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ABSTRACT 

This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on 

chemical composition, heat treatment (austenitising temperature, quenchant and tempering 

temperature), hardness after hardening and different tempering temperature and volume loss of 

materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as 

fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed 

steels. Modelled adaptive neuro fuzzy inference system (ANFIS) is compared to statistical model of 

multivariable non-linear regression (MNLR). From the results it could be concluded that it is possible 

well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate 

unnecessary testing. 
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INTRODUCTION 

The good wear resistance, especially against abrasion, is the most important property of tool 

materials. The main influence factors, which determine the abrasion resistance of steel, are: 

chemical composition (carbide forming elements), microstructure (type, form, distribution 

and contents of carbides) and hardness (macro and micro) [1, 2]. It is well known, that the 

abrasion wear resistance mostly depends on the types (hardness) and contents of carbides in 

martensite matrix (Fig. 1). Additionally, the microstructure constituents change own form, 

size and distribution during the tempering, e.g. depend on tempering condition (Fig. 2). The 

determination of the form, distribution and portion of carbides by quantitative image analysis 

for each heat treatment condition of certain steel require a long time. Additional problem is 

the identification the type of carbides in a microstructure. In this paper an easier way for 

predicting the abrasion wear resistance of different tool steels by means of neural network 

and fuzzy method is investigated. The input data were not the microstructure parameters but 

the known chemical composition of steel and hardness in the hardened and tempered 

conditions. The learning data set for neural network contains chemical composition, heat 

treatment parameters, hardness and volume loss of different tool steels and high speed steels 

in different heat treatment conditions (Table 1). 

 

Figure 1. Relative wear of different tool steels vs. weight portion of carbides [1]. 

 

Figure 2. Microstructure of sample steel X160CrMoV12-1 (Scanning Electron Microscope 

micrograph’s – secondary electron image). Left: tempering temperature 160 ºC and hardness 

61,5 HRC, right: tempering temperature 515 ºC and hardness 60,5 HRC [1]. 
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RESULTS OF ABRASION WEAR RESISTANCE  

Different tool and high speed steel (10 types) have been austenitised and quenched applying 

specified temperatures and quenching media. After hardening, each sample has been 

tempered applying several different temperatures, and subsequently hardness (HRC) and 

volume loss (GV, mm
3
) were measured. 

The measure for abrasion wear resistance were data for volume loss after testing of steels in 

different heat treatment conditions using a method dry sand(SiO2)/rubber wheel – ASTM 

G65-94 (Fig. 3.). 

Table 1. The data for investigated steels [3, 4]. 

Steel 

designation 

EN AISI 

Composition – element
*
, % Hardening Temp., 

C 

Hardness, 

HRC 

GV, 

mm
3
 C Si Mn Cr Ni Mo W V Ta, ºC Quench 

CT105W110 

W1 

0,95 

1,00 

1,05 

0,29 

0,31 

0,32 

0,29 

0,31 

0,32 
0,00 0,00 0,00 0,00 0,00 760 water 

20 68 61,05 

150 67 64,35 

180 65 66,55 

320 56 93,20 

370 50 104,60 

440 44 116,60 

90MnCrV8 

O2 

0,86 

0,91 

0,95 

0,24 

0,25 

0,26 

1,90 

2,00 

2,10 

0,33 

0,35 

0,37 
0,00 0,00 0,00 

0,09 

0,09 

0,10 

800 oil 

20 65 59,50 

200 61 70,60 

320 58 98,55 

370 56 104,60 

470 50 118,65 

X210Cr12 

D3 

1,96 

2,09 

2,21 

0,29 

0,31 

0,32 

0,29 

0,31 

0,32 

11,4 

12,0 

12,6 
0,00 0,00 0,00 

0,09 

0,10 

0,10 

980 oil 

20 66 24,65 

150 65 23,95 

200 63 28,95 

320 59 30,15 

480 54 31,70 

550 49 39,10 

590 43 48,25 

650 38 64,35 

X40CrMoV5-1 

H13 

0,38 

0,40 

0,42 

0,95 

1,00 

1,05 

0,38 

0,40 

0,42 

4,75 

5,00 

5,25 
0,00 

1,43 

1,51 

1,58 
0,00 

0,95 

1,00 

1,05 

1040 oil 

20 54 128,40 

590 52 127,00 

540 54 136,05 

630 48 144,70 

650 44 186,05 

X100CrMoV5-1 

A2 

0,95 

1,00 

1,05 

0,29 

0,31 

0,32 

0,57 

1,20 

0,63 

4,75 

5,00 

5,25 
0,00 

0,95 

1,00 

1,05 
0,00 

0,24 

0,25 

0,26 

960 oil 

20 64 57,75 

200 62 61,25 

230 61 62,25 

550 56 75,75 

590 51 83,40 

650 44 107,70 

X160CrMoV12-1 

D2 

1,43 

1,51 

1,58 

0,29 

0,31 

0,32 

0,29 

0,31 

0,32 

11,4 

12,0 

12,6 
0,00 

0,86 

0,91 

0,95 
0,00 

0,95 

1,00 

1,05 

1040 oil 20 63 59,90 

HS6-5-2611 

M2 

0,86 

0,91 

0,95 

0,23 

0,34 

0,45 

0,20 

0,30 

0,40 

3,80 

4,00 

4,20 
0,00 

4,75 

5,00 

5,25 

6,18 

6,51 

6,83 

1,81 

1,91 

2,00 

1260 
salt 

bath 

150 66 23,30 

550 65 25,80 

520 65 27,95 

660 57 41,55 

680 55 66,70 

690 51 77,75 
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Table 1. continuation from p.336. 

Steel 

designation 

EN AISI 

Composition – element
*
, % Hardening Temp., 

C 

Hardness, 

HRC 

GV, 

mm
3
 C Si Mn Cr Ni Mo W V Ta, ºC Quench 

-F2 

1,20 

1,30 

1,40 

0,10 

0,30 

0,50 

0,10 

0,30 

0,50 

0,20 

0,30 

0,40 

0,00 

0,75 

0,75 

0,00 

0,15 

0,15 

3,00 

3,75 

4,50 

0,00 

0,10 

0,10 

800 water 

20 67 39,35 

180 65 36,15 

330 59 47,25 

370 55 56,85 

450 50 57,40 

430 52 57,80 

-A6 

0,65 

0,70 

0,75 

0,10 

0,40 

0,70 

1,80 

2,15 

2,50 

0,90 

1,15 

1,40 

0,00 

0,75 

0,75 

0,90 

1,15 

1,40 

0,00 

0,10 

0,10 

0,00 

0,10 

0,10 

840 air 

20 62 73,80 

180 60 75,23 

340 55 106,30 

480 50 118,10 

590 45 130,75 

-S2 

0,40 

0,48 

0,55 

0,90 

2,10 

1,20 

0,30 

0,40 

0,50 

0,00 

0,30 

0,30 

0,00 

0,75 

0,75 

0,30 

0,45 

0,60 

0,00 

0,10 

0,10 

0,00 

0,50 

0,50 

880 oil 

20 63 81,70 

150 62 81,30 

290 59 113,75 

430 53 137,30 
*
numbers within a cell represent minimal, average and maximal value, respectively from the 

*
uppermost to the lowest row. 

EXPERIMENT 

Schematic representation of the standardised experiment is whosn in Figure 3. The diagrams 

in Figure 4 show the characteristic depending of hardness and volume loss vs. tempering 

temperatures for two steel types. 

 

Figure 3. Sketch of a testing method of abrasion wear resistance according to ASTM G65-94 [2]. 

Based on the measured data for hardness and volume loss after abrasion test of all 

investigated steel types in different tempering condition, listed in Table 1, regression analysis 

resulted with a following linear relation between hardness (HRC) and volume loss GV in mm
3
: 

 GV = –2,8146  HRC + 235,53 (1) 

The coefficient of determination is relatively low (R
2
 = 0,312) what indicate that about of 

70 % the influence factors on the abrasion resistance are not included or have not been known 

but could be significant e.g. carbide content or chemical composition as one group of input 

variable for formation of the carbides.  
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Figure 4. Abrasive volume loss and hardness vs. tempering temperature for two steel types. 

NEUROFUZZY MODEL 

The key benefit of fuzzy logic is, that it lets you describe desired system behaviour with 

simple “if-then” relations (Figure 5). In many applications, this gets a simpler solution in less 

design time. In addition, we can use all available engineering know-how to optimize the 

performance directly. 

While this is certainly the beauty of fuzzy logic, it at the same time is its major limitation. In 

many applications, knowledge that describes desired system behavior is contained in data 

sets. Here, the designer has to derive the “if-then” rules from the data sets manually, which 

requires a major effort with large data sets. 

When data sets contain knowledge about the system to be designed, a neural net promises a 

solution as it can train itself from the data sets. The sparse use of neural nets in applications is due 

to a number of reasons. First, neural net solutions remain a “black box”. We can neither interpret 

what causes a certain behavior or we can modify a neural net manually to change a certain 

behavior. Second, neural nets require prohibitive computational effort for most mass-market 

products. Third, selection of the appropriate net model and setting the parameters of the learning 

 
Figure 5. Layers of fuzzy system [6]. 
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algorithm is still a “black art” and requires long experience. Of the aforementioned reasons, 

the lack of an easy way to verify and optimize a neural net solution is probably the mayor 

limitation. 

In simple words, both neural nets and fuzzy logic are powerful design techniques that have its 

strengths and weaknesses. Neural nets can learn from data sets while fuzzy logic solutions are 

easy to verify and optimize. If we look at these properties in a portfolio, the idea becomes 

obvious, that a clever combination of the two technologies delivers best of both worlds. 

Combine the explicit knowledge representation of fuzzy logic with the learning power of 

neural nets, and we get NeuroFuzzy. 

One major milestone in the development of neural net technology was the invention of the 

so-called error back propagation algorithm about ten years ago. The error back propagation 

algorithm soon became the standard for most neural net implementation due to its high 

performance. First, it selects one of the examples of the training data set. Second, it computes 

the neural net output values for the current training examples’ inputs. Then, it compares these 

output values to the desired output value of the training example. The difference, called error, 

determines which neuron in the net shall be modified and how. The mathematical mapping of 

the error back into the neurons of the net is called error back propagation. 

If the error back propagation algorithm is so powerful, why not use it to train fuzzy logic 

systems too? But this is not straightforward. To determine which neuron has what influence, 

the error back propagation algorithm differentiates the transfer functions of the neurons. One 

problem here is that the standard fuzzy logic inference cannot be differentiated. 

To solve these problems, some neuro-fuzzy development tools use extended fuzzy logic 

inference methods. The most common approach is to use so-called Fuzzy Associative 

Memories (FAM). A FAM is a fuzzy logic rule with an associated weight. A mathematical 

framework exists that maps FAMs to neurons in a neural net. This enables the use of a 

modified error back propagation algorithm with fuzzy logic. Modern NeuroFuzzy tools work 

as an “intelligent” assistant with our design. They help us to generate and optimize 

membership functions and rule bases from sample data. 

When experimental data exists, fuzzy systems can be trained to represent an input-output 

relationship. By using gradient descent techniques, fuzzy system parameters, such as 

membership function (LHS or RHS), and the connectives between layers in an adaptive 

network, can be optimised. Adaptation of fuzzy systems using neural network training 

methods has been proposed by various researchers [4, 5]. Regardless of the method or the 

parameter of the fuzzy system chosen for adaptation, an objective error function E must be 

chosen. Commonly, the squared error E is chosen: 

 
2

)'( 2yy
E


 , (2) 

where y’ is the target output, and y is the fuzzy system output. Consider the i-th rule of the 

zero-order Sugeno fuzzy system consisting of n rules (i = 1, ..., n). The Figure 6 shows the 

zero-order Sugeno system with m inputs and n rules. 

Mathematically, zero-order Sugeno systems is represented by the following equations 

 



m

j

jAi xw
j

1

)( , (3) 

where µA(x) is the membership of xj to the fuzzy set A and wi is the degree of fulfilment of 

the i-th rule. The normalized degree of fulfilment is given by 
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Figure 6. Model of a zero-order adaptive neurofuzzy inference system (ANFIS) [6]. Here x is 

the input vector, A is an antecedent membership function (LHS), µA(x) is the membership of 

x to set A, wi is the degree of fulfilment of the i-th rule, ŵi is the normalized degree of 

fulfilment of the i-th rule, ri is a constant singleton membership function of the i-th rule 

(RHS), while yi is the output of the i-th rule. 
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The output y of a fuzzy system with n rules can be calculated as: 
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In this case, the system is a zero-order Sugeno system and fi is defined as: 

 fi = ri. (6) 

RESULTS AND DISCUSSION 

Standard designations of steel grades whose wear resistance has been evaluated applying 

neourofuzzy model of conclusion making mechanism are listed in Table 1. For each of grades 

the mean values of content have been calculated from minimum and maximum values for 

each of eight chemical elements. Input data for ANFIS modelling according Table 1 contain 

mean values of chemical composition and HRC hardness, while output data contain value of 

mass loss. Available set contains total of 52 records. Out of this total, 50 percent of records 

have been randomly selected for training (learning) data set, while remaining records are 

assigned to checking (25 %) and testing set (25 %). Method of subtractive clustering [8] has 

been applied for optimisation of ANFIS, i.e. for number and shape of membership functions 

and their location within universe of discourse. For the applied method, parameter radii of 

0,995 was selected, where radii is a vector that specified a cluster center’s range of influence 

in each of the data dimension. Other parameters for ANFIS learning were as follows: training 

epoch number equaled 10; training error goal was set to 0; initial step size was set to 0,07; 

step size decrease rate equaled 0,7 while step size increase rate equaled 1,05. Volume loss 

GVMNLR was estimated applying Multivariable Non-linear Regression (MNLR) and 

Hougen-Watson model [9] with shape fitting curve: 

 GVMNLR = 998877

6

66

5

55

4

44

3

33

2

2211 xbxbxbxbxbxbxbxbxbc  . (7) 

and parameters c = 5, b1 = 159,4153, b2 = 5,3485, b3 = 2,5476, b4 = –0,0108, b5 = 149, 4353, 

b6 = –0,0056, b7 = –30,3958, b8 = 146,8483 and b9 = –1,7242. 
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Independent variables Xi (i = 1, ..., 8) represent chemical composition in percentages: X1 

represents percentage of carbon, X2 of silicon, X3 of manganese, X4 of chromium, X5 of 

nickel, X6 of molybdenum, X7 of tungsten, X8 of vanadium. Along with these, X9 represents 

hardness as measured in HRC. 

Results of investigation and comparison of volume loss evaluations applying neurofuzzy and 

MNLR model to experimental data are plotted in diagrams for generalization of training and 

testing data sets (Figs. 7 and 8). Statistical parameters R-correlation coefficient, SSE-sum 

square error, MSE-mean square error, RMSE-root mean square error, NRMSE-normalized 

root mean square error are given in Tables 2 and 3. 

Figure 7. Generalization of data set used for training. 

Table 2. Statistic parameters of data set used for training. 

Method 
GV, mm3 Statistical parameters 

min max mean median std R SSE MSE RMSE NRMSE 

NeuroFuzzy 
23,30 137,30 71,10 62,25 37,53 

0,99 179,53 6,64 2,57 0,26 

MNLR 0,90 6750,60 250,02 15,81 0,42 
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Figure 8. Generalization of data set used for testing. 

Table 3. Statistical parameters of data set used for testing. 

Method 
GV, mm3 Statistical parameters 

min max mean median std R SSE MSE RMSE NRMSE 

NeuroFuzzy 
24,65 144,70 79,53 77,75 38,72 

0,97 1122,8 86,36 9,29 0,24 

MNLR 0,94 2735,8 210,44 14,50 0,37 

CONCLUSIONS 

Considering rather limited collection of available data, adaptive neurofuzzy inference engine 

(ANFIS) providing estimation of volume loss (GV, mm
3
) for the abrasion wear was 

successfully modelled. 

Optimisation of ANFIS, i.e. number, shape and position of membership functions within 

universe of discourse has been made applying substractive clustering method. In this manner, 

combinatory explosion of rules is avoided. Suitability of neurofuzzy model has been 

confirmed through comparison with statistical model of multivariable non-linear regression. 
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Though advanced algorithm for multivariable non-linear regression was used for 

experimental work, registered results were inferior to those obtained by neurofuzzy model. 

NRMSE-normalized root mean square error index has been used as a measure for the model 

fitness. As presented in Tables 2 and3. For training and testing data sets, NRMSE indexes are 

smaller for neurofuzzy model than for MNLR model. Somewhat lower NRMSE index value 

for the checking data set might be explained by the fact that these data have not been 

included in the learning process. For selecting appropriate model for evaluation of abrasion 

volume loss (GV, mm
3
), relevant information is NRMSE index obtained from testing data 

set. From Table 4 it can be noted that neurofuzzy model is more appropriate. The more 

accurate results could be done by working out with more homogenous data what means 

analysis inside the group of similar steel grades. Further research will be directed to 

modelling of ANFIS that will include effects of type and content of carbides and their 

microhardness, content of retained austenite upon the wear resistance. 
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PROCJENA OTPORNOSTI ABRAZIJI ALATNIH ČELIKA 
PRIMJENOM NEUROFUZZY MODELA 

D. Lisjak i T. Filetin 

Fakultet strojarstva i brodogradnje – Sveučilište u Zagrebu 
Zagreb, Hrvatska 

SAŽETAK 

U radu se razmatra primjena neurofuzzy modela za procjenu otpornosti na trošenje čelika na temelju kemijskog 

sastava, sprovedene toplinske obrade (temperatura austenitizacije, temperatura kaljenja temperatura popuštanja), 

izmjerene tvrdoće nakon kaljenja s različitih temperatura kaljenja, te ispitivanja gubitka volumena materijala 

propisano prema standardu ASTM G 65-94. Ispitivanje gubitka volumena provedeno je za sljedeće skupine 

materijala: ugljični alatni čelici, alatni čelici za hladni rad, alatni čelici za topli rad i brzorezni čelici. Rezultati 

neurofuzzy adaptivnog modela također su uspoređeni u odnosu na statističko modeliranje multi-varijabilnom 

nelinearnom regresijom. Iz rezultata se može zaključiti da je moguća  procjena otpornosti abrazivnog trošenja 

čelika primjenom neurofuzzy modela, te se predloženim modelom izbjegava dugotrajno laboratorijsko 

ispitivanje, a troškovi budućih ispitivanja mogu se  značajno smanjiti. 

KLJUČNE RIJEČI 

otpornost abraziji, alatni čelici, modeliranje, neurofuzzy 


