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The non-rigid molecule group theory (NRG), in which the dynamical symmetry operations are

defined as physical operations, is a new field of chemistry. In a series of papers Smeyers ap-

plied this notion to determine the character table of restricted NRG (r-NRG) of some mole-

cules. For example, Smeyers and Villa computed the r-NRG of the triple equivalent methyl ro-

tation in pyramidal trimethylamine with inversion and proved that the r-NRG of this molecule

is a group of order 648, containing two subgroups of order 324 without inversions (see J. Math.

Chem. 28 (2000) 377–388). In this work, a simple method is described, by means of which it is

possible to calculate character tables for the symmetry group of molecules consisting of a num-

ber of AH3 groups attached to a rigid framework. We have studied the full non-rigid group

(f-NRG) of cis- and trans-dichlorodiammine platinum(II) and trimethylamine and we have proven

that they are groups of orders 36, 72 and 1296 with 9, 18 and 28 conjugacy classes, respec-

tively. This shows that the full non-rigid group and the restricted non-rigid group of these mol-

ecules are not isomorphic. The method can be generalized to apply to other non-rigid molecules.

The f-NRG molecule group theory is shown to be used advantageously to study the internal

dynamics of such molecules.
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INTRODUCTION

Group theory for non-rigid molecules is becoming increa-

singly relevant and its numerous applications to large am-

plitude vibrational spectroscopy of small organic mole-

cules are appearing in the literature.1–8 As it is well known,

group theory for non-rigid molecules was essentially de-

veloped for two points of view:

i) The molecular symmetry group theory (MSG) of

permutation inversion groups (PI) constructed by permu-

tations and permutation-inversions of identical particles.

The MSG group is then formed by all feasible permuta-

tions and permutation-inversions.9,10

In Ref. 9, Longuet-Higgins investigated the symme-

try groups of non-rigid molecules, where changes from

one conformation to another can occur easily. In many

cases, these symmetry groups are not isomorphic with any

of the familiar symmetry groups of rigid molecules, and

their character tables are not known. It is therefore of

some interest and importance to develop simple methods

of calculating these character tables, which are needed

for classification of wave functions, determination of se-

lection rules, and so on.

Lomont11 has proposed two methods for calculating

character tables. These are satisfactory for small groups,
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but both of them require knowledge of the class struc-

ture and hence of the group multiplication table and they

become very unwieldy as soon as the order of the group

becomes even moderately large. They are usually quite

impracticable for non-rigid molecules, whose symmetry

groups may have several thousands of elements.

The alternative approach is less mechanical, requiring

a certain amount of thought, but it is nevertheless simpler

in practice. This involves two steps: first, the decomposi-

tion of the group into classes, and second, the determina-

tion of sets of basis functions for certain representations,

whose characters are then determined directly.

In Ref. 12, Stone described a method appropriate for

molecules with a number of XH3 groups attached to a rigid

framework. It is not appropriate in cases where the frame-

work is linear, as it is in ethane and dimethylacetylene.

ii) The full and restricted non-rigid group theory (f-

or r-NRG) built up with physical operations, expressed

in terms of internal coordinates that transform one con-

formation into another iso-energetic one. The r-NRG is

then formed by the complete set of physical operations

which commute with the given restricted or Hamiltonian

operators.13,14

In Ref. 15, Smeyers and Villa investigated the r-NRG

of planer trimethylamine and proved that this is a group

of order 324. Furthermore, they showed that this mole-

cule has a pyramidal inversion and so the order of r-NRG

of trimethylamine is 648.

The motivation for this study is outlined in Refs. 7,

8, 16, 17 and the reader is encouraged to consult these

papers for background material as well as basic compu-

tational techniques.

In this paper, we investigate the f-NRG of cis-dichloro-

diammine platinum(II), trans-dichlorodiammine plati-

num(II) and pyramidal trimethylamine. We prove that

these are groups of orders 36, 72 and 1296, respectively.

We now recall some algebraic definitions that will

be used in the paper. Suppose that T is a group and x, y

are elements of T. The commutator element �x, y� is de-

fined by x–1y–1xy and the subgroup of T generated by its

commutators is called the commutator subgroup of T.

This subgroup is denoted by D(T). According to the well-

known fact in group theory, the number of linear charac-

ters of a finite group T is the order of factor group T mo-

dulus its derived subgroups, i.e., D(T).18

Let T be a finite group and let N be a normal sub-

group of T. If �N� > 1, then the factor group T/N is

smaller than T. The characters of T/N should therefore

be easier to find than the characters of T. In fact, we can

use the characters of T/N to get some of the characters

of T, by a process which is known as lifting. Thus, nor-

mal subgroups help us to find characters of T. To see

this, we assume that � is a character of T/N. Define the

map �: T�C, C is the field of complex numbers, by �(g)

= �(gN), for g�T. Then � is a character of T and � and �

have the same degree. The character � of T is called the

lift of � to T. It is well known that � is irreducible if and

only if � is irreducible (Ref. 19, p. 168).

Suppose that � and � are characters of group T. The

inner product of these characters is denoted by (�,�) and

defined by (�,�) = �T�–1 �g�T �(g)�(g–1). If � = �, the in-

ner product (�,�) is denoted by �����.

Finally, for every element x of group T, the subgroup

CT(x) = 	y �T � xy = yx
 is called the centralizer of x in

T. If T is finite, then by the well-known theorem in group

theory �CT(x)� = �T� / �ClT(x)�, in which ClT(x) is the co-

njugacy class of x in T.18,19 Also, �CT(x)� and �ClT(x)� are

called the centralizer order and conjugacy length of x in

group T, respectively. To simplify our argument, we de-

note by na, nb, nc … the different conjugacy classes of

the elements of order n in group T. The conjugacy vector

of T is a vector of size k, k is the number of conjugacy

classes of T, such that every array of this vector is a co-

njugacy length for T. Similarly, we can define the cen-

tralizer vector of T.

Throughout this paper, all groups considered are as-

sumed to be finite. We denote a cyclic group of order n

by Zn and a symmetric group on n symbols by Sn. Also,

Z(G) denotes the center of group G and for a prime p, a

group of type Zp � ... � Zp is called elementary abelian.

Other notations are standard and taken mainly from Refs.

14, 18 and 19.

EXPERIMENTAL

First of all, we consider the point group of each molecule in

the rigid state. The point groups of cis- and trans-dichloro-

diammine platinum(II) are C2v and the point group of py-

ramidal trimethylamine is C3v. The process of enumerating

the symmetry operations of these molecules and arranging

them in classes entails the adoption of a numbering conven-

tion for the central atom of the molecule, central atom of

every XH3 group, and the other atoms, such as proton nu-

clei, as shown in Figure 1.

We define the operation � = (6,7,8),  = (9,10,11), for

cis- and trans-dichlorodiammine platinum(II), and �' = (5,

6,7), ' = (8,9,10), �' = (11,12,13) for trimethylamine, which

are rotations, in a positive sense, of each XH3 group. We

assume that all of these operations are feasible.

Let us first consider operations that leave the framework

of the molecule unchanged. These operations are grouped

according to their cycle structure; operations which rotate

different numbers of XH3 groups must belong to different

conjugacy classes. If we now consider the operations that

rotate one XH3 group, we can see that they must all belong

to the same class, since operations involving rotation of the

molecular framework will transform � into �–1 or –1 (or

�'–1 for trimethylamine), changing the sense of the rotation.

For a small group, the classes are conveniently found

by conjugating a particular element with all other elements.

The resulting set then forms one class, and repetition of this
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process eventually gives all the classes. This becomes im-

practicable for large groups. However, it is simpler to find

the classes by inspection; they can be rigorously checked at

a later stage.

RESULTS AND DISCUSSION

In this section, we investigate the conjugacy classes of

each molecule introduced in the previous section sepa-

rately. Then, we compute the whole irreducible character

table for them.

Conjugacy Classes of cis-Dichlorodiammine

Platinum(II)

Let us first consider operations that leave the framework

of the molecule unchanged. Each XH3 group can be left

alone or rotated by 180° in either direction, so that there

are 32 = 9 such operations. These elements make four

classes, the class numbers 1, 2, 4 and 5 of Table I. In this

table, we calculate a representative for each class of the

group. We continue our argument for finding conjugacy

classes of H. First, we grouped the operations according

to their cycle structures. The operations that rotate dif-

ferent numbers of XH3 groups must belong to different

conjugacy classes. We now consider the four operations

that rotate one XH3 group; it is easy to see that they

must all belong to the same class, since operations in-

volving rotation of the molecular framework will trans-

form � into �–1, or –1, changing the sense of the rota-

tion. All operations that rotate two XH3 groups consti-

tute two conjugacy classes of the group.

Consider next the operations that permute the nuclei

of the framework; these fall into sets corresponding to

the classes of C2v . It is clear that the point group C2v has

exactly two different types of non-identity elements of

the group (C2 and �v).

The unique C2 operation of C2v applied to the frame-

work is the permutation (2,3)(4,5), but this is not feasi-

ble for the molecule as the whole, and the protons have

to be permuted as well. Our main argument will consider

two cases:
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Figure 1. The structure of molecules:
(a) cis-Dichlorodiammine platinum(II);
(b) trans-Dichlorodiammine platinum(II);
(c) Trimethylamine.

TABLE I. Representatives of conjugacy classes of the full non-rigid
group of cis-dichlorodiammine platinum(II)

No. Representatives Size No. Representatives Size

1 () 1 6 (2,3)(4,5)(6,9)(7,10)(8,11) 3

2 (6,7,8) 4 7 (2,3)(4,5)(6,9,7,10,8,11) 6

3 (7,8)(10,11) 9 8 (2,3)(4,5)(6,9)(7,11)(8,10) 3

4 (6,7,8)(9,10,11) 2 9 (2,3)(4,5)(6,9,7,11,8,10) 6

5 (6,7,8)(9,11,10) 2



CASE 1. The protons of each XH3 group do not rotate.

First, we suppose that

R1 = (2,3)(4,5)(6,9)(7,11)(8,10).

But in this case, all of the permutations of cycle type

1125 are conjugate in the group. Thus, we obtain a conju-

gacy class of length 3.

CASE 2. The protons of each XH3 group rotate.

In this case, we assume that:

R2 = (2,3)(4,5)(6,9,7,10,8,11),

R3 = (2,3)(4,5)(6,9,7,11,8,10).

Using a tedious calculation we can see that R2 and

R3 are not conjugate in the group, but every permutation

of this type is conjugate with R2 or R3. Hence, we obtain

two more conjugacy classes of length 6.

Similar methods are applied to other operations of

the point group (�v) to derive other sets of conjugacy clas-

ses of this molecule. If we define

�v1 = (7,8)(10,11),

�v2 = (2,3)(4,5)(6,9)(7,10)(8,11).

Then we obtain two conjugacy classes of lengths 9

and 3 with the representatives’ �v1 and �v2, respectively.

Using similar arguments, we can calculate all 9 conjugacy

classes of group H. In Table I, we give a representative

for each conjugacy class of H.

The Character Table of cis-Dichlorodiammine

Platinum(II)

From the conjugacy classes of group H, we can see that

H is a group of order 36. First of all, we collect conju-

gacy class labels and the corresponding centralizer orders

in two vectors:

A = (1a,3a,2a,3b,3c,2b,6a,2c,6b),

B = (36,9,4,18,18,12,6,12,6).

Since H/D(H) � Z2 � Z2, where D(H) is the derived

subgroup of H and Z2 � Z2 is an elementary abelian group

of order 4, we can obtain four linear characters of H,

which are irreducible. We denote these irreducible char-

acters by �1, �2, �3, and �4. We now assume that T1 and

T2 are subgroups of H generated by classes 5 and 6 for

T1, and by classes 4 and 8 for T2 of Table I.

T1 = �(6,7,8)(9,11,10),(2,3)(4,5)(6,9)(7,10)(8,11)�,

T2 = �(6,7,8)(9,10,11),(2,3)(4,5)(6,9)(7,11)(8,10)�.

Since these subgroups are the union of conjugacy clas-

ses of H, they are normal in H. The factor groups of H

modulus T1 and T2 are not abelian: H/T1 � H/T2 � S3, the

symmetric group on three symbols. Now, we obtain two

irreducible characters of degree 2 of H by lifting the irre-

ducible characters of these factor groups. We denote these

characters by �5 and �7, respectively.

�5 = (2,–1,0,2,–1,0,0,2,–1),

�7 = (2,–1,0,–1,2,–2,1,0,0).

We define �6 = �5�2 and �8 = �7�3. Finally, by using

the orthogonality relations, we obtain an irreducible cha-

racter of degree 4, which we denote by �9. This completes

the character table of H (see Table II).

Conjugacy Classes of trans-Dichlorodiammine

Platinum(II)

Our argument for computing the conjugacy classes and

character table of trans-dichlorodiammine platinum(II) is

similar to that for the cis form. We explain briefly our

methods for this molecule.

First of all, we consider the operations that leave the

framework of the molecule unchanged. Each XH3 group

can be left alone or rotated by 180° in either direction, so

that there are 32 = 9 such operations. These fall into four

classes; the class numbers 1, 2, 4 and 5 of Table III, where

we give a representative of each together with the num-

ber of elements in the class.

Consider next the operations that permute the nuclei

of the framework. As before, we have two operations,

C2 and �v , for point group C2v . The C2 operation applied

to the framework is the permutation (2,3)(4,5). We now

consider permutations of protons, if the protons of each

XH3 group do not rotate. Suppose that
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TABLE II. The character table of group H and its power map

1a 3a 2a 3b 3c 2b 6a 2c 6b

2P 1a 3a 1a 3b 3c 1a 3b 1a 3c

3P 1a 1a 2a 1a 1a 2b 2b 2c 2c

5P 1a 3a 2a 3b 3c 2b 6a 2c 6b

�1 1 1 1 1 1 1 1 1 1

�2 1 1 1 1 1 –1 –1 –1 –1

�3 1 1 –1 1 1 –1 –1 1 1

�4 1 1 –1 1 1 1 1 –1 –1

�5 2 –1 0 2 –1 0 0 2 –1

�6 2 –1 0 2 –1 0 0 –2 1

�7 2 –1 0 –1 2 –2 1 0 0

�8 2 –1 0 –1 2 2 –1 0 0

�9 4 1 0 –2 2 0 0 0 0



R'1 = (2,3)(4,5)(6,9)(7,11)(8,10) .

But, all of the permutations of cycle type 1125 are

conjugate in the group. Thus, we obtain a conjugacy class

of length 3. Suppose the protons of each XH3 group ro-

tate and assume that:

R'2 = (2,3)(4,5)(6,9,7,10,8,11),

R'3 = (2,3)(4,5)(6,9,7,11,8,10).

We can see that R'2 and R'3 are not conjugate in the

group, but every permutation of this type is conjugate

with R'2 or R'3. Thus, we obtain two conjugacy classes

of length 6.

We now consider the second operation of point group

C2v and define:

�'v1 = (2,3)(7,8)(10,11),

�'v2 = (4,5)(6,9)(7,10)(8,11),

�'v3 = (4,5)(6,9,7,10,8,11).

Then we obtain three conjugacy classes of lengths 9,

3 and 6 with the representatives' �'v1, �'v2 and �'v3, respec-

tively. Using similar arguments, we can calculate all of the

18 conjugacy classes of group H'. In Table III, we give a

representative for each conjugacy class of group H'.

The Character Table of trans-Dichlorodiammine

Platinum(II)

From the conjugacy classes of group H', we can see that

H' is a group of order 72. First of all, we list the conju-

gacy classes of H' and their corresponding centralizer or-

ders in two vectors:

A = (1a,3a,2a,3b,3c,2b,6a,2c,6b,2d,6c,2e,6d,6e,

2f,6f,2g,6g),

B = (72,18,8,36,36,24,12,24,12,72,18,8,36,36,

24,12,24,12).

Since H'/D(H') � Z2 � Z2 � Z2, where D(H') is the

derived subgroup of H', we can obtain eight linear char-

acters of H', which are irreducible. We denote these irre-

ducible characters by �1, �2, ... �8. Next, we can see that

H' has two normal subgroups T'1 and T'2 of order 12.

The normal subgroup T'1 is generated by classes 2, 5 and

15 in Table III. Also, classes 2, 4 and 16 of this table

generate the normal subgroup T'2. The factor groups of

H' modulus T'1 and T'2 are not abelian: H'/T'1 � H'/T'2 �

S3. Now, we obtain two irreducible characters of H' of

degree 2 by lifting irreducible characters of S3. We de-

note these characters by �9 and �13.

�9 = (2,–1,0,2,–1,0,0,–2,1,–2,1,0,–2,1,0,0,2,–1),

�13 = (2,–1,0,–1,2,–2,1,0,0,–2,1,0,1,–2,2,–1,0,0).

We calculate the Kronecker product of �9 and �13

with eight linear irreducible characters of H' and obtain

eight irreducible characters of degree 2. We denote these

by �9, �10, ... �16. Consider the group U = H'/Z(H'). In

Table IV, we compute the character table of U. Using

this table and lifting its irreducible character of degree 4

to H', we obtain the irreducible character �17 for H'. Fi-

nally, we can see that �18 = �2 � �17 is an irreducible char-

acter of group H'. This completes the irreducible charac-

ters of H' (see Table V).

Conjugacy Classes of Trimethylamine

Suppose H'' is the full non-rigid group of trimethylamine

without inversion and G'' is the f-NRG of this molecule.

It is easy to see that G'' is isomorphic to Z2 � H''. We

want to compute the conjugacy classes and the character

table of H''. Since G'' is the direct product of two sub-

groups H'' and Z2, it is well known that the classes and

characters for G'' are just products of those for H'' and
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TABLE III. Representatives of conjugacy classes of the full non-rigid
group of trans-dichlorodiammine platinum(II)

No. Representatives Size No. Representatives Size

1 () 1 10 (2,3) 1

2 (6,7,8) 4 11 (2,3)(9,10,11) 4

3 (7,8)(10,11) 9 12 (2,3)(7,8)(10,11) 9

4 (6,7,8)(9,10,11) 2 13 (2,3)(6,7,8)(9,10,11) 2

5 (6,7,8)(9,11,10) 2 14 (2,3)(6,7,8)(9,11,10) 2

6 (4,5)(6,9)(7,10)(8,11) 3 15 (2,3)(4,5)(6,9)(7,10)(8,11) 3

7 (4,5)(6,9,7,10,8,11) 6 16 (2,3)(4,5)(6,9,7,10,8,11) 6

8 (4,5)(6,9)(7,11)(8,10) 3 17 (2,3)(4,5)(6,9)(7,11)(8,10) 3

9 (4,5)(6,9,7,11,8,10) 6 18 (2,3)(4,5)(6,9,7,11,8,10) 6

TABLE IV. The character table of group V

1a 2a 3a 2b 3b 2c 6a 6b 3c

2P 1a 1a 3a 1a 3b 1a 3c 3b 3c

3P 1a 2a 1a 2b 1a 2c 2b 2c 1a

5P 1a 2a 3a 2b 3b 2c 6a 6b 3c

�1 1 1 1 1 1 1 1 1 1

�2 1 1 1 –1 1 –1 –1 –1 1

�3 1 –1 1 1 1 –1 1 –1 1

�4 1 –1 1 –1 1 1 –1 1 1

�5 2 0 –1 0 –1 2 0 –1 2

�6 2 0 –1 0 –1 –2 0 1 2

�7 2 0 –1 –2 2 0 1 0 –1

�8 2 0 –1 2 2 0 –1 0 –1

�9 4 0 1 0 –2 0 0 0 –2



Z2. Thus, it is enough to investigate the conjugacy classes

and the character table of H''.

Consider next the operations that permute the nuclei

of the framework; these fall into sets corresponding to

the classes of C3v. One of the C3 operations of C3v ap-

plied to the framework is the permutation (2, 3, 4); but

this is not feasible for the molecule as a whole, and the

protons have to be permuted as well. First presuming that

the protons of each methyl group do not rotate, consider

R''1 = (2,3,4)(5,8,11)(6,9,12)(7,10,13) .

Since all of the permutations of cycle type 1134 are

conjugate in the group, we obtain a conjugacy class of

length 72. Next, we assume that the protons of each me-

thyl group rotate and define:

R''2 = (2,3,4)(5,9,13,7,8,12,6,10,11),

R''3 = (2,3,4)(5,10,12,6,8,13,7,9,11).

Using a tedious calculation we can see that R''2 and

R''3 are not conjugate in the group, but every permuta-

tion of this type is conjugate with R''2 or R''3. Thus, we

obtain two more conjugacy classes, each of length 72.

Similar methods are applied to the other class of C3v

to derive other sets of classes for trimethylamine. If we

define

�''v1 = (3,4)(6,7)(8,11)(9,13)(10,12),

�''v2 = (3,4)(6,7)(8,12,10,13,9,11).

Then we obtain two conjugacy classes of lengths 54

and 108 with the representatives �v1 and �v2, respectively.

Using similar arguments, we can calculate all 14 conju-

gacy classes of group H''. Since G'' � Z2 � H'', we can see

that G'' has exactly 28 conjugacy classes.

In Table VI, we give a representative for each conju-

gacy class of H''. The conjugacy classes of group G'' can

be computed from this table.

Determination of the Character Table

of Trimethylamine

From the conjugacy classes of group H'', we can see that

H'' is a group of order 648. First of all, we collect the

conjugacy class labels and the corresponding centralizer

orders in two vectors:

A = (1a,3a,3b,3c,2a,6a,3d,9a,9b,4a,12a,12b,6b,2b),

B = (648,81,54,108,24,12,9,9,9,12,12,12,6,12).

Also, we can see that H'' has a normal subgroup T of

order 108. The factor group H'' modulus T is not abelian:

H''/T � S3. Now, we obtain three irreducible characters
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TABLE V. The character table of group H' and its power map

1a 3a 2a 3b 3c 2b 6a 2c 6b 2d 6c 2e 6d 6e 2f 6f 2g 6g

2P 1a 3a 1a 3b 3c 1a 3b 1a 3c 1a 3a 1a 3b 3b 1a 3b 1a 3c

3P 1a 1a 2a 1a 1a 2b 2b 2c 2c 2d 2d 2e 2d 2d 2f 2f 2g 2g

5P 1a 3a 2a 3b 3c 2b 6a 2c 6b 2d 6c 2e 6d 6e 2f 6f 2g 6g

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�2 1 1 1 1 1 –1 –1 –1 –1 1 1 1 1 1 –1 –1 –1 –1

�3 1 1 –1 1 1 –1 –1 1 1 1 1 –1 1 1 –1 –1 1 1

�4 1 1 –1 1 1 1 1 –1 –1 1 1 –1 1 1 1 1 –1 –1

�5 1 1 1 1 1 –1 –1 –1 –1 –1 –1 –1 –1 –1 1 1 1 1

�6 1 1 1 1 1 1 1 1 1 –1 –1 –1 –1 –1 –1 –1 –1 –1

�7 1 1 –1 1 1 1 1 –1 –1 –1 –1 1 –1 –1 –1 –1 1 1

�8 1 1 –1 1 1 –1 –1 1 1 –1 –1 1 –1 –1 1 1 –1 –1

�9 2 –1 0 2 –1 0 0 –2 1 –2 1 0 –2 1 0 0 2 –1

�10 2 –1 0 2 –1 0 0 –2 1 2 –1 0 2 –1 0 0 –2 1

�11 2 –1 0 2 –1 0 0 2 –1 –2 1 0 –2 1 0 0 –2 1

�12 2 –1 0 2 –1 0 0 2 –1 2 –1 0 2 –1 0 0 2 –1

�13 2 –1 0 –1 2 –2 1 0 0 –2 1 0 1 –2 2 –1 0 0

�14 2 –1 0 –1 2 –2 1 0 0 2 –1 0 –1 2 –2 1 0 0

�15 2 –1 0 –1 2 2 –1 0 0 –2 1 0 1 –2 –2 1 0 0

�16 2 –1 0 –1 2 2 –1 0 0 2 –1 0 –1 2 2 –1 0 0

�17 4 1 0 –2 –2 0 0 0 0 –4 –1 0 2 2 0 0 0 0

�18 4 1 0 –2 –2 0 0 0 0 4 1 0 –2 –2 0 0 0 0



of H'' by lifting irreducible characters of S3. We call these

characters �1, �2 and �3, and we have:

�1 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1),

�2 = (1,1,1,1,1,1,1,1,1,–1,–1,–1,–1,–1),

�3 = (2,2,2,2,2,2,–1,–1,–1,0,0,0,0,0).

We now consider the action of H'' on the set 	2, 3, ...,

13
. If we denote by P the permutation character of this

action, then we have:

P = (12,3,6,9,8,5,0,0,0,4,1,1,2,2).

Since ��P�� = 9, (P,�1) = 2 and (P,�3) = 2, P – 2�1 –

2�2 is an irreducible character of H'', which we denote

by �6. Consider the symmetric and anti-symmetric parts

�S and �A of �6.
12 We have:

�S = (21,3,0,6,5,2,0,0,0,3,0,0,0,3),

�A = (15,6,0,3,–1,–1,0,0,0,1,1,1,0,–3).

In addition, ���S�� = 4 and ���A�� = 2. Since (�S,�1) = 1,

(�S,�3) = 1 and (�S,�6) = 1, hence �S – �1 – �3 – �6 is an

irreducible character of H'', which we denote by �14. On

the other hand, ���A�� = 2 and (�A,�14) = 1, so �A – �14 is

an irreducible character of H, which is denoted by �4. Now

we define �7 = �6�2, �5 = �4�2 and �13 = �14�2 and then

we obtain three irreducible characters of H'', which are

different from �1, �2, �3, �6 and �14.

Finally, we consider the character � = �5�6. Then

����� = 3 and (�, �7) = 1. Thus, � – �7 is a sum of two ir-

reducible characters. Since the square of character de-

grees is the order of the group and the number of irre-

ducible characters of degree n � 3 is even, � – �7 = �8 +

�2�8, in which �8 is an irreducible character of H''. Thus,

we obtain two new irreducible characters �8 and �9 = �2�8.

Using orthogonality relations we have:

�8 = (6,–3,0,3,–2,1,0,0,0,0, 3,– 3,0,0),

�9 = (6,–3,0,3,–2,1,0,0,0,0,– 3, 3,0,0).

Using the character �6�14 and the powers of �2, we

obtain other irreducible characters. Our calculations are

summarized in Table VII, the character table of group H''.

As mentioned above, since G'' � Z2 � H'', we can com-

pute the character table of G'' from Table VII.
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TABLE VI. Representatives of conjugacy classes of the full non-rigid
group of trimethylamine

No. Representatives Size No. Representatives Size

1 () 1 8 (2,3,4)

(5,9,13,7,8,12,6,10,11)

72

2 (5,6,7)(8,9,10)

(11,12,13)

8 9 (2,3,4)

(5,10,12,6,8,13,7,9,11)

72

3 (5,6,7)(8,9,10) 12 10 (3,4)(9,13)

(8,12,10,11)

54

4 (5,6,7) 6 11 (3,4)(5,7,6)(9,12)

(8,11,10,13)

54

5 (5,7)(11,13) 27 12 (3,4)(5,6,7)(9,11)

(8,13,10,12)

54

6 (5,7)(8,9,10)

(11,13)

54 13 (3,4)(6,7)

(8,13,9,12,10,11)

108

7 (2,3,4)(5,8,11)

(6,9,12)(7,10,13)

72 14 (3,4)(6,7)(8,11)

(9,13)(10,12)

54

TABLE VII. The Character table of group H'' and its power map

1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12a 12b 6b 2b

2P 1a 3a 3b 3c 1a 3c 3d 9a 9b 2a 6a 6a 3b 1a

3P 1a 1a 1a 1a 2a 2a 1a 3a 3a 4a 4a 4a 2b 2b

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�2 1 1 1 1 1 1 1 1 1 –1 –1 –1 –1 –1

�3 2 2 2 2 2 2 –1 –1 –1 0 0 0 0 0

�4 3 3 3 3 –1 –1 0 0 0 1 1 1 –1 –1

�5 3 3 3 3 –1 –1 0 0 0 –1 –1 –1 1 1

�6 6 –3 0 3 2 –1 0 0 0 2 –1 –1 0 0

�7 6 –3 0 3 2 –1 0 0 0 –2 1 1 0 0

�8 6 –3 0 3 –2 1 0 0 0 0 3 – 3 0 0

�9 6 –3 0 3 –2 1 0 0 0 0 – 3 3 0 0

�10 8 –1 2 –4 0 0 –1 2 –1 0 0 0 0 0

�11 8 –1 2 –4 0 0 –1 –1 2 0 0 0 0 0

�12 8 –1 2 –4 0 0 2 –1 –1 0 0 0 0 0

�13 12 3 –3 0 0 0 0 0 0 0 0 0 –1 2

�14 12 3 –3 0 0 0 0 0 0 0 0 0 1 –2
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SA@ETAK

Teorija potpune GNK za cis- i trans-diklordiamminoplatinat (II) i trimetilamin

Masood Hamadanian i Ali Reza Ashrafi

Teorija grupa za gipke (non-rigid) molekule (GNK), gdje su operacije dinami~ke simetrije definirane kao

fizikalne operacije, predstavlja novo podru~je kemije. Ovo je podru~je zapo~eo Smeyers koji je za niz gipkih

molekula izra~unao tablice karaktera pripadnih ograni~enih GNK. Autori su opisali jednostavan postupak koji

omogu}ava ra~unanje tablica karaktera za grupe simetrije gipkih molekula u kojima je odre|en broj AH3 sku-

pina vazan na kruti skeleton. Posebice su prou~ene potpune GNK za cis- i trans-diklordiamminoplatinat(II) i

trimetilamin. Pokazano je da ove grupe sadr`e 36, 72 i 1296 elemenata, koji se respektivno dijele u 9, 18 i 28

klasa konjugiranih elemenata, {to pokazuje da za ove molekule potpune i ograni~ene GNK nisu izomorfne.

Opisani postupak potpunih GNK dade se poop}iti i primjeniti i na druge gipke molekule, i u odnosu na do sada

rabljene metode daje bolji uvid u intramolekularnu dinamiku gipkih molekula.
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