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GENERALIZATION OF PERTURBED TRAPEZOID
FORMULA AND RELATED INEQUALITIES

S.KOVAČ AND J.PEČARIĆ

Abstract. We derive some new inequalities for perturbed trape-
zoid formula and give some sharp and best possible constants.

1. Introduction

A.McD. Mercer has proved the following identity ([1])

∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

q=0

(−1)q+1
{[

f (q)(1) + (−1)qf (q)(−1)
]
P (n−1−q)

n (1)
}

=
(−1)k

(2n)!

∫ 1

−1
f (2n−k)(x)Dk[(x2 − 1)n]dx,(1.1)

with k = 0, 1, . . . , n, where f : [−1, 1] → R possesses continuous deriva-
tives of all orders which appear, D denotes differentiation with respect
to x, and Pn(x) is the Legendre polynomial of degree n.

Pečarić and Varošanec ([3]) have considered the following. Let

σ = {a = x0 < x1 < · · · < xm = b}
be a subdivision of the interval [a, b] for some m ∈ N. Set

Sn(t, σ) =





P1n(t), t ∈ [a, x1]
P2n(t), t ∈ (x1, x2]
...
Pmn(t), t ∈ (xm−1, b],

(1.2)

where {Pjn}n are the sequences of harmonic polynomials, i.e. P ′
jk(t) =

Pj,k−1(t), for k = 1, . . . , n and Pj0(t) = 1. By successive integration by
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It seems that for n = 22
k
+ 1, where k = 1, 2, 3, . . . , there are

22
k−k−1 classes and that each class has 2k elements. Thus, by Corol-

lary 9.1, we have the equality 2h/j = 1, where j = 22k−k−1.

Also it seems that in the case when n = 22
k
+ 1 can be proved

before the stated conjectures (denoted by j1, j2, j3).
The possibility of construction polygons whose rotation numbers

are from the class C1 (which contain integer 1) deserve to be investi-
gated in connection with the ordering in this class.

Generally, can be said that it remains much more for investigation
about partition and ordering in connection with bicentric polygons.
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where x ∈ R+ and the incomplete Beta function

B(x, a, b) =
∫ x

0
ta−1(1 − t)b−1dt,

where x, a, b > 0. In this paper we will show that identity (1.1) is a
special case of Theorem 1. Further, we will obtain some sharp and best
possible Lp inequalities for quadrature formula in (1.1).

2. Perturbed trapezoid identity

Let us define polynomial

(2.1) M1n(t) =
(n!)2

(2n)!
2nPn(t), t ∈ [−1, 1].

Since the leading coefficient of Pn(t) equals to (2n)!
2n(n!)2

, the polynomial
M1n is monic, so we can apply Theorem 1 with m = 1 for some function
f : [−1, 1] → R with continuous n−th derivative . Using the property
of the Legendre polynomials

P (k)
n (−t) = (−1)n+kP (k)

n (t),

and Rodrigues formula

Dn[(t2 − 1)n] = 2nn!Pn(t),

we get from the relation (1.5)
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

q=0

(−1)q+1
{[

f (q)(1) + (−1)qf (q)(−1)
]
P (n−1−q)

n (1)
}

=
(−1)n

(2n)!

∫ 1

−1
f (n)(x)Dn[(x2 − 1)n]dx.(2.2)

In ([1]) is obtained that

(−1)k

∫ 1

−1
f (2n−k)(x)Dk[(x2 − 1)n]dx =

∫ 1

−1
f (2n)(x)(x2 − 1)ndx,

for k = 0, 1, . . . , n, so (2.2) becomes (1.1).

3. Some inequalities

Theorem 2. Let us suppose f : [−1, 1] → R is (2n − k)−times differ-
entiable function for some n ∈ N and some k = 0, 1, 2, . . . , n. Further,
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parts they have proved that

(−1)n

∫ b

a
Sn(t, σ)df (n−1)(t) =

∫ b

a
f(t)dt +

n∑

k=1

(−1)k
[
Pmk(b)f (k−1)(b)

+
m−1∑

j=1

(Pjk(xj) − Pj+1,k(xj))f (k−1)(xj) − P1k(a)f (k−1)(a)
]

(1.3)

whenever the integrals exist. Formula (1.3) is generalized in the following
way in [2]. Let us consider subdivision

σ = {a = x0 < x1 < · · · < xm = b}
of the interval [a, b]. Further, set

Tn(t, σ) =





M1n(t), t ∈ [a, x1]
M2n(t), t ∈ (x1, x2]
...
Mmn(t), t ∈ (xm−1, b],

(1.4)

where Mjn are monic polynomials of degree n, for j = 1, . . . ,m. The
next theorem has been proved.

Theorem 1. Let f : [a, b] → R be (n−1)−times differentiable function,
for some n ∈ N. Then the next identity holds
∫ b

a
f(t)dt +

1
n!

n−1∑

k=0

(−1)k+1 ·
[
M (n−k−1)

mn (b)f (k)(b) +
m−1∑

j=1

(
M

(n−k−1)
jn (xj)

− M
(n−k−1)
j+1,n (xj)

)
f (k)(xj) − M

(n−k−1)
1n (a)f (k)(a)

]
(1.5)

=
(−1)n

n!

∫ b

a
Tn(t, σ)df (n−1)(t),

whenever the integrals exist.

If we put in (1.5) Mjn = n! · Pjn, where {Pjn} are harmonic poly-
nomials with leading coefficient 1

n! , then we will recover relation (1.3),
since

P
(n−k−1)
jn (t) = Pj,k+1(t),

for 0 ≤ k ≤ n − 1.
In this paper we will use the Gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt,
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where x ∈ R+ and the incomplete Beta function

B(x, a, b) =
∫ x

0
ta−1(1 − t)b−1dt,

where x, a, b > 0. In this paper we will show that identity (1.1) is a
special case of Theorem 1. Further, we will obtain some sharp and best
possible Lp inequalities for quadrature formula in (1.1).

2. Perturbed trapezoid identity

Let us define polynomial

(2.1) M1n(t) =
(n!)2

(2n)!
2nPn(t), t ∈ [−1, 1].

Since the leading coefficient of Pn(t) equals to (2n)!
2n(n!)2

, the polynomial
M1n is monic, so we can apply Theorem 1 with m = 1 for some function
f : [−1, 1] → R with continuous n−th derivative . Using the property
of the Legendre polynomials

P (k)
n (−t) = (−1)n+kP (k)

n (t),

and Rodrigues formula

Dn[(t2 − 1)n] = 2nn!Pn(t),

we get from the relation (1.5)
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

q=0

(−1)q+1
{[

f (q)(1) + (−1)qf (q)(−1)
]
P (n−1−q)

n (1)
}

=
(−1)n

(2n)!

∫ 1

−1
f (n)(x)Dn[(x2 − 1)n]dx.(2.2)

In ([1]) is obtained that

(−1)k

∫ 1

−1
f (2n−k)(x)Dk[(x2 − 1)n]dx =

∫ 1

−1
f (2n)(x)(x2 − 1)ndx,

for k = 0, 1, . . . , n, so (2.2) becomes (1.1).

3. Some inequalities

Theorem 2. Let us suppose f : [−1, 1] → R is (2n − k)−times differ-
entiable function for some n ∈ N and some k = 0, 1, 2, . . . , n. Further,
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parts they have proved that

(−1)n

∫ b

a
Sn(t, σ)df (n−1)(t) =

∫ b

a
f(t)dt +

n∑

k=1

(−1)k
[
Pmk(b)f (k−1)(b)

+
m−1∑

j=1

(Pjk(xj) − Pj+1,k(xj))f (k−1)(xj) − P1k(a)f (k−1)(a)
]

(1.3)

whenever the integrals exist. Formula (1.3) is generalized in the following
way in [2]. Let us consider subdivision

σ = {a = x0 < x1 < · · · < xm = b}
of the interval [a, b]. Further, set

Tn(t, σ) =





M1n(t), t ∈ [a, x1]
M2n(t), t ∈ (x1, x2]
...
Mmn(t), t ∈ (xm−1, b],

(1.4)

where Mjn are monic polynomials of degree n, for j = 1, . . . ,m. The
next theorem has been proved.

Theorem 1. Let f : [a, b] → R be (n−1)−times differentiable function,
for some n ∈ N. Then the next identity holds
∫ b

a
f(t)dt +

1
n!

n−1∑

k=0

(−1)k+1 ·
[
M (n−k−1)

mn (b)f (k)(b) +
m−1∑

j=1

(
M

(n−k−1)
jn (xj)

− M
(n−k−1)
j+1,n (xj)

)
f (k)(xj) − M

(n−k−1)
1n (a)f (k)(a)

]
(1.5)

=
(−1)n

n!

∫ b

a
Tn(t, σ)df (n−1)(t),

whenever the integrals exist.

If we put in (1.5) Mjn = n! · Pjn, where {Pjn} are harmonic poly-
nomials with leading coefficient 1

n! , then we will recover relation (1.3),
since

P
(n−k−1)
jn (t) = Pj,k+1(t),

for 0 ≤ k ≤ n − 1.
In this paper we will use the Gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt,
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where 1 < p ≤ ∞. The function f∗ defined by (3.2) and (3.3) is (2n −
k)−times differentiable and f

(2n−k)
∗ ∈ Lp[−1, 1]. Further, f∗ is a solution

of the differential equation

Dk[(x2 − 1)n]f (2n−k)(x) = |Dk[(x2 − 1)n]|q,
so the above identity holds.
For p = 1 we shall prove that
(3.4)∣∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)(x)dx

∣∣∣∣ ≤ sup
x∈[−1,1]

|Dk[(x2−1)n]|·
∫ 1

−1
|f (2n−k)(x)|dx

is the best possible inequality. Suppose that |Dk[(x2 − 1)n]| attains its
maximum at point x0 ∈ [−1, 1]. First, let us assume that Dk[(x2

0 − 1)n] > 0.
For ε small enough define f

(2n−k−1)
ε (x) by

f (2n−k−1)
ε (t) =





0, x ≤ x0

x−x0
ε , x ∈ [x0, x0 + ε]

1, x ≥ x0 + ε.

Then, for ε small enough,
∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)

ε dx
∣∣∣

=
∣∣∣
∫ x0+ε

x0

Dk[(x2 − 1)n]
1
ε
dx

∣∣∣ =
1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx.

Now, relation (3.4) implies

1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx ≤ 1
ε
Dk[(x2

0 − 1)n]
∫ x0+ε

x0

dt = Dk[(x2
0 − 1)n].

Since

lim
ε→0

1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx = Dk[(x2
0 − 1)n],

the statement follows. The case Dk[(x2
0 − 1)n] < 0 follows similarly.

�

Remark 1. For n ∈ N we have by direct calculation

C(n, 0, q) =
1

(2n)!

[√
πΓ(nq + 1)
Γ(3

2 + nq)

] 1
q

, 1 ≤ q < ∞, C(n, 0,∞) =
1

(2n)!
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let us assume that f (2n−k) ∈ Lp[−1, 1], for some 1 ≤ p ≤ ∞. Then the
following inequality holds

∣∣∣
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

j=0

(−1)j+1
{[

f (j)(1)

+ (−1)jf (j)(−1)
]
P (n−1−j)

n (1)
} ∣∣∣

≤ C(n, k, q)‖f (2n−k)‖p,(3.1)

where 1
p + 1

q = 1 and

C(n, k, q) =





1
(2n)!

[∫ 1
−1

∣∣Dk[(x2 − 1)n]
∣∣q dx

] 1
q
, 1 ≤ q < ∞

1
(2n)! supx∈[−1,1] |Dk[(x2 − 1)n]|, q = ∞.

The inequality is the best possible for p = 1 and sharp for 1 < p ≤ ∞.
In the last case equality is attained for the functions of the form

f(x) = Mf∗(x) + r2n−k−1(x),

where M ∈ R, r2n−k−1 is an arbitrary polynomial of degree at most
2n − k − 1 and function f∗ : [−1, 1] → R is defined by

(3.2) f∗(x) :=
∫ x

−1

(x − ξ)2n−k−1

(2n − k − 1)!
sgnDk[(ξ2 − 1)n]dξ, for p = ∞

and for 1 < p < ∞

(3.3) f∗(x) :=
∫ x

−1

(x − ξ)2n−k−1

(2n − k − 1)!
sgnDk[(ξ2 − 1)n]|Dk[(ξ2 − 1)n]| 1

p−1 dξ

Proof. We apply Hölder inequality to the relation (1.1) to get

∣∣∣
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

j=0

(−1)j+1
{[

f (j)(1)

+ (−1)jf (j)(−1)
]
P (n−1−j)

n (1)
} ∣∣∣

≤ 1
(2n)!

‖Dk[(x2 − 1)n]‖q‖f (2n−k)‖p.

Obviously, C(n, k, q) = 1
(2n)!‖Dk[(x2−1)n]‖q, so we obtain relation (3.1).

For the proof of sharpness we need to find function f such that

1
(2n)!

∣∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)(x)dx

∣∣∣∣ = C(n, k, q) · ‖f (2n−k)‖p,
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where 1 < p ≤ ∞. The function f∗ defined by (3.2) and (3.3) is (2n −
k)−times differentiable and f

(2n−k)
∗ ∈ Lp[−1, 1]. Further, f∗ is a solution

of the differential equation

Dk[(x2 − 1)n]f (2n−k)(x) = |Dk[(x2 − 1)n]|q,
so the above identity holds.
For p = 1 we shall prove that
(3.4)∣∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)(x)dx

∣∣∣∣ ≤ sup
x∈[−1,1]

|Dk[(x2−1)n]|·
∫ 1

−1
|f (2n−k)(x)|dx

is the best possible inequality. Suppose that |Dk[(x2 − 1)n]| attains its
maximum at point x0 ∈ [−1, 1]. First, let us assume that Dk[(x2

0 − 1)n] > 0.
For ε small enough define f

(2n−k−1)
ε (x) by

f (2n−k−1)
ε (t) =





0, x ≤ x0

x−x0
ε , x ∈ [x0, x0 + ε]

1, x ≥ x0 + ε.

Then, for ε small enough,
∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)

ε dx
∣∣∣

=
∣∣∣
∫ x0+ε

x0

Dk[(x2 − 1)n]
1
ε
dx

∣∣∣ =
1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx.

Now, relation (3.4) implies

1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx ≤ 1
ε
Dk[(x2

0 − 1)n]
∫ x0+ε

x0

dt = Dk[(x2
0 − 1)n].

Since

lim
ε→0

1
ε

∫ x0+ε

x0

Dk[(x2 − 1)n]dx = Dk[(x2
0 − 1)n],

the statement follows. The case Dk[(x2
0 − 1)n] < 0 follows similarly.

�

Remark 1. For n ∈ N we have by direct calculation

C(n, 0, q) =
1

(2n)!

[√
πΓ(nq + 1)
Γ(3

2 + nq)

] 1
q

, 1 ≤ q < ∞, C(n, 0,∞) =
1

(2n)!
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let us assume that f (2n−k) ∈ Lp[−1, 1], for some 1 ≤ p ≤ ∞. Then the
following inequality holds

∣∣∣
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

j=0

(−1)j+1
{[

f (j)(1)

+ (−1)jf (j)(−1)
]
P (n−1−j)

n (1)
} ∣∣∣

≤ C(n, k, q)‖f (2n−k)‖p,(3.1)

where 1
p + 1

q = 1 and

C(n, k, q) =





1
(2n)!

[∫ 1
−1

∣∣Dk[(x2 − 1)n]
∣∣q dx

] 1
q
, 1 ≤ q < ∞

1
(2n)! supx∈[−1,1] |Dk[(x2 − 1)n]|, q = ∞.

The inequality is the best possible for p = 1 and sharp for 1 < p ≤ ∞.
In the last case equality is attained for the functions of the form

f(x) = Mf∗(x) + r2n−k−1(x),

where M ∈ R, r2n−k−1 is an arbitrary polynomial of degree at most
2n − k − 1 and function f∗ : [−1, 1] → R is defined by

(3.2) f∗(x) :=
∫ x

−1

(x − ξ)2n−k−1

(2n − k − 1)!
sgnDk[(ξ2 − 1)n]dξ, for p = ∞

and for 1 < p < ∞

(3.3) f∗(x) :=
∫ x

−1

(x − ξ)2n−k−1

(2n − k − 1)!
sgnDk[(ξ2 − 1)n]|Dk[(ξ2 − 1)n]| 1

p−1 dξ

Proof. We apply Hölder inequality to the relation (1.1) to get

∣∣∣
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

j=0

(−1)j+1
{[

f (j)(1)

+ (−1)jf (j)(−1)
]
P (n−1−j)

n (1)
} ∣∣∣

≤ 1
(2n)!

‖Dk[(x2 − 1)n]‖q‖f (2n−k)‖p.

Obviously, C(n, k, q) = 1
(2n)!‖Dk[(x2−1)n]‖q, so we obtain relation (3.1).

For the proof of sharpness we need to find function f such that

1
(2n)!

∣∣∣∣
∫ 1

−1
Dk[(x2 − 1)n]f (2n−k)(x)dx

∣∣∣∣ = C(n, k, q) · ‖f (2n−k)‖p,
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Proof. The proof follows from the integral mean value theorem applied
to the right-hand side of (1.1) with k = 0, since (x2−1)n does not change
sign on [−1, 1]. So there exists some η ∈ (−1, 1) such that

1
(2n)!

∫ 1

−1
f (2n)(x)(x2 − 1)ndx =

f (2n)(η)
(2n)!

·
∫ 1

−1
(x2 − 1)ndx

=
(−1)n√πn!

(2n)!Γ(3
2 + n)

· f (2n)(η).

�
Remark 2. Applying previous theorem for n = 1, 2, 3 respectively, we
get the following identities:

(3.6)
∫ 1

−1
f(x)dx − [f(1) + f(−1)] = −2

3
f ′′(η),

which is identity related to the famous trapezoid formula,

(3.7)
∫ 1

−1
f(x)dx − [f(1) + f(−1)] +

1
3
[f ′(1) − f ′(−1)] =

2
45

f (4)(η),

and ∫ 1

−1
f(x)dx − [f(1) + f(−1)] +

2
5
[f ′(1) − f ′(−1)]

− 1
15

[f ′′(1) + f ′′(−1)] = − 2
1575

f (6)(η).

References

[1] A.McD.MERCER, On perturbed trapezoid inequalities, J.Ineq.Pure and Appl.
Math. , 7 (4) (2006), Art.118.
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and

C(n, n, 2) =
2n+1n!

(2n + 1)!
, C(n, n,∞) =

2nn!
(2n)!

.

Further,

C(1, 1, q) =
(

2
q + 1

) 1
q

, 1 ≤ q < ∞, C(1, 1,∞) = 1,

C(2, 1, q) =
1

3 · 21/q

(
Γ(1+q

2 )Γ(1 + q)

Γ(3(1+q)
2 )

) 1
q

, 1 ≤ q < ∞, C(2, 1,∞) =
√

3
27

and

C(2, 2, q) =
1
6

(
(−1)q

(
(−1 + (−1)q)

√
πΓ(1 + q) + B(3, 1

2 , 1 + q)Γ(3
2 + q)

)
√

3Γ(3
2 + q)

) 1
q

,

for 1 ≤ q < ∞, and

C(2, 2,∞) =
1
3
.

Specially,

C(2, 2, 1) =
4
√

3
27

,

which coincides with constants obtained in [4]. For n = 3 we have the
following constants

C(3, 1, q) =
1

120

(
Γ(1+q

2 )Γ(1 + q)

Γ(3+3q)
2 )

) 1
q

, 1 ≤ q < ∞

and C(3, 1,∞) = 2
√

5
1875 .

The case k = 0 in (1.1) is of special interest since function (x2 − 1)n

doesn’t change sign on [−1, 1] for every n ∈ N. More precisely, (x2 −
1)n ≥ 0 for even n and (x2−1)n ≤ 0 for odd n. So we have the following

Theorem 3. Let us suppose f : [−1, 1] → R is such that f (2n) is contin-
uous function on [−1, 1] for some n ∈ N. Then there exists η ∈ (−1, 1)
such that
∫ 1

−1
f(x)dx +

2nn!
(2n)!

n−1∑

q=0

(−1)q+1
{[

f (q)(1) + (−1)qf (q)(−1)
]
P (n−1−q)

n (1)
}

=
(−1)n√πn!

(2n)!Γ(3
2 + n)

· f (2n)(η).(3.5)
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Proof. The proof follows from the integral mean value theorem applied
to the right-hand side of (1.1) with k = 0, since (x2−1)n does not change
sign on [−1, 1]. So there exists some η ∈ (−1, 1) such that

1
(2n)!

∫ 1

−1
f (2n)(x)(x2 − 1)ndx =

f (2n)(η)
(2n)!

·
∫ 1

−1
(x2 − 1)ndx

=
(−1)n√πn!

(2n)!Γ(3
2 + n)

· f (2n)(η).

�
Remark 2. Applying previous theorem for n = 1, 2, 3 respectively, we
get the following identities:

(3.6)
∫ 1

−1
f(x)dx − [f(1) + f(−1)] = −2

3
f ′′(η),

which is identity related to the famous trapezoid formula,

(3.7)
∫ 1

−1
f(x)dx − [f(1) + f(−1)] +

1
3
[f ′(1) − f ′(−1)] =

2
45

f (4)(η),

and ∫ 1

−1
f(x)dx − [f(1) + f(−1)] +

2
5
[f ′(1) − f ′(−1)]

− 1
15

[f ′′(1) + f ′′(−1)] = − 2
1575

f (6)(η).
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AND 3-LOG-CONVEX FUNCTIONS
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Abstract. In this article some new inequalities for convex functions are proved
from which some other known inequalities for log-convex, 3-convex and 3-log-convex
functions are derived.
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convex function.
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Introduction

The function f is called n-convex on the interval (a, b) if its n-th
derivative f (n)(t) is positive for all t ∈ (a, b). Especially, using this
terminology, convex function is called 2-convex function. Moreover, the
function is called n-log-convex function if f is positive and (ln f(t))(n)

is positive for all t ∈ (a, b).
Also, let’s introduce the usual notation g(a+) for limx→a+ g(x) and

g(b−) for limx→b− g(x).
The aim of this article is to establish some basic result for convex

functions which can be easily used for obtaining many other results.
In the introduction, let’s remind on some results for 3-log-convex

functions given in [1]:

Theorem A. Suppose that f(x) > 0 for x ∈ (a, b) and let h = f ′

f is

twice differentiable and h′′(x) > 0. Set R(x) = f(a+b−x)
f(x) . Then, for all

x ∈ (a, b), the following inequalities hold

R(b−)e2h( a+b

2
)(b−x) ≤ R(x) ≤ R(a+)e2h( a+b

2
)(a−x).

and

R(a+)e(h(a+)+h(b−))(a−x) ≤ R(x) ≤ R(b−)e(h(a+)+h(b−))(b−x).

This result will be also obtained, in a different way, as a consequence
of our main result theorem (Theorem 1) for convex function.


