Summing up the traversals, we get

E[trav] = 11 ·
(

12

7

)11

+

11
∑

i=1

i · 2

7
·
(

12

7

)i−1

≈ 5577 .

We conclude that the average time required to traverse a solution tree is

E[tree] = E[cycles] ·E[trav] ≈ 6374 .

We have also verified this result by doing an implementation of the
hardware-oriented strategy in software. Over 100 000 000 simulations, the
average time required to traverse a tree was 6373.83 cycles (theoretical es-
timate 6373.60). We also remark that on average, E[tree]/E[solns] ≈ 17
clock cycles are spent on each solution. Again, it is now straightforward to
compute the total time complexity.

Corollary 4.7. Assume that the conditions of Proposition 4.6 hold. As-
sume also that all 264 internal states occur with equal probability 2−64. The
average-case complexity of Phase 1 in a hardware-oriented attack is then ap-
proximately 252.6 A5/1 clock cycles.
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Proof. As usual, we can expect to perform half of the tests before we find the
right internal state. Multiplying the number of tests, the average number of
cycles per test and dividing the result by 2 yields

E[Thard

1
] = 241 · E[tree] · 1

2
≈ 252.6 .

Eliminating False Solutions

After a search branch has been completed and a candidate solution has been
found, it also needs to be compared against further known keystream bits
to check whether the candidate internal state indeed generates the expected
sequence. Our final result shows that this can be done in two clock cycles on
average.

Proposition 4.8. Assume that the output sequence produced by an incorrect
candidate internal state is uniformly random. Discarding an incorrect solu-
tion then takes 2 clock cycles on average, where the average is taken over all
possible output sequences.

Proof. Under the assumption that the output sequence generated by an in-
ternal state is uniformly random, we can expect this sequence to differ from
the remaining known keystream already in the first bit with probability 1/2.
The probability that the sequences coincide in the first bit, but differ in the
second bit, is then 1/4, and, generally, the probability that the sequences first
differ in the nth bit is 2−n. Thus, the number of steps required to eliminate
a false candidate solution is a geometric random variable with parameter
p = 1/2 and expectation 1/p = 2.

In practice, one would want to set an upper limit for the total number of
compared bits. Since there are 264 possible internal states, 64 bits might be
a suitable threshold.

We conclude the complexity analysis by comparing the total average time
required to complete Phases 1 and 2 of the AKS attack using software-
oriented and hardware-oriented strategies.

Corollary 4.9. Assume that the conditions of Proposition 4.8 and Corollar-
ies 4.5 and 4.7 hold. The overall average-case complexity of the AKS attack
is then 250.9 A5/1 clock cycles in the software-oriented case and 252.8 A5/1
clock cycles in the hardware-oriented case.
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Proof. The average time spent on Phase 2 is in both cases

E[T2] = 241 · 2 · E[solns] · 1

2
= 241 ·

(

12

7

)11

≈ 249.6

clock cycles. The overall average-case complexity of the attack is now

E[Tsoft] = E[Tsoft

1
] + E[T2] ≈ 250.9

A5/1 clock cycles in the software-oriented case and

E[Thard] = E[Thard

1
] + E[T2] ≈ 252.8 (4.7)

A5/1 clock cycles in the hardware-oriented case.

It remains to invert the algorithm to extract the secret session key (Phase 3),
however, Phases 1 and 2 will dominate in the overall complexity of the attack.
Strategies for completing Phase 3 will be discussed next.

Initial State Reversion

Previously, we have described attack models for reconstructing the internal
state of the cipher at the time when the cipher produces its first output bit,
i.e., 100+1 clock cycles after initialisation. In order to successfully complete
the attack, it is also necessary to reverse the internal state and find the initial
state of the cipher after the initialisation phase.

Suppose that the attacker succeeds in finding the initial state. Since the
frame counter is publicly known, the algorithm can then be reversed to find
the state after the mixing of the session key but before the mixing of the
frame counter, i.e., 64 cycles after the start of initialisation. This reversal is
straightforward, since during initialisation, registers are clocked in a regular
fashion, without the stop/go clocking rule. After the effect of the frame
counter has been eliminated, there is actually no need to derive the session
key. The state after the input of the session key is common to all frames and
can be used directly in decryption.

Denote the initial state, i.e., the state after the initialisation has been
completed by S(0). We are interested in recovering this unknown state from
the now known internal state S(101). This can be done by guessing individ-
ually for each of the three registers the number of times it has been clocked.
For each such guess, the registers can first be reverted to their corresponding
states in S(0). Next, the A5/1 algorithm can be run forward for 101 cycles
to test whether the state after 101 stop/go-clocked steps is indeed S(101).
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Even if we do not take into account any of the mutual clocking constraints,
we know that each of the registers was clocked between 0 and 101 times. This
gives us 1023 ≈ 220 states to test. Since backwards clocking is an independent
process for each register, it can be done by e.g. table look-up. Running the
cipher forward with irregular clocking to obtain S(101) from S(0) will take
101 clock cycles. Altogether, even in the worst case and with the most naive
implementation, it will take less than 230 A5/1 clock cycles to find the initial
state.

The search can further be made much more efficient by taking into ac-
count that at each step, each register is clocked with probability 3/4, and
therefore, the expected number of clocks is (3/4) · 101 ≈ 76. Starting the
search from the most probable values for each LFSR will clearly make finding
a solution much more efficient.

However, it can happen that several initial states produce the same inter-
nal state S(101)—whereas only one of them is the correct S(0) that reveals
the session key after eliminating the effect of the frame counter. If one wants
to take into account this possibility, then one has to perform an exhaustive
search over all possible clockings. Still, due to the majority rule in clocking,
there is no need to go over all possible 1023 values. One can simply take into
account that since at each cycle at least two registers are clocked, during 101
cycles the three LFSRs have to be clocked at least 202 times.

In any case, the complexity of this part of the attack is insignificant
compared to that of deriving the internal state S(101).

4.1.3 Discussion on a Previous Complexity Analysis

In this section, we discuss the complexity analysis of the Anderson-Keller-
Seitz attack given by Keller and Seitz. First, we review their estimate on the
average number of candidate solutions. Citing the analysis of [KS01]:

If the clock bits of R1 and R2 are identical, then both registers
are clocked. If we assume the clock bit of R3 to be different,
then R3 will not be clocked, and its most significant bit in the
next cycle will remain the same. The output bit generated by
an exclusive-or operation of the most significant bits can then be
compared to the bit of the output sequence O. If they differ, then
this possibility was a false one and the clock bits must be equal.
If the output bit produced and the bit from the output sequence
are identical, we pursue this possibility. Thus, in one half of the
situations (R1 and R2 having identical clock bits) on the average,
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we reduce the number of possibilities from two to one and have
to check (3/2)11 ≈ 85 cases.

These results are different from the results presented above, where the
average number of cases is approximately 376. According to our analysis,
this argumentation is not correct. Namely, if the exclusive-or of the most
significant bits and the bit of the output sequence differ, then we can indeed
decide that all clock bits must be equal. However, if the bits are identi-
cal, we cannot decide anything—we still need to consider both cases. This
analysis therefore excludes some candidate solutions and an implementation
according to this strategy may fail to find the key. According to (4.5) (c.f.
Section 4.1.2), the correct value for the number of candidate solutions is 376.

Keller and Seitz state that each check inspects 14 output bits on aver-
age. Although not explained in the paper, this implies that they follow the
hardware-oriented strategy, i.e., each check is started from the beginning.
Since the number of inspected output bits is equivalent to the number of
A5/1 clock cycles spent, they claim to spend 14 clock cycles per solution.
This value is different from our theoretical estimate, which is approximately
17 clock cycles. One reason to this difference could be that we have taken into
account also those cycles that lead to a contradiction and thus never yield a
full solution. Simulating the attack in software, we have also found that our
practical results agree with our theoretical estimate, however, we admit that
there may be differences in implementations that we are not aware of.

As to the extraction of the right solution from the set of candidate solu-
tions, Keller and Seitz state that “false possibilities can be eliminated fast”.
We have shown above that it takes on average 2 clock cycles to eliminate
false candidates. Taking this into account, the number of clock cycles spent
on each candidate solution in the hardware-oriented strategy is now 19.5
according to our analysis, or 16 according to the claims of Keller and Seitz.

4.1.4 Implementations

In this section, we compare two implementations of the Anderson-Keller-
Seitz guess-and-determine attack. The first is our own implementation in
software, whereas the second is an FPGA implementation by Keller and
Seitz. The first attack is implemented by using software-oriented strategy;
for the FPGA attack, we do not know the implementation details, but the
computations of the authors imply that hardware-oriented strategy was fol-
lowed (c.f. Section 4.1.2). We compare our theoretical results on the attack
complexity with statistics from simulations and estimate the wall clock time
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complexity of our implementation on our test platform. We also give an es-
timate for the time requirement of the hardware implementation, however,
these results should be considered less precise, since the implementation is
not our own and its full details are not known to us.

A Software Implementation of the Attack

We have implemented the Anderson-Keller-Seitz guess-and-determine attack
in software, using the first strategy, i.e., doing a depth-first search, while
keeping the intermediate states in memory. All the following statistics are
averaged over 100 million test runs with pseudorandom selections of the
states of registers R1 and R2, and of the output keystream. The simulations
were run on a PC with the following parameters:

CPU: Intel Celeron M, 1300MHz, Banias-512 core
Memory: 256 MB
Operating system: Windows XP Home Edition SP 1
Compiler: GCC v.3.3.3 (cygwin special), optimisation level O4

Table 4.1: Test platform for the AKS attack in software

The first part of the attack constitutes of deriving all candidate solutions
of register R3 for given register states R1 and R2, and known keystream. In
our implementation, on average 375.759 candidate solutions were found for
each test, with 375.764 being the theoretical estimate. Finding one candidate
solution took 3.1916 A5/1 clock cycles on average, whereas our theoretical
estimate was 3.1915 cycles. Thus, both results agree almost fully with the
theoretical results presented above.

In the second part of the attack, each candidate solution was checked
against 64 bits of known keystream. Each such check took 1.999993 cycles
on average, which is again fully consistent with the theoretical result (exactly
2 cycles) under the randomness assumption.

The time consumed by the first part of the attack was 6 minutes for 100
million simulations. Since on average, 240 tests need to be performed before
the right state is found, our simulation covers a fraction of 2−13.4 of the whole
attack. Therefore, the first part of the attack is expected to take slightly over
one year on a single PC with these parameters.

The second part of the attack—eliminating false possibilities—took 5 min-
utes for the same number of simulations. Hence, this part of the attack would
roughly double the attack time.
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The total time consumption of the attack was 11 minutes for 100 million
simulations. This means that one test machine would find the correct state
in

T =
240 · 11

107
minutes ≈ 840 days ,

i.e., in less than 2.5 years. Therefore, we can expect 1000 such PC-s to find
the key in less than one day, using only one frame of known plaintext.

Some notes on optimisation

To speed up our implementation, we clocked the registers one byte at a time,
not one bit at a time. Since the contents of the LFSRs were stored in 32-
bit registers but the longest shift register is only 23 bits long, we used 8 of
the remaining bits to “buffer” the next bits of the registers. Consider, for
example, the second shift register. If the contents of register R2 at time t are

(b21, b20, . . . , b0)

from the most significant bit (output bit) to the least significant bit, then
the next 8 bits that we store to the least significant bits of a 32-bit register
are

(b21 ⊕ b20, b20 ⊕ b19, . . . , b14 ⊕ b13)

= (b21, b20, . . . , b14) ⊕ (b20, b19, . . . , b13).

Similar equations can be written for the other two registers. Now, we do
not need to update the least significant bit of the registers at each clocking.
Instead, we can update the 8 extra bits of the registers every 8 cycles, and
at each clocking, simply shift the registers one bit to the left. The cost of
updating 8 bits is implementation-wise equivalent to updating just one bit.

An FPGA Implementation of the Attack

We will next give a time complexity estimate for the hardware implemen-
tation. Since we use measurement data from the paper by Keller and Seitz
combined with our theoretical estimates, these results should not be con-
sidered as exact implementation measurements. Rather, they give a rough
estimate on the efficiency of an FPGA-based implementation compared to a
software implementation.

We start with the following notations. Let the real clock frequency of
the FPGA (in A5/1 clock cycles) be F cycles per second. Note that this
value can be significantly lower than the theoretical maximum frequence of
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the device. Furthermore, assume that P instances of the implementation
can be fitted on one FPGA chip, each doing a share of the 241 tests, so
that P is the degree of parallelisation. According to (4.7), the average-case
complexity of the attack is E[Thard] = 252.8 A5/1 clock cycles. Thus, given
these parameters, the expected wall clock time to complete the attack is

T =
E[Thard]

F · P ,

In other words, in order to complete the attack in less than T seconds, the
parameters of the FPGA need to satisfy

F · P ≥ 252.8

T
.

In particular, the attack time of our implementation is 226.1 seconds.
Thus, in order for the implementation to be faster than our software imple-
mentation on our test platform, we need

F · P ≥ 226.7 .

The FPGA used for implementation by Keller and Seitz had the following
basic parameters:

FPGA type: Xilinx XC4062
Configurable Logic Blocks (CLBs): 2304
Theoretical system performance: 80 MHz [Xil99]

Table 4.2: Test platform for the AKS attack in hardware

The implementation by Keller and Seitz occupied 313 of the FPGA’s 2304
CLBs, so P = ⌊2304

313
⌋ = 7 instances were fitted on one chip. The achieved

clock frequency was F = 18.65 MHz, which is less than 25% of the theoretical
maximum performance. We see that

F · P = 7 · 18.65 · 106 = 227.0 ,

so the hardware implementation has only marginal advantage over our im-
plementation on our test platform. More precisely, the hardware implemen-
tation is faster by a factor of 1.2, so an attack would be completed in 700
days, slightly less than 2 years.

We see that the FPGA used in 2001 is not significantly faster than our
PC (and even in 2001, a PC with parameters similar to our test machine
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would already have been available). On the other hand, an FPGA attack
implemented now on a modern device would benefit not only from higher
clock frequency but also from a larger number of available CLBs, which
tends to grow faster. A Xilinx Virtex-II Pro XC2VP125 device, as suggested
by Kairus, has 55616 CLBs and would therefore be 55616/2304 ≈ 24 times
faster [Kai03]. The attack time would be guaranteed to drop to a month,
even without taking into account any other benefits of a newer device. In
addition, the device has better system performance—unfortunately, the gap
between theoretical performance and implementation-specific clock frequency
makes the benefit rather impossible to predict. As the XCVP125 device is
said to achieve frequencies of 300 MHz, we may speculate that it should be
at least an additional 300/80 ≈ 4 times faster. Hence, one such device would
complete the attack in a week.

Finally, we would like to stress that these comparisons should be taken
with a heavy grain of salt. Namely, we have only compared the time and
ignored the second component important for the attacker—the cost of im-
plementation. In order to estimate the precise advantage of an FPGA over a
PC, we would need to compare the “value for price”. That is, the question we
should ask is, “Given the same amount of money for implementation costs,
which one is faster, an FPGA or a PC?” Such analysis is beyond the scope
of this thesis, but we hope that the comparison given above has given the
reader a rough idea of the effort needed to break the A5/1 cipher.

4.2 Biham-Dunkelman Attack

In the previous section, we considered perhaps the most basic attack against
a stream cipher, namely, a guess-and-determine attack. As the name implies,
such attacks constitute of guessing some part of the secret key (or, equiva-
lently, cipher internal state) and determining the rest of the unknown bits
by using known keystream.

Next, we look more deeply into the structure of the A5/1 cipher, and
point out certain very specific weaknesses that can be exploited to attack the
cipher. Tricks and techniques presented in this chapter are due to Biham and
Dunkelman [BD00]. We describe their attack model, but we also explain how
it is related to the previous ideas and show how the different approaches can
be combined. Furthermore, we generalise their attack by proposing a trade-
off curve between computational complexity and plaintext requirement. This
original result provides the attacker with more flexibility in scenarios where
the rather large plaintext requirement of the Biham-Dunkelman attack (also,
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BD attack) might previously have been the main bottleneck.

4.2.1 Key Ideas of the Attack

The Biham-Dunkelman attack, as all previously presented attacks, attempts
to recover the internal state of the cipher during its operation. It operates in
the known plaintext model. The attack is expected to be a thousand times
faster than the Anderson-Keller-Seitz attack, so the expected time complexity
is less than a day on a PC and a few minutes on an FPGA; also, it does not
require any precomputation. On a downside, the attack requires up to half
a minute of known plaintext.

The key idea of this attack is to wait for an event that leaks a large amount
of information about the internal state. It turns out that a situation where
one of the registers is not clocked for a long time is such an event. Assume
that we know a time instance where the third register does not move for 10
clock cycles. Denote the contents of the three registers at this time point by
R1[18], . . . , R1[0], R2[21], . . . , R2[0] and R3[22], . . . , R3[0], with R1[18], R2[21]
and R3[22] being the output bits and R1[8], R2[10] and R3[10] the clocking
bits.

At such a time point, we are able to recover the state of the first two reg-
isters plus two bits from the third register by guessing only 12 bits. Namely,
for those 10 clock cycles that the third register does not move, the 10 con-
secutive clocking bits of R1 and R2 are the complement of the (one and the
same) clocking bit of R3. Hence, by guessing bit R3[10], we can determine
the following bits: R1[8], . . . , R1[0] and R2[10], . . . , R2[1] . Additionally, we
will know the next bit to enter the least significant position of R1, i.e., the
bit R1[−1] = R1[18] ⊕ R1[17] ⊕ R1[16] ⊕ R1[13] (see Figure 4.4, top).

Next—and this is where the information leakage takes place—the same
output bit of R3 will contribute to 11 consecutive rounds of output. So, we
next guess this output bit, R3[22]. We already have 10 bits of information
about register R1, so by guessing 9 more bits (R1[17], . . . , R1[9]), we can
recover all of R1. (Bit R1[18] can be recovered from the known bit R1[18] ⊕
R1[17] ⊕ R1[16] ⊕ R1[13].) Since we now know the output bits of both R1

and R3, this will immediately reveal the output bit of R2, R2[21]. Similarly,
during the next 10 clock cycles at which register R3 is not clocked (and,
conversely, both R1 and R2 are clocked) the only unknown bit in the output
exclusive-or will be the bit from the second register. With the aid of known
keystream, we can recover 10 more bits of register R2 (R2[20], . . . , R2[11])
during those 10 cycles. Now, we have recovered 21 bits of R2, so it will
take one more guess (bit R2[0]) to determine the full contents of the second
register (see Figure 4.4, bottom).
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Figure 4.4: Top: Guessing the clocking bit of R3 (marked with G) determines
the 19 clock bits marked with D and the sum of the four bits marked with
d. Bottom: Guessing altogether 12 bits of the internal state (marked with
G) determines 31 bits of the state (marked with D).
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We have now recovered all the bits of R1 and R2, and two bits from R3 by
guessing 12 bits. In other words, this event has gained us 19+22+2−12 = 31
bits of information about the internal state. Of course, things are not quite
as simple as they appear, since we were working under the assumption that
we know the location of the information-leaking event. Such an event will
happen in one out of 220 possible cipher states. Thus, we will need to probe
about 220 different locations (from many different frames) by trial-and-error
before the event actually occurs.

We are now actually in a situation familiar from earlier attacks. In the
Anderson-Keller-Seitz (AKS) guess-and-determine attack model (c.f. Chap-
ter 4.1), we guessed the contents of two registers and proceeded to determine
the contents of the third register. Here, we have also determined the contents
of registers R1 and R2, albeit in a different manner, so we could proceed ex-
actly as in the AKS attack model to complete the attack (with the minor
difference that we already know 2 bits from R3, bits R3[22] and R3[10]).

4.2.2 A Trade-Off Between Computational and Plain-
text Complexity

As we saw in the previous section, certain events cause the A5/1 cipher to
leak information about its internal state. In other words, if the cipher reaches
a certain internal state, this state can be recovered with less effort than in
an ordinary guess-and-determine attack. Thus, in this section, we address
the following three questions:

• How much do we gain in computational cost by waiting for the event
when the third register is not clocked for n = 10 cycles?

• What is the price that we pay for this gain in known plaintext?

• Is it possible to extend this attack for other values of n?

Consider first the question of computational cost. Recall that in order
to locate an event where R3 stays put for 10 cycles, 220 different starting
locations need to be probed on average. For each such location, guessing
12 bits immediately reveals 31 more bits. Hence, the 41 bits of registers R1

and R2, plus 2 bits from register R3, can be determined with effort 232. As
a comparison, in the Anderson-Keller-Seitz attack model, we exhaustively
searched through all 241 possible values of registers R1 and R2, and obtained
the additional 2 bits of R3 with one guess (guessing the clocking bit and
determining the output bit). Thus, for the same 43 bits of internal state, we
need to consider 242 possibilities in the AKS model, compared to only 232
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possibilities in the in the BD model. Conclusively, we are able to speed up
our attack by a factor of more than 1000.

Naturally, this advantage does not come for free. We pay for the speed-up
in required plaintext. In the AKS attack, one or two frames of keystream
were sufficient. In this attack, we need 220 different starting locations. One
frame contains 228 bits and as we need about 64 bits to uniquely identify
the right solution, 228 − 63 = 165 bits in one frame can serve as a possible
starting location. Hence, the plaintext requirement is approximately

D =
220

165
≈ 212.6 frames ,

or approximately 30 seconds of conversation. 2

Finally, we address the third question. Namely, in real-life scenarios,
obtaining 30 seconds of conversation plaintext is rather infeasible. Thus, we
would like a trade-off between computational cost and plaintext requirement.
For example, we could search for a situation where the third register stays
put for, say, only n = 5 clock cycles. This event is much more frequent but
still leaks some information. The following original result gives a trade-off
curve for 0 ≤ n ≤ 10.

Proposition 4.10. Assume that at each time during the operation of the
cipher, each 64-bit internal state occurs with equal probability 2−64. Fix n to
be an integer, 0 ≤ n ≤ 10. Then, 43 bits of the A5/1 internal state can be
determined with only 242−n bit guesses, using an expected amount of 22n/165
frames of known plaintext.

Proof. The attack will be based on the information leak from the event
when the third register does not move for n clock cycles. Denote the con-
tents of registers R1, R2 and R3 by R1[18], . . . , R1[0], R2[21], . . . , R2[0] and
R3[22], . . . , R3[0], respectively, where R1[18], R2[21] and R3[22] are output
bits and R1[8], R2[10] and R3[10] are clocking bits. Then, the desired event
happens if and only if

R1[8] = R1[7] = · · · = R1[8 − (n − 1)]

= R2[10] = R2[9] = · · · = R2[10 − (n − 1)] 6= R3[10] ,

where R1[−1] = R1[18] ⊕ R1[17] ⊕ R1[16] ⊕ R1[13]. Note that if any one of
the 2n + 1 bits present in this condition is fixed, the remaining 2n bits are
immediately determined. Thus, one out of 22n internal states satisfies this

2
The authors of [BD00] state that the plaintext requirement is over 2 minutes, which

is incorrect according to our computations.
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property, so in order to locate our event, on average 22n locations need to
be probed. If we require 64 bits of output to uniquely determine the right
solution, we are left with 165 possible starting locations in each frame. The
claim on plaintext requirement follows.

Now, we attempt to recover all bits of R1 and R2, plus the first clocking
bit and first output bit of R3, 43 bits in total. First, guessing the clocking bit
of the third register (bit R3[8]) reveals n consecutive clocking bits of the first
two registers (bits R1[8], R1[7], . . . , R1[8 − n]; R2[10], R2[9], . . . , R2[10 − n]),
since these have to be the complements of the guessed bit. This gives us
2n bits of information about the two registers. Next, guess the output bit
R3[22] of R3 and all the remaining 19 − n bits of R1. Then, R2[21] can be
determined from R3[22], R1[18] and the known keystream bit. Also, during
the next n clock cycles, the output bit of R3 remains the same, so the output
bit of R2 can again be determined from known keystream and the outputs
of R1 and R3. Thus, we can recover n + 1 bits of R2. It remains to guess the
remaining 22 − n − (n + 1) = 21 − 2n bits of R2.

We see that of the 43 bits, only 1 + 1 + (19 − n) + (21 − 2n) = 42 − 3n
bits need to be guessed. The procedur needs to be repeated for 22n different
locations, giving a total effort of 242−n, as desired.

Compared to the AKS guess-and-determine attack, this attack is faster
by a factor of 2n for the selected n. Of course, the trade-off curve cannot
be extended to infinity: the third register cannot stay put infinitely (unless
registers R1 and R2 are both in the all-zero state). Even increasing the value
of n above 10 is not reasonable, as the plaintext requirement grows pro-
hibitively high. On the other hand, decreasing the value to, say, n = 8, still
gives a speed-up of about 28 = 256 times, whereas the plaintext requirement
is reduced to less than two seconds. In general, increasing the computational
complexity by a factor of two reduces the plaintext requirement by a factor
of four.

Figure 4.5 depicts various points on the trade-off curve. Data requirement
in frames has been converted to conversation seconds. The endpoints of the
curve correspond to the AKS attack and the original BD attack. Finally,
we remark that it is possible to speed up the AKS attack 8 times without
increasing the average plaintext requirement. This is due to the fact that
for generalised BD attack with n = 3, we need on average 26 = 64 different
starting locations, which can be obtained from one frame. However, we must
keep in mind that this is the average plaintext requirement of the BD attack,
whereas the AKS attack always succeeds, using only one frame of data.
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Figure 4.5: A trade-off between computational complexity and plaintext re-
quirement

4.2.3 Possibilities for Hardware Implementation

The Biham-Dunkelman attack is very similar to the Anderson-Keller-Seitz
attack presented in [KS01]: the key idea of the attack is to guess the contents
of registers R1 and R2 and determine the contents of register R3 from known
keystream. Since the search space for R1 and R2 can be split into smaller
subspaces, the attack is easily parallelisable and is thus suitable for hardware
implementation. Actually, the AKS attack and the BD attack are essentially
identical implementation-wise. The only difference lies in the way in which
the contents of the first two registers are initialised: in the AKS case, this
is a simple exhaustive search; for the BD attack, an additional assumption
limits the possibilites, and the search is performed over multiple locations
of keystream. After initialisation of R1 and R2, the state of R3 can be
determined, using the familiar algorithm depicted in Figure 4.1 of Section 4.1.

In Section 4.1.4, we estimated that a modern FPGA should be able to
complete the AKS guess-and-determine attack in a week. The BD attack
is roughly 1000 times faster. Thus, in the Biham-Dunkelman attack model,
finding the secret session key should be a question of minutes on a single
hardware device. Naturally, the attack is valid only if the attacker is in
possession of a sufficient amount—approximately 30 seconds—of plaintext,
which is a serious drawback in real-life scenarios.
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4.3 Golić Attack

The Anderson-Keller-Seitz guess-and-determine attack (from now on, AKS
attack) described in Section 4.1 was informally proposed by Anderson in 1994.
The first cryptanalytic paper on A5/1 by Golić was published in 1997. In
this paper, Golić states that the AKS attack based on guessing the contents
of two registers cannot work, because the clocking depends on the third
unknown register as well. (We have seen that it actually can work, only
the complexity is higher than initially suggested.) Golić proposes a new
attack which is said to achieve average-case computational complexity of
around 240 tests. However, this complexity cannot be directly compared to
the complexity in the AKS model—248.6 tests—since deriving a solution in
the Golić model additionally requires solving a system of 64 linear equations
in 64 variables. An implementation by Pornin and Stern leads us to believe
that a straightforward software implementation of the Golić attack is not
remarkably faster than the AKS attack; however, they also propose a clever
mixed software-hardware implementation that significantly outperforms a
software-only attack [PS00]. We proceed to describe the theoretical attack
model and the implementations.

4.3.1 Key Ideas of the Golić Attack

The main idea of Golić’s guess-and-determine attack is again to guess cer-
tain bits of the internal state and determine the remaining bits from known
keystream. The attack makes use of the fact that the only source of nonlin-
earity in the cipher is the irregular clocking rule. Once we know the clocking
sequence, each bit of known keystream can be related to three bits of the
internal state via a linear equation of the form x+y +z = c, where x, y, z are
variables and c is constant. Thus, the key idea of the attack is to treat the
internal state as a set of 64 variables and collect enough linearly independent
linear equations to uniquely solve the system. In order to recover the full
64-bit internal state, at least 64 linearly independent equations are needed.

Of course, things are not quite as simple, since the clocking sequence is
not known. Thus, the attack begins by guessing a number of bits entering
the clock control. Each guessed bit also adds an equation of the form x = 0
or x = 1 to the system. The number of guessed bits required to construct a
sufficient amount of linear equations then determines the complexity of the
attack.
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Let us first guess the “lower half” of each of the three registers (9, 11
and 11 bits, respectively). Fixing the values of these bits gives the first 31
equations. Also, since the first output bit can be expressed as an exclusive-or
of the three most significant bits of the registers, we obtain another equation
for those three bits.

Next, since the probability of a register to be clocked is 4/3, it will be
possible to clock the registers for another (4/3) · 9 ≈ 12 cycles on average,
before we “run out” of guessed bits in register R1. The output bits from these
clock cycles will give rise to another 12 equations. Now, we have obtained a
system of approximately 1 + 31 + 12 = 44 linear equations.

Let us also verify that these equations are mutually linearly independent.
After guessing 31 bits, the three registers still contain 10, 11 and 12 unknown
bits in the most significant bit positions, respectively. One bit from each
register will be used in the first equation obtained from the very first output
bit, which leaves us 9, 10 and 11 unused bits. During the next 12 clock cycles,
we clock each register an expected number of 9 times. Since all registers have
at least as many unknown bits, a new unused bit will appear in each of the
equations with high probability, and hence the equations will all be linearly
independent (mutually, and also from all previous equations).

To sum it up, we now have 44 bits of information about the internal
state. Therefore, guessing 20 of the unknown bits would suffice to derive the
whole state. However, this would give a total computational complexity of
231+20 = 251 tests, which is even higher than in the AKS model.

Instead of going through all 220 possible values, Golić proposes to continue
guessing clocking bits, which on the other hand can be expressed as linear
combinations of our variable bits by the property of an LFSR. The advantage
here is that we can reduce the number of possible clocking triples by taking
into account constraints from previous equations. Namely, once the initially
guessed bits move to the most significant positions, we can start comparing
known keystream bits against known output to eliminate false possibilities.

To better understand the attack, let us look at an illustrated example.
Figure 4.6 displays two A5/1 internal states. The upper figure depicts the
beginning of the attack, where the 31 clocking bits of the registers have been
guessed. Each clock cycle gives a new linear equation in the unknown bits
marked with ’?’. The lower figure illustrates the situation 9 clock cycles later.
We have now run out of clocking bits for register R1. The next guessed bit
(circled in the figure) can be expressed as a linear combination of previous
bits. We still need to wait for R1 to be clocked once, R2 to be clocked 4
times and R3 to be clocked 6 times, before we can start comparing known
keystream against known output from the LFSRs.

Golić suggests that the whole complexity of the attack is approximately
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Figure 4.6: The partial internal state of the registers in the beginning of the
Golić attack and 9 clock cycles later
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241. Zenner has given a more detailed analysis and concludes that the
average-case complexity is between 242 and 243 [Zen99]. This is somewhat
lower than the average-case AKS attack complexity 248.6. However, recall
that each test in the Golić model gives a system of 64 linear equations in 64
variables, so we also need to take into account the time required to solve the
system.

Both Golić’s attack and the Anderson-Keller-Seitz attack based have the
following ideas in common:

• Guess partial contents of the LFSRs, so that the clocking sequence is
determined;

• At each clock cycle, impose restrictions on the remaining unknown bits
from known keystream;

• At each cycle, also check that the previous guesses are consistent with
known keystream;

• Check each candidate solution against further bits to eliminate false
candidates.

The main difference of the two approaches lies (a) in the selection of ini-
tially guessed bits; and consequently (b) in the way the information from
known keystream is used. In the AKS attack, bits are derived directly,
whereas in the Golić attack, keystream bits are used to derive linear equations
in bits of the internal state.

4.3.2 Implementations

In this section, we describe implementations of the Golić attack by Pornin
and Stern. The authors propose two approaches: a software-only attack
and a mixed software-hardware implementation. The average-case wall clock
time complexity of a software-only attack is 200 days on their test platform.
This is already somewhat better than our implementation of the AKS attack
(840 days), but of course, since we use a different test platform, these results
cannot be benchmarked.

The second implementation proposed by Pornin and Stern is a software-
hardware tradeoff. The idea here is to derive partial solutions on a software
platform and complete the attack by exhaustive search on a dedicated hard-
ware device. For the Golić attack, this means that instead of constructing
a full system of 64 linearly independent linear equations, a smaller system
is constructed. Such a system is underdetermined, which means that there
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are multiple solutions satisfying the system. The dedicated hardware device
then searches through these solutions exhaustively.

When constructing the partial systems of equations, Pornin and Stern
take a slightly different approach from Golić. Instead of guessing clocking
bits, they guess which registers are clocked and express this information also
through linear equations. For example, if registers R1 and R2 move and
register R3 stays, this can be expressed as

c1 ⊕ c2 = 0

c1 ⊕ c3 = 1 ,

where c1, c2 and c3 are the clocking bits of R1, R2 and R3, respectively. Using
this approach, each clock cycle gives 2 bits of information about the clocking
bits, since there are 4 possibilities for the clocking sequence. The known bit of
output gives another equation, so each clock cycle produces three equations.

As an example, suppose that the cipher is run in software for 18 clock
cycles. Each cycle, there are 4 possibilities for selecting the clocking sequence,
so the total software load is 418 = 236, i.e., we obtain 236 different systems
of equations. From 17 cycles, 3 · 18 = 54 equations are generated, so there
are 210 solutions to each system. The hardware then probes all of them,
giving a total hardware load 246. For this particular configuration, Pornin
and Stern’s software platform completes its job in 0.85 days and the FPGA
platform requires 2.5 days.

In order to see the improvement, we can give a nice estimate. Namely, for
an attacker, the deciding factor is not just the attack time, but the ratio of
time and cost. Pornin and Stern state that the cost of their FPGA platform
is about 2/3 the cost of the software platform (at the time of writing the
article). As we saw, a single test PC would complete the attack in 200 days
on average, so three such PCs would require 67 days. For the same amount
of money, the attacker could instead purchase one PC and three FPGAs,
which would finish the attack in 0.85 days, so there is approximately a factor
80 improvement in performance.
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Chapter 5

Other Attacks on A5/1

In this chapter, we give an overview of other, more recent attacks against the
A5/1 cipher. One section is dedicated to both time-memory trade-off attacks
and correlation attacks. While these attacks are generally faster than guess-
and-determine attacks, their plaintext requirement tends to be prohibitively
high for real-life scenarios. Thus, in the final section of this chapter, we
investigate possibilities for attacking the A5/1 cipher in a ciphertext-only
scenario, where the attacker only has access to encrypted communication.

5.1 Time-Memory Trade-Off Attacks

This section focuses on time-memory trade-off (TMTO) attacks against the
A5/1 cipher. TMTO attacks against cryptographic primitives date back to
1980, when Hellman proposed a method for attacking DES and block ciphers
in general [Hel80]. At the time, it was not seen how this method could be
employed to attack stream ciphers. In 1995, Babbage proposed a TMTO
attack model for stream ciphers [Bab95]. The same method was discovered
independently by Golić, applying the attack in particular to A5/1 [Gol97].

In this section, we describe a more recent work by Biryukov et. al. [BSW01].
They propose two attacks against the A5/1 cipher: the first is an enhance-
ment of the Babbage-Golić attack, whereas the second is actually an appli-
cation of the original Hellman method.

5.1.1 Key Ideas of A Time-Memory Trade-Off Attack

Time-memory trade-off attacks are, once again, internal state recovery at-
tacks in the known plaintext model. The task of the attacker is thus to find
the internal state that generates a given keystream sequence. A rough ap-
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proach would be to exhaustively search through all possible internal states
until the right keystream sequence is encountered. TMTO attacks make use
of this idea but apply it in a more clever way. In a nutshell, a TMTO attack
against A5/1 goes as follows. First, perform part of the exhaustive search,
that is, select a subset of the 264 internal states, compute for each state the
output sequence it generates, and store the results. If we want each out-
put sequence to correspond to one internal state only, 64 bits is a suitable
output sequence length. Note that this part of the attack is independent of
the actual observed keystream, so it must be done only once. We call this
part the precomputation stage of the attack. In the real-time phase of the
attack, the attacker then simply observes generated output until a previously
stored sequence appears. Then, the corresponding internal state can be im-
mediately determined from the stored results. Clearly, the more state-output
pairs we store during precomputation, the shorter the waiting time until a
stored keystream sequence actually appears in the cipher’s output. This is
where TMTO attacks get their name: there is a trade-off between precompu-
tation memory requirement and real-time phase attack time, or, even more
importantly, known plaintext requirement.

So far, we have not used any specific properties of the A5/1 cipher. In-
deed, TMTO attacks can in principle be applied to any stream cipher. Since
the search is performed over internal states rather than secret keys, TMTO
attacks are more efficient than exhaustive search for ciphers with a relatively
short internal state size. In particular, the internal state of the A5/1 cipher
is only 64 bits long, or as long as the secret key. For modern stream ciphers,
the recommended state size is at least twice the size of the key [ECR]. Let
us now see how the size of the state affects the efficiency of a TMTO attack.

The Birthday Paradox

Suppose that we decide to store on disk the output sequences for M internal
states. The question we would now like to ask is, “How long do we have
to wait before we observe a sequence that is also stored on our disk?”. The
following variation of the well-known Birthday Paradox gives an answer to
this question.

Lemma 5.1 (Extended Birthday Paradox). Let M ⊂ {1, 2, . . . , n} be a set
of |M | = m integers. Draw t integers uniformly at random from the range
[1, n]. If the parameters m, t and n satisfy

m · t ≥ n ,

then it is likely that amongst the t randomly selected integers there is an
integer that collides with an element of M .
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Proof. First, we find the probability that there is no collision. The probabil-
ity that one integer drawn uniformly at random from [1, n] does not collide
with the elements of M is (n − m)/n. The probability that none of the t
integers collide with the elements of A is thus ((n − m)/n)t. We conclude
that the probability of a collision is

Pr[collision] = 1 −
(

n − m

n

)t

.

For m small compared to n, we can roughly estimate

Pr[collision] ≈ 1 − e−
mt

n ≥ 1 − e−1 > 0.5 .

Mathematically, this is not a rigorous proof—we cannot conclude that
the value of the probability “likely” is always greater than 0.5 or any other
desired constant. For now, we just say that the collision probability is greater
than 0.5 for a sufficiently large n and for a reasonable selection of m and t.

In the case of A5/1, the number of possible 64-bit sequences is n = 264.
The set of stored 64-bit output sequences corresponds to the set M , and
the observed outputs correspond to the t random selections. The task is
to find a point (m, t) on the trade-off curve m · t = 264, such that m is a
feasible memory requirement and t is a feasible plaintext requirement. For
fixed m and t, the TMTO attack is probabilistic, i.e., the attack will succeed
with a given probability p = Pr[collision] < 1. In comparison, guess-and-
determine attacks (with the exception of Biham-Dunkelman’s attack) have
success probability p = 1.

Next, we describe the key ideas of two different TMTO attacks on A5/1.
The biased birthday attack has suggested parameters m = 200 GB and
t = 2 minutes; the random subgraph attack is more powerful, requiring
only 2 seconds of conversation at the expense of only slightly larger memory
requirements (400 GB).

5.1.2 Biased Birthday Attack

Sampling of State-Output Pairs

First, we describe the process of selecting the state-output pairs that will be
stored during precomputation.

In order to save up on disk space, it would be nice to select states pro-
ducing output with a common prefix, as it is then not necessary to store
the common part for each pair. For example, consider a 16-bit pattern α
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(we will see the motivation for choosing this particular length in a moment).
We would like to find all of the approximately 248 states that generate a
sequence starting with α. On the other hand, we would like the process to
be faster than the 264 complexity of going through all possible internal states
and discarding those that do not produce a sequence starting with α.

Flaws in the design of A5/1 make it possible to sample those 248 states in
248 time. Namely, the placement of the clocking bit makes the bits that affect
the clock control and those that affect the output unrelated for about 16 clock
cycles. The algorithm for generating these states bares resemblance with the
algorithm used in Golić’s guess-and-determine attack described in Section 4.3
of the previous chapter. Exactly as in Golić’s attack, one can guess the least
significant bits of the three registers, starting with the bits that determine the
clock control. All possibilities for the three most significant bits that result
in the right output value can then be identified at each clock cycle. This
process can be continued without more complicated trial-and-error as long
as at least one of the output bits is undetermined. Since the three registers
move on average 3/4 of the time, and have 10, 11, and 12 undetermined bits
in the beginning, respectively, this process can indeed be continued for about
16 clock cycles in the same simple manner. As a conclusion, it is possible
to generate all internal states producing a sequence starting with α without
exhaustively searching over the set of all internal states. While trying all the
264 states is computationally infeasible, a 248 preprocessing stage is already
barely doable.

Disk Storage

During the preprocessing stage, we are interested in storing state-output
pairs, preferably in such a way that the stored output is long enough to
identify a unique internal state. The authors of [BSW01] propose to limit
the sequence length to 51 bits instead of 64 bits, claiming that this is usually
sufficient for unique identification. When considering disk storage, the first
16 bits of output are now constant and need not be stored. The next 35
bits can be stored in sorted order—which means that it is sufficient to store
only the increments. Also, the 64-bit internal states can be encoded with
shorter, 48-bit names (since there are only about 248 of them). Further, if
a few bits are left unspecified (at the expense of trying a small number of
candidates later), each state-output pair can be stored in 6 bytes. Storing
all 248 pairs would still require unrealistic amounts of space, but a subset
of 235 pairs requires less than 200 GB of storage and can easily be fitted on
one commercially available hard disk. We shall later see that 235 pairs are
sufficient to succeed in the attack.
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Biased Sampling

The key to the success of the attack lies in the clever selection of the subset
of pairs. Namely, it turns out that not all internal states have an equal prob-
ability of occurrence. Selecting states with a higher probability significantly
increases the success probability.

More precisely, if an internal state occurs while the cipher is producing
output, then at least 101 clock cycles must have passed from the end of the
initialisation (the cipher simply does not produce any output earlier). On
the other hand, since our identifying output is 16 + 35 = 51 bits long, the
cipher must run further for at least 51 cycles and we cannot use any of the
last 51 states. Consequently, if the state at the end of the initialisation is
S(0), then the states that we can consider in the attack are between S(101)
and S(278).

Conversely, if an internal state occurs while the cipher is producing out-
put, then it has to be reachable from some initial state with at least 101 and
at most 278 cycles. Through extensive sampling, Biryukov et. al. made a
crucial observation that about 85% of the states can never be reached with
more than 100 steps. The reason behind this is the non-bijective state up-
date function. This means that a vast majority of all possible internal states
actually never occur while the cipher is producing output, and storing those
states on the disk is not helpful at all. Moreover, there was a huge variance
amongst the remaining 15% of states—some could be reached from only one
initial state, whilst others had over 26,000 descendants. Figure 5.1 illustrates
this situation. The upper dots represent the internal states and the black
area represents the corresponding candidate initial states. The tree of the
leftmost state dies out without reaching depth 101; the middle state can be
reached from many initial states; and the rightmost state can be reached
from relatively few initial states.

Each initial state, together with the frame number, corresponds to one
particular secret key. In order for the attack to succeed, an internal state
derived from the correct initial state has to be stored on the disk. Then,
output from the cipher eventually collides with some output sequence stored
on the disk and the corresponding internal state is revealed. If we choose for
storing the internal states with the highest number of descendants at levels
101 and below, then our chances for success increase. In other words, looking
again at Figure 5.1, it is in our best interest to have the internal states cover
as large a black area as possible.

In the following analysis, we assume that amongst all internal states that
generate a sequence beginning with the pattern α, we have chosen for storage
a subset of 235 states with the highest number of candidate initial states. The
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Figure 5.1: A variance in the distribution of reachable internal states and
their corresponding initial states

extensive sampling by Biryukov et. al. showed that the average number of
initial states for these stored states is expected to be approximately 12,500.

Real-Time phase of the Attack

Now, once the precomputation phase is complete, we have 235 state-output
pairs stored on the disk and sorted according to the output sequences. Dur-
ing the real-time phase of the attack, we compare the output of the cipher
to the outputs stored on the disk. If some 51 consecutive output bits hap-
pen to collide with a stored output, then the corresponding internal state is
revealed. Since the clock cycle at which the collision happens is known, it
remains to invert the algorithm—for example, by using methods described in
Section 4.1.2—to recover the corresponding candidate initial state(s). Should
there be more than one such candidate, then each of them needs to be tested
against further keystream. Since an internal state has on average 12,500
possible initial states in the “black belt”, we can expect to have about
12, 500/178 ≈ 70 candidate initial states at a fixed clock cycle, i.e., at a
fixed level of the belt.

It remains to compute the probability of the collision. Of course, this
probability depends on the length of the plaintext that we have access to.
Assume that we have access to two minutes’ (i.e., 120 seconds) worth of
plaintext.

The probability that an internal state occurs during cipher operation is
proportional to the number of initial states it can be derived from (the black
area on Figure 5.1). If the number of possible initial states for a given internal
state s is W (s), then the probability of encountering this state during 120
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seconds of conversation is

Pr
T

(s) =
W (s)

264
· 120

5 · 10−3
,

assuming that no internal state occurs more than once. On the other hand,
we need to calculate the probability PrM(s) that a given state is stored on
the disk. If we want to achieve the average weight 12,500, we can simply
set a threshold k and define PrM(s) = 0 for W (s) < k and PrM(s) = 1 for
W (s) ≥ k. As we saw above, this threshold will give us about 235 stored
states.

The probability of a collision can now be easily calculated by the formula

Pr[collision] =
∑

s

Pr
M

(s) · Pr
T

(s) =
∑

s|W (s)≥k

Pr
T

(s)

=
∑

s|W (s)≥k

W (s)

264
· 120

5 · 10−3
= 235 · 12, 500

264
· 120

5 · 10−3
≈ 0.56 .

Hence, it is likely that a collision will actually occur.
Finally, we can compare how the selection of special states improves the

efficiency of the attack when compared to storing just random states. During
two minutes of conversation, approximately 178 · 120/5 · 10−3 ≈ 222 internal
states can be inspected. If 235 random internal states are stored on the disk,
then the product 222 · 235 = 257 is about 100 times smaller than 264. To raise
the success probability above 50%, it would be necessary to increase both
the available storage and the available plaintext, together by a factor of 100.
As we saw above, careful selection of stored states fills the gap in a much
more feasible way.

5.1.3 Random Subgraph Attack

In this section, we discuss a different attack model, based on the original
Hellman time-memory trade-off for block ciphers. When compared to the
biased birthday attack, the random subgraph attack needs less available data
(seconds instead of minutes). The real-time computation time is slightly
higher but still feasible (a few minutes according to the authors).

Key Idea of the Hellman Trade-Off

We start by describing the trade-off model for block ciphers. Let E be any
block cipher. For a given plaintext P , the encryption function f from keys K
to ciphertexts is defined as f(K) = EK(P ). Assuming that all the plaintexts,
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ciphertexts and keys have the same binary size, f can be considered as a
random function over a common space U .

The idea proposed by Hellman is to choose a large number m of starting
points and iterate f on them t times, i.e., compute f(K), f(f(K)),. . . ,f t(K)
for each starting point K. On disk, only the startpoint-endpoint pairs
(K, f t(K)) are stored in increasing endpoint order. If we are given a cipher-
text f(K) that appears along one of these paths, we can continue applying
f to the ciphertext, until we hit the endpoint of a path. Then, we can jump
to the startpoint of the path and continue applying f . The last point before
we hit f(K) again is then likely to be the correct key K.

Since it is difficult to cover a random graph with random paths, Hellman
proposed to use several variants of f (e.g., by permuting output bits). Sup-
pose that we use t variants fi and iterate each one of them t times on m start
points. Then, each ciphertext is likely to be covered by one of the paths if
the parameters satisfy

mt2 ≥ |U | .

For these parameters, the total memory requirement is M = mt and the
running time is T = t2, so the corresponding time-memory trade-off curve is

M
√

T = |U | .

Applying the Attack to A5/1

In the case of the A5/1 cipher, the desired function f can be defined as
the function from 64-bit internal states to their corresponding 64-bit output
sequences. If we assume that the maximal memory at our hands is M = 236,
then the corresponding time required is T = 256, which is much worse than
in the biased birthday attack.

The basic idea of the new random subgraph attack is again to consider
only the 248 states producing an output sequence starting with the 16-bit
pattern α. These states can be described by their 48-bit names, also, 48
bits suffice to uniquely define the output, since the first 16 bits are constant.
Hence, if x is a 48-bit sequence, the computation goes as follows: expand the
48 bits to the full 64-bit internal state; compute the next 64 bits of output;
delete the prefix α and take the remaining 48 bits as f(x).

The recommended implementation gives the parameters m and t values
m = 224 and t = 212. This means that 212 variants of the function f are
considered, each of which is iterated 212 times, starting from 224 randomly
chosen 48-bit strings. The total memory requirement of the attack is still
M = mt = 236 but the time required has dropped from 256 to T = t2 = 224.
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The real-time phase of the attack requires only about 2 seconds of plaintext,
since the pattern α is likely to appear in the output during that time.

The authors have proposed several small improvements to further enhance
the attack. These can be found in the original paper [BSW01]. As a conclu-
sion, they state that the actual attack takes several minutes on a single PC
(as of 2000). Taking into account the reduced plaintext requirement—now
only a few seconds—,this attack is very powerful, once the precomputation
stage is completed.

5.1.4 Possibilities for Hardware Implementation

In time-memory trade-off attacks, most of the computational effort goes into
the preprocessing stage. For both the biased birthday attack and the ran-
dom subgraph attack, this stage consists of computing internal states pro-
ducing output starting with a particular sequence. These computations are
essentially the same as computations in guess-and-determine attacks: part
of the internal state is guessed and the remaining part is derived from known
keystream. The computations can be easily parallelised and would thus be
rather suitable for hardware implementations.

However, the computations need to be carried out only once, which makes
them unattractive for building special purpose hardware. Another drawback
is the need to constantly record computation outputs, so it is the hard disk
access that might become a bottleneck.

Finally, one might want to ask if guess-and-determine attacks become
rudimentary in the light of time-memory trade-off attacks, which require
approximately the same amount of computational effort, but only once. It
might seem to be the case, since also the memory requirement of the attacks
presented above is quite small in terms of today’s hardware (and thus, also
implementation cost is low). Still, guess-and-determine attacks prevail in at
least one parameter, that is, the amount of required plaintext. While trade-
off attacks require plaintext equal to seconds up to minutes of conversation,
guess-and-determine attacks can make do with only one or two frames. Also,
time-memory trade-offs are always probabilistic. This means that for the
given time and memory parameters, there is a good (over 50 per cent) chance
of recovering the session key but the success is not guaranteed, as opposed
to guess-and-determine attacks.
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5.2 Ekdahl-Johansson Correlation Attack

In this chapter, we discuss a correlation attack against the A5/1 stream
cipher proposed by Ekdahl and Johansson [EJ03]. This attack is especially
interesting, since it points out a new weakness in the cipher. While all
previously presented attacks relied in their success on the relatively small
internal state of the cipher, the crucial parameter in the Ekdahl-Johansson
attack is the number of discarded bits prior to keystream generation.

In 2004, Maximov, Johansson and Babbage proposed another correlation
attack against A5/1 [MJB04]. Their attack is based on the Ekdahl-Johansson
approach, but uses some new techniques to improve the attack parameters.
Since the attack is optimised for software implementation, and much of the
enhancement comes from heuristics and tricks of implementation, we leave
the details of this attack out of the scope of this thesis. In the summarising
chapter, the reader can find the parameters of the complexity of the attack.

5.2.1 Key Ideas of the Attack

Similarly to other previously presented attacks, correlation attacks work in
the known plaintext model. The key idea of a correlation attack on a stream
cipher is the following: find known correlations between (some of) the bits
of the internal state and the keystream output. Next, if the attacker has
access to a sufficiently large amount of keystream (where the “sufficiency”
of the amount depends on the strength of the correlation), he can determine
information about the internal state (and, hence, about the secret key) with
high confidence.

The first problem that we need to tackle when mounting a correlation
attack on A5/1 is the varying frame counter. Namely, in order to make use
of the correlations, one has to collect data over several frames. On the other
hand, the cipher is re-initialised with a new counter every frame, so how can
we find a correlation that holds for all frames, regardless of the counter?

Here, the linear fashion in which the cipher is (re)-initialised provides
the answer. Denote the 64-bit secret session key by Kc = (k0, . . . , k63) and
the known 22-bit frame counter for frame n by Fn = (f0, . . . , f21). Denote
by R1(0), R1(1), . . . the output of the first linear feedback shift register when
clocked regularly after the initialisation has been completed. Similarly, denote
the consecutive output bits of registers R2 and R3 from regular clocking
by R2(0), R2(1), . . . and R3(0), R3(1), . . ., respectively. Finally, denote the
known keystream from a given frame by Z(0), Z(1), . . . , Z(228). For now,
we assume that the cryptanalyst knows either the whole frame or none of it,
although we later see that the attacker needs only the 40 first bits from each
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frame.
When we look at the regular clocking, each output bit of each of the three

LFSRs is a known linear combination of the secret key bits and the frame
counter bits. For each output bit R1(t) of the first register, we can write out
the following linear equation

R1(t) =

63
∑

i=0

c1,i(t)ki ⊕
21
∑

i=0

d1,i(t)fi , (5.1)

where c1,i(t) and d1,i(t) are known binary coefficients. In other words, the
output bit R1(t) can be split into the key part and the frame counter part.
Denote the key part by k̂1(t) and the frame counter part for f̂1(t), then
Equation 5.1 translates to

R1(t) = k̂1(t) ⊕ f̂1(t) .

Similar equations can be written for registers R2 and R3:

R2(t) = k̂2(t) ⊕ f̂2(t) ,

R3(t) = k̂3(t) ⊕ f̂3(t) . (5.2)

Here, the important thing to note is that the key part is constant over all
frames and the frame counter part is known for all frames.

Of course, this alone does not help us much. We would like to relate the
bits Rj(t) with the output bits Z(t) but the irregular clocking rule prohibits
us from knowing which bits of the three registers were used to combine the
output bit Z(t). However, we do have some useful information about the
clocking probabilities. Consider the first output bit Z(0). Before this bit is
produced, 101 bits of output are discarded. We know that each register is
clocked with probability 3/4. Hence, we can expect that after 101 irregular
clockings, each of the registers has been clocked about 76 times.

Assume for a moment that all three registers were indeed clocked exactly
76 times. Then we can write out the following equation:

Z(0) = R1(75) ⊕ R2(75) ⊕ R3(75) .

The equations from (5.2) now give us

Z(0) = k̂1(75) ⊕ f̂1(75) ⊕ k̂2(75) ⊕ f̂2(75) ⊕ k̂3(75) ⊕ f̂3(75) .

Rewriting this equation once more gives

k̂1(75) ⊕ k̂2(75) ⊕ k̂3(75) = f̂1(75) ⊕ f̂2(75) ⊕ f̂3(75) ⊕ Z(0) , (5.3)
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where the left hand side is constant for all frames and the right hand side is
known for all frames. From now on, denote the right hand side for frame n
by

On(75, 75, 75, 0) = f̂1(75) ⊕ f̂2(75) ⊕ f̂3(75) ⊕ Z(0) . (5.4)

In the above, we made the assumption that all three LFSRs were clocked
exactly 76 times. This assumption will not hold for most frames but we can
determine the probability that it holds. In the case above, the probability is
found to be about 10−3. (We will return later to explain how this probability
was calculated.) Now, if our assumption holds, then Equation 5.3 is true
with probability 1. If our assumption does not hold, then the equation is
still true with probability 1/2. We have now come to our correlation:

Pr[k̂1(75) ⊕ k̂2(75) ⊕ k̂3(75) = On(75, 75, 75, 0)]

= Pr[assumption correct] · 1 + Pr[assumption wrong] · 1

2

=
1

2
+

1

2
· 10−3.

The left hand side of Equation 5.3 is now equal to the known right hand
side with probability biased from 1/2. If we have access to a sufficient amount
of frames, the common value k̂1(75)⊕ k̂2(75)⊕ k̂3(75) can be determined with
high confidence. The value of this sum gives us one bit of information about
the secret key. By considering other such triplets, the entire key can be
derived.

In order to determine the number of frames required to make the right
decision, we need to introduce more weapons of math instruction from prob-
ability theory. We present the following theorem without proof.

Theorem 5.1 (A Chernoff Bound). Let X1, X2, . . . , Xn be independent bi-
nary random variables. For 1 ≤ i ≤ n, let Pr[Xi = 1] = p > 1/2. Define
X =

∑n
i=1 Xi. Then,

Pr
[

X ≤ n

2

]

≤ e−2n(p−1/2)2 .

The theorem gives a lower bound for the success of a majority decision
for n independent, equally likely events. In the case of our attack, each
event indicates the correctness of our decision for one frame—each decision
is correct with probability p = 1/2 + 1/2 · 10−3. Suppose that we take the
majority vote over 6 million frames. Then the probability that less than half
of our decisions are right is bounded from above by

Pr[error] ≤ e−2·6·106·(10−3/2)2 = e−3 ≤ 0.05 ,
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so we can have 95% confidence in our decision. However, 6 million frames of
keystream amount to over 8 hours of unencrypted conversation, clearly an
impossible goal.

5.2.2 An Improvement of the Attack

The attack described above recovers the key bit-by-bit but requires millions
of frames of keystream to achieve an acceptable confidence level. Even one
million frames correspond to over one hour of conversation, so in practice,
this attack is still unrealistic.

In the basic attack above, we considered the probability of the clocking
triple (75, 75, 75) occurring at the position where the first keystream bit Z(0)
is output, i.e., after 101 bits of discarded output. Let the keystream bit Z(t)
be produced at position v = t + 101. To improve the attack, note that the
same triple might also occur in other positions, and we can use all those
positions to calculate the correlation probability. Namely, denote the prob-
ability of a triple (cl1, cl2, cl3) occurring at position v by Pr[(cl1, cl2, cl3), v].
Given a triple (cl1, cl2, cl3), it is now possible to calculate an interval I where
this triple has a significant probability of occurrence. In frame n, denote the
probability of the corresponding sum of k̂-bits being zero by

pn(cl1, cl2, cl3) = Pr[k̂1(cl1) ⊕ k̂2(cl2) ⊕ k̂3(cl3) = 0] .

Then, the correlation probability can be calculated as a weighted voting
over all positions in interval I:

pn(cl1, cl2, cl3) =
∑

v∈I

Pr[(cl1, cl2, cl3), v] · [On(cl1, cl2, cl3, v − 101) = 0] +

1

2
·
(

1 −
∑

v∈I

Pr[(cl1, cl2, cl3), v]

)

, (5.5)

where On(cl1, cl2, cl3, v−101) = f̂1(cl1)⊕f̂2(cl2)⊕f̂3(cl3)⊕Z(v−101), exactly
as in Equation 5.4.

Calculating the Probabilities

Next, we need a method for calculating the probability Pr[(cl1, cl2, cl3), v] of a
clocking triple occurring at a certain position. Under the usual assumption of
independent uniformly distributed clocking bits, we can give a simple closed
formula for the probability:

Pr[(cl1, cl2, cl3), v] =

(

v
v−cl1

)(

cl1
v−cl2

)(

cl1+cl2−v
v−cl3

)

4v
.
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The formula is derived as follows: the first LFSR is not clocked v − cl1
times. There are

(

v
v−cl1

)

possible position combinations for this to happen.
Next, we know that if one of the LFSRs is not clocked, then the other two
are definitely clocked. Hence, the second LFSR will definitely move in the
v − cl1 positions where the first LFSR did not move. From the remaining
v − (v − cl1) = cl1 positions, we have to choose v − cl2 positions where
this register is not clocked; there are

(

cl1
v−cl2

)

ways to do this. Finally, the
third register can stop only if both of the other registers move. There are
v−(v−cl1)−(v−cl2) = cl1+cl2−v such positions, out of which we can select
v − cl3 in

(

cl1+cl2−v
v−cl3

)

ways. As a final step, the number of clocking sequences
satisfying our constraints is divided by the number of all possible clocking
sequences, of which there are 4v.

After these probabilites are calculated, we can estimate the probability
given in Equation 5.5. In order to make use of the information over all
available frames, the log-likelihood ratio is used. Based on the log-likelihood
result, a hard decision can then be taken to estimate the sum k̂1(cl1) ⊕
k̂2(cl2) ⊕ k̂3(cl3) to be either 0 or 1.

Mounting the Attack

For each clocking triple (cl1, cl2, cl3), the estimate on the value k̂1(cl1) ⊕
k̂2(cl2) ⊕ k̂3(cl3) gives us one bit of information about the key. Hence, in
order to reconstruct the secret key, we need to consider at least 64 such
triples. This is done as follows.

First, pick an interval C1 and let each of the clocking values cl1, cl2, cl3
run through this interval. If the length of the interval is n, the hard estimates
on the sums k̂1(cl1) ⊕ k̂2(cl2) ⊕ k̂3(cl3) yield a system of linear equations in
3n variables (the k̂ − bits) and n3 equations (the estimates). For example,
if C1 = [79, . . . , 86], then the system has 24 variables and 512 equations.
The problem of finding the correct values of the variables then becomes a
problem of linear decoding; if the estimates are reasonably accurate, 24 bits
of information about the key can be obtained. In the actual attack, this is
implemented as an exhaustive search over 24 binary variables.

However, 24 bits are not sufficient to recover the secret key. In order to
obtain at least 64 bits, the length of the interval should be increased to at least
22. Now, this would make the search more complex than a brute-force attack,
with 266 possible combinations to consider. Instead, a divide-and-conquer
strategy can be used. Namely, we can select several intervals and combine
their solutions. For n = 8, we could set C1 = [79, . . . , 86], C2 = [87, . . . , 94]
and C3 = [95, . . . , 102]. This gives in total 72 bits of information about the
key, which is more than enough. The total cost of the exhaustive search is
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only 3 · 224.
When the solutions for these three intervals have been found, they can

be combined and loaded in the shift registers. To verify the solutions, the
registers then need to be clocked backwards regularly for 79 clocks, plus
another 22 clocks used for loading the frame number. Next, the frame number
should be loaded and the 100 premix clocks should be run. Then, it is possible
to check the produced keystream against the expected keystream and validate
or reject the solution.

In order to increase the chances for success, it is possible to save for each
interval a list of closest solutions and try all possible combinations over the
three lists. Also, longer intervals with overlapping bits can be used to discard
mismatching solutions.

5.2.3 Possibilities for Hardware Implementation

Ekdahl and Johansson have implemented the attack in software and it works
reasonably well. For 70,000 frames of available plaintext (about 5 minutes
and 20 seconds of conversation), the success rate has been brought to over
75%, while the attack time remains within a few minutes. There are two
parameters which seem to affect the efficiency of the attack: the amount of
available plaintext and the configuration of search intervals. Two tendencies
strike out from the simulations. Firstly, and rather unsurprisingly, the success
rate grows as the amount of plaintext grows. Secondly, the success rate
grows—albeit more slowly—as the search intervals get larger (and, hence,
the computational complexity increases). There is also a third parameter
that was not experimented with in the implementations, namely, the number
of closest solutions stored for each interval. Clearly, increasing this number
would also improve the attack at the expense of more computational work.

Most of the computational effort in the attack goes into linear decoding
and solution checking. These are both simple operations—the latter being
almost equivalent to running A5/1 itself—that could well benefit from hard-
ware implementation. Both stages can be parallelised to an arbitrary extent,
and some pipelining might be possible between the two stages. It is an in-
teresting open question, whether and how much it is possible to increase the
success rate of the attack and/or to decrease the plaintext requirement of the
attack by putting more computational effort into the implementation than a
regular PC allows.
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5.3 Ciphertext-Only Attacks

In this chapter, we briefly discuss options for attacking the A5/1 cipher within
a ciphertext-only scenario. Since obtaining conversation plaintext is perhaps
the key obstacle in implementing all the previously described attacks, finding
a ciphertext-only attack would be a huge benefit for the attacker.

Suppose that the attacker only has access to some ciphertext, which is
obtained by an exclusive-or operation between plaintext and keystream. In
order to determine which is the correct plaintext-keystream pair to form this
ciphertext, the plaintext needs to exhibit some redundancy. Fortunately, in
the settings in which the cipher is actually used, redundancy is present in
the plaintext, and there are at least two different ways to exploit this.

Redundancy in Control Data

The first observation that should be made is that, apart from speech data,
also signalling data is encrypted before transmission. The bits in the sig-
nalling data frames often have a very specific structure with many fixed bits,
so such information can be exploited.

In particular, we point out a proposal made in [MJB04]. In a conversation,
normally only one party speaks at a time, so there is a lot of silence. In GSM
conversations, transmission is cut during silence. However, the fact that also
background noise is cut can be very annoying for a listener. To solve this
problem, background noise, or so-called “comfort noise”, is generated at the
listener’s side. The GSM standard specifies the Silence Descriptor frame
(SID frame) that contains information about this comfort noise [ETSb]. In
order for the receiving side to identify this frame, the frame contains a 95-bit
fixed all-zero codeword.

The SID frame is sent in the beginning of a silence period and then twice
each second. Hence, attacks that require only little plaintext could easily
benefit from this information. In particular, success is very likely for the
guess-and-determine attacks of both Anderson-Keller-Seitz and Golić, which
require less than 95 bits of plaintext from one frame—so one SID frame
should be sufficient to complete the attack.

Redundancy from Error Correction Coding

The second observation which can be made is that data (both speech and
signalling data) is encrypted after error-correction coding is applied. This
means that all encrypted data contains redundancy with known structure.
Barkan, Biham and Keller describe a time-memory trade-off similar to the
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random subgraph attack presented in Section 5.1.3 exploiting this redun-
dancy [BBK03].

In brief, the attack goes as follows. Consider for example signalling data.
For this type of data, error correction coding expands 184 bits into 456
bits, which are then interleaved and divided into four frames. The coding
operation and the interleaving operation can be modelled together as a 456×
184 matrix G. If the 184-bit message to be coded is M , then the resulting
456-bit codeword is P = G · M .

From basic coding theory, we know that there are 456−184 = 272 linearly
independent equations that describe the set of all valid codewords. Let the
corresponding 272 × 456 parity-check matrix be H , i.e., H · P = 0 for all
valid codewords P .

Now, assume that we have obtained four frames of ciphertext and com-
bined it to a 456-bit word C. Let P and K denote the corresponding plaintext
and keystream, respectively. Then, C = P ⊕ K and

H · C = H · (P ⊕ K) = (H · P ) ⊕ (H · K) = 0 ⊕ (H · K) = H · K .

Now, since matrix H is fixed and ciphertext C is known, H ·K is a known
272-bit word that depends only on the output of the A5/1 generator during
four consecutive frames. Hence, we can model the operation of the cipher as
a function h : {0, 1}64 7→ {0, 1}272 that takes the 64-bit internal state of the
cipher after the initialisation of the first frame and outputs the 272-bit word
from the four frames. Inverting h then reveals the internal state and thus
breaks the cipher.

If we consider only the first 64 bits of this 272-bit word, then h is a
function from 64-bit words to 64-bit words, and we can apply the Hellman
trade-off to h, in the same fashion as it was done in the random subgraph
attack (c.f. Section 5.1.3 of Chapter 5).

The authors of the attack have evaluated various points on the trade-
off curve. For example, if we assume access to 20 minutes of encrypted
conversation—note that we only need ciphertext, which can be obtained by
passive eavesdropping—then 35 PCs would complete the preprocessing in
one year, the result would require 600 GB of storage, and the actual attack
could be completed real-time by one PC. As another example, if the available
data is limited to 8 seconds, then the memory requirement grows to 35-70
TB. Also, it would then take 5000 PCs to complete the preprocessing in one
year, and several hundred PCs to complete the attack in real-time.

It is interesting to note that a similar attack against the weak encryp-
tion algorithm A5/2 requires only a few hours of one-time precomputation,
less than 1 GB of storage, and recovers the secret key in less than a second.
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Moreover, even if the network uses A5/1 or even A5/3, a vast majority of
mobile devices still support the weak A5/2, which opens up several possibil-
ities for man-in-the-middle attacks. Scenarios for such attacks are described
in [BBK03].
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Chapter 6

A Comparison of the Attacks

In the final chapter of this Master’s thesis, we give a compact comparison of
known attacks against the A5/1 stream cipher. We compare the following
parameters:

• Plaintext requirement, or, equivalently, keystream requirement. We
give the required number of frames, and the corresponding amount
of actual conversation. For correlation attacks, we give an interval;
the success probability of the attack grows as plaintext availability
increases.

• Ciphertext requirement. For those attacks that require plaintext,
ciphertext requirement is equal to plaintext requirement. For ciphertext-
only attacks, known ciphertext is the only type of ciphering data re-
quired.

• Memory requirement. This is only given for attacks that require
precomputation. We do not estimate the memory requirement of the
real-time phase of the attack, since this is usually very small. For time-
memory trade-off attacks, we list some points on the trade-off curve;
other configurations are possible.

• Precomputation complexity. Estimates are given in time units and
reflect the time it would take one “regular PC” to complete the attack,
based on the best implementations known to us. For precomputation,
the time is usually fixed beforehand, so we do not distinguish between
worst-case and average-case complexity. It should be noted that these
figures are taken from articles written over several years and are thus
“of illustrative value”. On the other hand, we feel that comparing, say,
bit exclusive-ors to matrix multiplications in Big-Oh notation is even
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more of a comparison between apples and oranges. We leave it to the
readers to apply Moore’s law to level the differences.

• Real-time computation complexity. Again, estimates are given
in time units for a single PC, except for the Anderson-Keller-Seitz
hardware attack implemented on an FPGA, and the Golić attack im-
plemented on a mixed platform. Estimates for guess-and-determine
attacks are based on average-case complexity. For other, probabilistic
attacks, the given time is the worst-case complexity for a given success
probability. For both precomputation and real-time computation, we
make an exception in the case where no estimate is given in the corre-
sponding article, and provide some approximate figures to give a very
rough idea of the required time.

Table 6.1 summarises the results. The attacks are presented in the or-
der in which they were described in this thesis. The years refer to the year
the corresponding article was published, except for the Anderson-Keller-Seitz
software attack, in which case the year refers to our own software implemen-
tation.
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Attack type Year Plaintext
(frames)

Cip-
hertext
(frames)

Memory Pre-
compu-
tation

Attack
time

Anderson-
Keller-Seitz
(software)

2005 1 (5 ms) 1 — — 2.5 years

Anderson-
Keller-Seitz
(hardware)

2001 1 (5 ms) 1 — — 2 years
(FPGA)

Biham-
Dunkelman

2000 6000 (30 s) 6000 — — estimated
< 1 day
(2005)

Biham-
Dunkelman
(our pro-
posal)

2000 400 (2 s) 400 — — estimated
3-4 days
(2005)

Golić 1997/
2000

1 (5 ms) 1 — — 2.5 days
(PC/FPGA)

Biased birth-
day

2000 24,000
(2 min)

24,000 200 GB unknown
(248)

1 second

Random sub-
graph

2000 400 (2 s) 400 400 GB unknown
(248)

minutes

Ekdahl-
Johansson

2003 30,000–
70,000
(3–6 min)

30,000–
70,000

— — minutes

Maximov-
Johansson-
Babbage

2004 2000–
10,000
(10-50 s)

2000–
10,000

— — minutes

Barkan-
Biham-Keller

2003 — 240,000
(20 min)

600 GB 35 years minutes

Barkan-
Biham-Keller

2003 — 1600
(8 s)

35 TB 5000
years

minutes–
hours

Table 6.1: A comparison of the attacks on A5/1
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Chapter 7

Conclusion

The A5/1 stream cipher used in GSM communications is possibly the most
widespread cipher in the world, with several hundred million users relying
on its security. After its reverse-engineering in 1994, it has also become one
of the most studied ciphers in the cryptographic community. Several attacks
against the cipher have been published, some of which work in real-time on
a regular PC. However, attacks with feasible computational load usually re-
quire a large amount of available plaintext—several seconds or even minutes
of unencrypted communication. Thus, it is an interesting question whether
attacks that are computationally more demanding but require only a very
small amount of plaintext can be enhanced by a hardware implementation.
While studying the hardware implementability of previously published at-
tacks against A5/1, we have come to the following conclusions.

Firstly, guess-and-determine attacks are particularly suited for hardware
implementation. In 2001, when one such implementation was published,
it did not offer much benefit compared to a software implementation on a
standard PC. However, over time, PCs and FPGAs have improved roughly
equally in speed but FPGAs have also notably improved in capacity. Since
guess-and-determine attacks allow for parallelisation to an almost arbitrarily
large degree, an FPGA in 2005 could do in one week the work that took
an FPGA in 2001 over two years. On a negative side—negative, of course,
from the attacker’s viewpoint—, we show that the complexity of a simple
guess-and-determine attack is higher than previously speculated: we have
calculated the complexity to be over 250 A5/1 clock cycles.

Secondly, we show that there is a nice trade-off between the computa-
tional complexity and plaintext requirement of a guess-and-determine attack.
Namely, the attacker can achieve a factor two reduction in computational
complexity by increasing plaintext requirement by a factor of four.

Finally, we investigate correlation attacks, which rely on a large amount of
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plaintext to make use of small correlations present in this data. We conclude
that such attacks can also benefit from hardware assistance. We leave it an
open question whether increased computational effort can bring the plaintext
requirement from the current several minutes down to a more realistic level.
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Jadašifri A5/1 riistvarapõhiste rünnete

keerukusanalüüs

Magistritöö

Resümee

GSM-sides kasutatav jadašiffer A5/1 on mitmesaja miljoni kasutajaga maa-
ilma enamlevinumaid šifreid. Pärast esialgu salajas hoitud algoritmi ava-
likukstulemist 1994. aastal on A5/1 ka krüptograafide poolt üks enamuu-
rituid šifreid. Osad avaldatud rünnetest töötavad tavalisel PC-l reaalajas.
Samas on kiiremate rünnete eelduseks, et ründajal on juba eelnevalt juur-
depääs sekunditele või isegi minutitele dekrüpteeritud vestlusele. Käesolevas
töös uuritakse, kas ründeid, mis vajavad vaid väikest kogust avateksti ja on
seetõttu praktikas kasutatavad, on võimalik muuta efektiivsemaks, kasutades
spetsiaalset riistvara.

Töö esimeses pooles uuritakse mõista-mõista rünnete (ingl. k. guess-
and-determine attacks) keerukust ning antakse ühe ründemudeli jaoks täpne
keerukushinnang. Osutub, et sellised ründed on üldiselt aeglasemad, kui
varasemad hinnangud lubasid arvata—“harilikul” lauaarvutil kulub ühe võt-
me lahtimurdmiseks üle kahe aasta. Samas on sellised ründed peaaegu kui-
tahes suures ulatuses paralleliseeritavad. See võimaldab hästi ära kasutada
spetsiaalset riistvara. Kui ühe protsessoriga PC puhul saame ära kasu-
tada ainult tema kiirust, siis FPGA korral tuleb arvesse ka kiibi suurus—
suuremale kiibile saab implementeerida mitu rünnet paralleelselt.

Lisaks keerukushinnangule pakutakse töö esimeses pooles välja ka ühe
mõista-mõista ründe üldistus. Nimelt on ründajal võimalik vähendada va-
jamineva avateksti hulka 4 korda, suurendades vastavalt arvutusvõimsust 2
korda.

Töö teises pooles antakse ülevaade ülejaanud teadaolevatest rünnetest
A5/1 šifri vastu ja hinnatakse iga ründe korral riistvaraimplementatsiooni
otstarbekust.
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