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Cactus is a graph in which every edge lies on at most one cycle. Linear algorithms for comput-
ing the weighted Wiener and Szeged numbers on weighted cactus graphs are given. Graphs
with weighted vertices and edges correspond to molecular graphs with heteroatoms.

Key words

weighted cactus graphs
weighted Wiener number
weighted Szeged number

* Author to whom correspondence should be addressed. (E-mail: janez.zerovnik@imfm.uni-lj.si.)

INTRODUCTION

A topological index is a numerical quantity derived in an
unambigous manner from the structural graph of a mole-
cule. These indices are graph invariants, which usually
reflect molecular size and shape.

The first non-trivial topological index in chemistry
was introduced by H. Wiener1 in 1947 to study boiling
points of paraffins (for historical data see, for instance,
Ref. 2). Since then, the Wiener number (also called the
Wiener index) has been used to explain various chemical
and physical properties of molecules and to correlate the
structure of molecules to their biological activity.3 The
research interest in Wiener index and related indices is
still considerable.4,5

Wiener originally defined his index on trees and
studied its use for correlations of physicochemical prop-
erties of alkanes, alcohols, amines, and other analogous
compounds. In arbitrary tree, every edge is a bridge, i.e.

after deletion of the edge, the graph is no more con-
nected. The contribution to the Wiener number of an
edge was taken to be the product of the numbers of ver-

tices in the two connected components. This number
also equals the number of all shortest paths in the tree
which go through the edge.6 Therefore the usual general-
ization of the Wiener number on arbitrary graphs is de-
fined to be the sum of all distances in a graph. Recalling
and generalizing the original definition, edge contribu-
tions to the Wiener number were studied in Refs. 7–9.

Another natural generalization was recently put for-
ward and called the Szeged number, Sz.10 Now the
weights of edges are taken to be the product of the num-
bers of vertices closer to the two endpoints of the edge.
For reasons to introduce the Szeged index and for basic
properties of Sz see Refs. 10 and 11. Formulas or special
algorithms for Szeged index of several families of
graphs were proposed recently.12–14

The motivation for study of weighted graphs and
their topological indices is the fact that the substitution of
carbon atoms in a molecular graph with heteroatoms cor-
responds to weighting the vertices and edges of the graph.

The main result of this paper are linear algorithms
for the weighted Wiener and the weighted Szeged num-
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ber on weighted cactus graphs. Cactus graphs are gener-
alized trees in which cycles are allowed, but any two cy-
cles have at most one vertex in common.

DEFINITIONS

A weighted graph G = (V, E, w, �) is a combinatorial ob-
ject consisting of an arbitrary set V = V(G) of vertices, a
set E = E(G) of unordered pairs �x,y� = xy of distinct
vertices of G called edges, and two weighting functions,
w and �. w: V(G) � IR assigns positive real numbers
(weights) to vertices and � : E(G) � IR assigns positive
real numbers (lengths) to edges.

A simple path from x to y is a finite sequence of dis-
tinct vertices P = x0, x1,..., x� such that each pair xi-1, xi is
connected by an edge and x0 = x and x� = y. The length
of the path is the sum of lengths of its edges, l(P) =

l
i�� 1

�
(xi–1xi). For any pair of vertices x,y we define the

distance d(x,y) to be the minimum of lengths over all
paths between x and y. If there is no such path, we set
d(x,y) = �.

A graph G is connected, if d(x,y) < � for any pair of
vertices x,y. A vertex v is a cut vertex if after removing
the vertex v and all edges incident to it the resulting
graph is not connected. A graph without a cut vertex is
called nonseparable. A block is a maximal nonseparable
graph. A cycle is an induced subgraph which is con-
nected and in which every vertex is of degree two. A
cactus is a graph in which every block of three or more
vertices is a cycle. Alternatively, a cactus is a connected
graph in which two cycles have at most one vertex in
common. For usual graph theoretical terminology not
defined here see, for instance, Ref. 15.

The weighted Wiener number of a weighted graph G
studied here is:

W(G) = w u w v d u v
u v

( ) ( ) ( , )
�

� . (1)

It seems that weighted Wiener number has not been
studied frequently in the literature. A definition, analo-
gous to (1) was used in Refs. 16 and 17 for vertex
weighted graphs. A different definition in which the
»weights« of atoms are added to the sum of distances is
used in Ref. 18. We find the definition (1) more natural
from mathematical point of view and look forward to
learn about possible chemical interpretations of this and
other definitions. It may be worth to remark that in the
definition of Ref. 18 the weighted Wiener number is
simply the usual Wiener number plus the sum of weights
of vertices and hence it can be computed by standard al-
gorithms.19

The weighted Szeged number of a weighted graph G
is defined as

Sz(G) = s e s e eu v

e uv

( ) ( ) ( )l

�

� , (2)

where su(e) = w x
x V d x u d x v

( )
, ( , ) ( , )� 	�

and sv(e) = w x
x V d x u d x v

( )
, ( , ) ( , )� �� .

The definitions used here are clearly generalizations
of the usual definitions for (unweighted) Wiener and
Szeged numbers. More precisely, if all weights of verti-
ces are 1 and all lengths of edges are 1, then W(G) and
Sz(G) are the usual Wiener and Szeged numbers.

Lemma 1. – For a weighted graph G, W(G) =

l( )e
e uv�� 


1

n a b
w a w b

P ea b * ( , )
( ) ( )

,
* �� , where P a b,

* is a

shortest path between a and b and n*(a,b) is the number
of shortest paths with endpoints a and b.

Proof. To see this it is enough to sum up the contri-
butions of each edge to W in two different ways. Each
pair a,b of vertices contributes w(a)w(b)d(a,b) to the
Wiener number. This contribution can be either regarded
as a contribution of the pair a,b or it can be divided to
n*(a,b) path contributions which can furthermore be re-
garded as a sum of edge contributions along the path.
Since d(a,b) is the sum of edge weights along a shortest
path, the contribution of edge e caused by a and b is

�(e)
1

n a b* ( , )
w(a)w(b).

An edge contributes as many times as it appears on
various shortest paths. Here the vertices are weighted, so
one has to take into account the weights of both terminal
vertices. Let us note in passing that the sum of contribu-
tions of the edge e,

w*(e) :=
1

n a b
w a w b

P ea b * ( , )
( ) ( )

,
* �� .

can be called the shortest path weight distribution, gen-
eralizing the ideas of Refs. 7–9.

Hence one can sum up the lengths of all shortest paths
(as in (1)), or, equivalently, sum up the contributions of
all edges. �

Recall that on a tree, there is a unique shortest path
between any pair of vertices. Hence n*(a,b) = 1 for all a,

b which implies that the definition of the weighted
Wiener number and the weighted Szeged number are
equivalent on trees.

Lemma 2. – For a weighted tree T, W(T) = Sz(T).

This lemma is a generalization of a well-known re-
sult for unweighted Wiener number, which was already
known to Wiener.20
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For a later reference note that on a cactus graph
n*(a,b) can only have value 1 or 2. Clearly, n*(a,b) = 2
exactly when a and b are opposite vertices of a cycle
(i.e. d(a,b) = d and a, b are vertices of a cycle of girth
2d).

DFS BASED REPRESENTATION OF A CACTUS

If in a cactus cycles are considered as (super)-vertices,
there is a unique shortest path between any two vertices.

Any cactus G can always be represented as a rooted
cactus. This means that a vertex v0 � V(G) is distin-
guished and called the root of G. (Any vertex may be
chosen for the root.) All other vertices are indexed as v1,
v2,..., vn–1 in a DFS (depth first search) order. DFS is a
standard procedure for searching a graph, see for exam-
ple Ref. 21. It can easily be seen that in each cycle there
is exactly one vertex vj, which is the first vertex in the
DFS order on the cycle C, containing the edge vivj. For
this reason we call the vertex vj the root of the cycle C.
Clearly, each cycle in a cactus has a unique root, deter-
mined as a first vertex on the cycle in the DFS order.
Moreover, each vertex on a cactus G which is a succes-
sor of a vertex with higher index is the root vertex of
one or more cycles. Hence, all cycles in a cactus are de-
termined with the root and its successor.

The rooted cactus can be represented with two ar-
rays Ti and Ri, i = 0, 2,..., n–1, where Ti denotes the
unique predecessor of vertex vi in the rooted tree, con-
structed with the DFS. The element Ri denotes the root
vertex of the cycle containing vi. If vi does not lie on a
cycle then Ri = vi and if vi is on a cycle rooted at vj, then
Ri = vj � vi. Note that the array R describes all cycles in
the cactus.

It is clear that when traversing the graph with a DFS
algorithm, one can also obtain array ind(vi) := |� j; vi =
Tj�|. The meaning of ind(vi) is the number of sons of vi.
Leaves of the tree have no son directing to them. Hence
ind(leave) = 0. This can be done within the time com-
plexity of BFS, O(m).

After a DFS run, each vertex vi can be regarded as a
root of a subcactus, which we will denote by Gi.

From the discussion above we infer that after a DFS
run, one can get a representation of a cactus and, further-
more, one can decide whether a given graph is a cactus
or not. More formally,

Lemma 3. – Let G be a cactus graph. In a DFS run,
each new vertex vi can have at most one neighbor among
the visited vertices and the neighbor can only be on the
direct path from the root v0 to vi.

Proof. If, for some vertex two such neighbors ex-
isted, then there will be edges on two (or more cycles).
Contradiction. A back neighbor which is not on a direct

path from the root v0 to vi was visited already and hence
the vertex vi should have been visited as its son. Contra-
diction. �

Hence, if G is not a cactus graph, this can be ob-
served while traversing G in the DFS order.

Lemma 4. – Cactus graphs can be recognized in lin-
ear time.

Proof. DFS algorithm takes O(m) time. �

THE ALGORITHMS

We will give the algorithms Sz and W for computing the
indices (Szeged and Wiener number) of a rooted subcac-
tus. Algorithms for computing Sz and W differ only in
Step 3 while the Steps 1 and 2 are identical for both al-
gorithms. Recall that by Lemma 1 the Wiener number
can be computed as a sum of contributions over all edges
of a graph.

With each vertex vi of the graph G the value of Vi

will be computed, for which

Vi = w( )
G

vjj i��

will eventually hold. Vi will thus be the sum of weights
of the subcactus Gi rooted at vi.

Both algorithms consist of three steps. First, a repre-
sentation of the given weighted cactus is found. Then we
compute Vi for each vertex. In order to compute the Vi

we start with edges incident to leaves and continue in re-
versed DFS order up to root. In the third step we com-
pute the contributions of edges (cycles) to the invariant
starting from root to leaves.

1. Find a representation of the (rooted) cactus G.

2. Traverse the cactus G in the reversed DFS order
and compute the Vi.

3. Traverse the cactus G in the DFS order and com-
pute the contributions of edges (cycles) to the invariant.

We now give more details of each step.

Step 1: Cactus recognition

Run a DFS on G. By discussion above, it is clear that we
can compute Ti, Ri and ind(vi) := |� j; vi = Tj�| in time
O(m).

Step 2: Computation of Vi

Traverse the DFS tree in the reversed DFS order. Com-
pute the temporal value Vi for a leave vi and reduce the
number of unvisited sons for its father by one. If the fa-
ther has no more unvisited sons, put it in a FIFO (first in
first out) queue. The computation of temporal Vi is the
weight of vi plus the sum of Vj of its sons:
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Vi = w(vi) + VjT vj i�� .

Lemma 5. – After Step 2, for every vertex vi, Vi is
the sum of weights of all vertices of the subcactus rooted
at vi. More formally,

Vi = w vjvj i

( )
�� G

.

Proof. It follows from the definition of Vi. �

Lemma 6. – Step 2 can be computed in O(m) time.

Proof. Clear. �

Step 3a: Computation of the edge contributions to

W(G)

Traverse the DFS tree in the DFS order. Compute the edge
contributions to the W(G).

Observe that V0 is the sum of weights of all vertices
of G.

1. W = 0

2. For each vertex vi (in the DFS order) do

– For each son vj, for which vi vj is not an edge of a
cycle of G, (i.e., if Rj = vj and Tj = vi) set

We := Vj (V0 – Vj) �(e)

W := W + We.

– For each son vj of a root vertex vi (Ri = vi), for
which vivj is an edge of a cycle Cj of G, (i.e., if Rj = vi

and Tj = vi), compute the contributions of the cycle as
follows. Mark the vertices of the cycle C in the DFS or-
der with u0,..., ue–1. For each vertex ui on the cycle com-
pute Li, the sum of weights of vertices for which the ver-
tex ui is the nearest vertex on the cycle C, using the val-

ues Vj and let |C| = l

i

e

�



�
0

1

(uiui+1) be the girth of the cycle.

• WC := 0; (weighted Wiener number of the cycle C)
f = l := 0; (loop counters – f is first, l is last vertex
– are computed modulo e)
Cont = 0; (contribution of the current vertices
�uf,uf+1,...,ul�)
V := 0; (sum of weights of �uf,uf+1,..., ul�)
d := 0 (distance from uf to ul)

• Repeat
(compute the contributions of edges on the cycle
which lies on shortest paths that enter on the cycle
throught the vertex vf and continue in a DFS or-
der)

(a) While d + �(ulul+1) �
| |C

2
do begin

* l := l + 1;

* V := V + Ll;

* d := d + � (ul–1ul);

* Cont := Cont + Ll d

end(while) (Find the new last vertex ul on the cycle Cj

with a shortest path from uf in a DFS order.)

(b) WC := WC + Lf Cont;

(c) If d =
| |C

2
then WC := WC –

1

2
LfLld;

(d) Cont := Cont – V �(uf uf+1);

(e) V := V – Lf+1;

(f) d := d – �(uf uf+1);

(g) f := f + 1

Until f = 0.

• W := W + WC.

Step 3b: Computation of the edge contributions to

Sz(G)

Traverse the DFS tree in the DFS order. Compute the edge
contributions to the Sz(G).

Observe that V := V0 is the sum of weights of all ver-
tices of G.

1. Sz = 0

2. For each vertex vi (in the DFS order) do

– For each son vj, for which vi vj is not an edge of a
cycle of G, (i.e., if Rj = vj and Tj = vi) set

Sze := Vj (V–Vj) �(e)

Sz := Sz + Sze.

– For each son vj of a root vertex vi (Ri = vi), for
which vi vj is an edge of a cycle Cj of G, (i.e., if Rj = vi

and Tj = vi), compute the contributions of the cycle as
follows. Mark the vertices of the cycle C in the DFS or-
der with u0,..., ue–1. For each vertex ui on the cycle com-
pute Li, the sum of weights of vertices for which the ver-
tex ui is the nearest vertex on the cycle C, using the val-

ues Vj and let |C| = l

i

e

�



�
0

1

(uiui+1) be the girth of the cycle.

• SzC := 0; (weighted Szeged number of the cycle C)
f = l := 0; (loop counters – f is first, l is last vertex
– are computed modulo e)
VR := 0; VL := L0; (sum of weights of vertices right
(R) and left (L) of an edge)

d :=
l( )u ue0 1

2
 ;

• Repeat
(compute the contribution of the edge uf–1 uf)

(a) While d + �(ulul+1) �
| |C

2
do begin

* l := l + 1;

* VL := VL + Ll;

* d := d + �(ul–1 ul);

end(while)
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(b) VR := V – VL;

(c) If d =
| |C

2
then SzC := SzC + VR(VL–Ll) �(uf–1uf)

else SzC := SzC + VRVL � (uf–1uf);
(d) VL := VL – Vf;

(e) d := d –
l l( ) ( )u u u uf f f f� �1 1

2
;

(f) f := f + 1
Until f = 0.

• Sz := Sz + SzC.

Example 1. – Compute weighted Wiener and Szeged
number of the path from Figure 1.

Traversing the path we get the following table

Summarizing the last row of the table we get the
Wiener number of the path W = 1830, which also coin-
cides with the Szeged number.

Example 2. – Compute weighted Wiener and Szeged
number on a cycle from Figure 2.

Let the top vertex of the cycle in Figure 2 be also
the root vertex. All steps of computation of Wiener and
Szeged numbers are written in the tables bellow (the en-
tries are computed columnwise from left to right):

In Figure 3 we illustrate the seven steps in the com-
putation of Wiener (Szeged) number of the cycle.

Summarizing, we read from the tables the values
W(C) = 120 and Sz(C) = 224.

Lemma 7. – We and WC are correctly computed.
Each edge is considered exactly once.

Proof. (sketch) After line (a) in 2 of Step 3a, the
value of V is the sum of weights of vertices which are at
distance less or equal to |C| / 2 from the vertex uf. Simi-
larly, the value Cont is the weighted sum

Cont = w u d u ul f l

l

f

( ) ( , )
�

�
1

= w u u ui i i

i

l

l

f

( ) ( , )l 
��

�� 1
11

.

Hence

w(uf) Cont = w u w u u uf l i i

i

l

l

f

( ) ( ) ( , )l 
��

�� 1
11

.

is the sum of contributions of all paths with the first ver-
tex uf which are oriented coherent with the orientation of
the cycle defined by the labeling u0, u1,....
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Figure 1. Example 1.

TABLE I. Computation of the weighted Wiener and Szeged num-
bers on the path of Figure 1 (Example 1)

i 0 1 2 3 4 5

Ti – 0 1 2 3 4

�(viTi) 0 5 1 1 1 5

Vi 24 14 13 12 11 10

Vi(V0–Vi) �(viTi) 0 700 143 144 143 700

Figure 2. Example 2.

TABLE II. Steps of computation of the weighted Wiener number on
the cycle of Figure 2 (Example 2)

Step f 0 1 2 3 4 5 6

(a) 1 1 2 3 4 5 6 0 1 2 3

V 2 3 5 6 4 4 4 5 6 6

d 1 2 3 5 5 5 5 4 5 5

Cont 2 4 10 15 10 16 13 13 18 22

(b), (c) WC 12.5 30.5 38 60 70.5 86 120

(d) Cont 9 5 6 8 5 12 10

(e) V 4 3 2 3 3 4 5

(f) d 4 3 3 3 3 4 3

TABLE III. Steps of computation of the weighted Szeged number
on the cycle of Figure 2 (Example 2)

Step f 0 1 2 3 4 5 6

(a) l 1 2 3 4 5 6 0 1 2

VL 3 4 6 6 4 4 4 6 6

d 2 3 4 4.5 4.5 4 4 5 4.5

(b) VR 4 4 6 6 6 4 4

(c) SzC 48 72 96 120 168 200 224

(d) VL 5 4 3 2 3 5 4

(e) d 2.5 3.5 2.5 3 2 3.5 3
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Figure 3. Seven steps in computation of Wiener and Szeged number of the cycle.



If there are vertices of distance exactly |C| / 2 then
there are exactly two shortest paths between them and
the contribution has to be divided by 2 (hence step (c)).

Finally observe that in the repeat-until loop each
shortest path shorter than |C| / 2 is considered exactly
once and that each shortest path of length |C| / 2 is con-
sidered exactly twice. We omit the details. �

Lemma 8. – Sze and SzC are correctly computed.
Each edge is considered exactly once.

Proof. (sketch) After line (a) in 2 of Step 3b, the
value of VL is the sum of weights of vertices which are
at distance less or equal to |C| / 2 from the center of edge
uf–1 uf. If there is a vertex exactly at distance |C| / 2 it is
neither closer to uf–1 nor to uf and hence this case has to
be treated separately (see (c)). Clearly, in the repeat-until
loop each edge is considered exactly once. We omit the
details. �

Lemma 9. – Step 3a can be computed in O(m) time.
Step 3b can be computed in O(m) time.

Proof. (idea) Each cycle is considered only once
(when its root is traversed). Furthermore, the computation
on the cycle is linear in the length of the cycle, which eas-
ily follows by analysis of the repeat-until loop. �

Recalling the complexity of Steps 1 to 3 we con-
clude that both algorithms run in linear time.

Proposition 10. – The above algorithms compute the
weighted Wiener and the weighted Szeged numbers on a
weighted cactus in O(m) time.
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SA@ETAK

Ra~unanje ute`anoga Wienerova i Szegedskoga broja za ute`ane kaktuse
u linearnom vremenu

Bla` Zmazek i Janez @erovnik

Kaktus je graf u kojemu svaka grana le`i na najvi{e jednome krugu. Prikazani su algoritmi za ra~unanje
Wienerova i Szegedskoga broja za ute`ane grafove kaktusa. Grafovi s ute`anim vrhovima i bridovima opisuju
molekularne grafove s heteroatomima.

WEIGHTED WIENER NUMBER 143

Croat. Chem. Acta 76 (2) 137¿143 (2003)


