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A kinetic model has been designed that tries to capture some most important physico-chemical

properties of crystallization from water-based electrolyte. The crystal growing process is

thought to proceed in a conserved system, in which the charged-mass conservation law is

obeyed. Although the model phenomenon under study proceeds in a mass-convection regime,

it is readily interface-controlled. The interfacial control is identified with the role played by the

double-layer, presumably of the Stern type, surrounding the object under growth. The product

of supersaturation and individual biomolecule velocity in the double-layer appears to be both

the controlling kinetic factor and the asymptotic (kinetic) limit being achieved by the process,

i.e. the crystal growth rate approaches the value of the mentioned product. The first successful

test of the model was carried out on data representing the lyzosyme crystal growth.
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INTRODUCTION

Complex systems, especially those the investigations of

which have important as well as practical consequences,

are worth studying. Among others, there appears a task

termed protein crystallization, which is a real challenge

because it looks both cumbersome and almost hopeless

for reasonable theoretical understanding.1,2 A few simple

arguments can be raised here to exemplify the expected

difficulties.

First, a separation effect due to the proteins occurs

in water solution, where initial steps in the separation of

proteins often involve precipitation by salts such as

NaCl added to the solution. Intermolecular interactions

between proteins and electrolytes govern the behaviour

of these processes, and an understanding of such protein

interactions is important in the design and operation of

all protein separation processes as well as in some other

processes, e.g. ion-exchange.

Second, because the system under study seems to be

at least a two-phase system, a molecular-thermodynamic

model incorporating Coulombic and hydrophobic inter-

actions, dispersion attraction, excluded volume and ion-

excluded volume effects could be of help, e.g. in predict-

ing phase equilibria for both precipitation by salts and

extraction in aqueous two-phase systems. Some experi-

mental methods like, for example, low-angle laser-light

scattering, osmotic pressure measurements, and vapor

pressure osmometry provide experimental information

on the intermolecular forces between proteins and salts.3

Such measurements also enable to get quantities re-

quired for protein crystallization to occur. It has quite re-

cently been proposed that the second virial coefficient

must lie within a »crystallization realm«, where the re-

sulting intermolecular potential is not too attractive, per-

mitting crystals, rather than aggregates, to form.1,4 By

carrying out the measurements, an effective Hamaker
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constant, regressed from the experimental osmotic sec-

ond virial coefficient, can be determined for models of

the protein-protein potential of mean force. The effects

of specific protein-protein interactions are usually incor-

porated by means of an adhesive hard sphere potential.

Specific ion-protein interactions are also of importance

in a number of systems.5

Finishing the list of tedious tasks to be done while

approaching, possibly in a versatile way, the overall as-

pects of the phenomenon in question, let us state the fol-

lowing. Namely, while looking more deeply into the ef-

fect of polyelectrolyte on protein crystallization, two key

parameters determine whether polyelectrolyte effects are

important: the Bjerrum length and charge spacing. The

Bjerrum length refers to the approximate distance within

which electrostatic interactions dominate thermal mo-

tions for two charges. For example, the Bjerrum length

for F-actin is of the order of 1 nm in water at 20 °C. The

linear charge spacing in a polyelectrolyte, in turn, is ob-

tained by dividing the total net surface charge by the

length. For F-actin, for example, it is usually 3–4 times

smaller than its corresponding Bjerrum length. (Right at

this point, note also that the diluted solution is below

0.05 mg ml–1 for the same biomolecule.)

In the past, this was a subject of serious scientific

debate6 and it was concluded that the electric energy of an

ionic solution could be determined by measuring the av-

erage distance between the ions. Also, the quantity, which

measures the thickness of the ion atmosphere or, to recall

something better known, the thickness of a double-layer

of possibly Helmholtz type, proves to be the characteristic

length. Regarding the fact that this thickness depends on

the concentration of the electrolyte, the electric energy of

the solution also becomes a function of this quantity. The

fact that this thickness is inversely proportional to the

square root of the concentration is responsible for the

characteristic appearance of the limiting laws for highly

diluted solutions.7 Moreover, it is an essential characteris-

tic of the electrolytic solution that the measure of this or-

der is determined by the thermal equilibrium between the

attracting (electrostatic) forces and temperature move-

ment, especially while monitoring the crystal growth.

A more theoretically-oriented reader is certainly

aware that such context needs not to be supported by

trivial tools. Thus, it has been recently proposed to at-

tempt revisiting the interesting problem of electrostatic

interactions between charged (colloidal) spheres dispers-

ed in aqueous electrolytes. (One can rely on a certain

analogy between protein and colloid water dispersions,

cf. Ref. 8 for crystal growth, or Ref. 9 for general infor-

mation). Even qualitative features of the inter-sphere in-

teraction are still under study and the complete task has

not been satisfactorily solved. It has to be noted here that

the long-accepted theory of Derjaguin, Landau, Verwey

and Overbeek (DLVO) predicts a purely repulsive elec-

trostatic interaction between pairs of like-charged

spheres (which can be a problem appearing in our study

as well). This intuitively satisfying prediction is at odds,

however, with a large and rapidly growing stream of ex-

perimental evidence that (colloidal) electrostatic interac-

tions include a long-ranged attractive component, at

least under some circumstances.8

In this paper, we wish to propose a simple model of

protein crystallization. It is based on the following scheme:

(i) Take the charged-mass conservation law into ac-

count and apply it to the simplest possible case of spher-

ical symmetry.

(ii) Choose the boundary condition in the form of the

Gibbs-Thomson condition, but do not forget the »physical

truth« that for the mature stage of the growing process the

concentration prescribed at the boundary crystal versus

surroundings approaches equilibrium, since the problem

slowly but surely becomes curvature independent.

(iii) Make sure that the Poisson-Debye-Hückel

(PDH) electrostatic scenario controlling the random

walk of biomolecules along the crystal surface is readily

manifested inside the double layer, causing the walk to

proceed in an »intermittent« or decelerated way (in

snapshots from one step, via an »electrostatic break« re-

served for electrostatics, to another).

(iv) Realize that the growth rate is exclusively deter-

mined by what takes place in the double layer enclosing the

crystal under growth, where the competition effect between

the thermal movement of biomolecules and electrostatic re-

pulsion-attraction and/or screening events control the kinet-

ics of the process; in other words, our model does not see

what happens outside the external strand of the double layer,

which is considered to be the Stern (not Helmholz) type:10

the first layer is just a »static« one, being pinned by electro-

static forces to the crystal surface, whereas the second ap-

pears to be always of diffusive nature.

Since we have introduced the Poisson-Debye-

Hückel context in the double layer enclosing the crystal,

by having a time-independent velocity involved as a

prefactor in our growth equation, we also immediately

know the limits of our modelling, provided that the de-

scribed processes are realized in a diluted regime. We

simply know the limits of the so-called weakly nonideal

plasma or »strong« electrolytes,11,12 so we provide:

�D

3
c0 << 1 , (1)

which yields a characteristic plasma parameter �p to obey:

�p << 1/� (2)

where �p = Q p

3
c 0

1 2/ �3/2, and where all the symbols used

will be explained later on. Since 1/� is much greater

than one, our approximation seems to be very reasonable
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(because � << 1), so that a diluted solution regime and

the PDH context match very well.

The paper is structured as follows. In the first sec-

tion (Hanging-drop Method), we give some consideration

of the hanging-drop method. In the following section

(Charged-mass Conservation Law), we introduce the

charged-mass conservation law, whereas in the third sec-

tion (Physical Length Scales) we inspect more closely the

screening effect and the role played by the double layer.

Also in the third section, there is a description of the

physical scales important for understanding the phenom-

enon under study. Next, we provide some information

about the asymptotic kinetic limit of the process as well

as some characteristic crystal length, which does arise

while considering a stochastic perturbation of the speed

of the process (Asymptotic Kinetic Limit of the Crystal

Growth Rate) as a competition effect between the noise

intensity and the crystal growth rate.13 We also provide a

comparison with the modelling that nowadays seems to

be the most successful in describing the kinetics of pro-

tein crystal growth,1,14 (Comparasion with Seminal Lit-

erature Data). Finally, in the last section we provide the

a final address.

HANGING-DROP METHOD

A few methods are used to produce crystals. To make inor-

ganic crystals we can choose the Czochralski method and

its modification, or methods characteristic of the growth

from undercooled melt. These are the most popular meth-

ods for a cheap production of good-quality monocrystals.

To produce organic crystals e.g. protein crystals, the

most effective method is the method named »crystal growth

from solution«. This method is similar to growth from

the undercooled melt, where the difference in tempera-

ture is the driving force of the growth. For the growth

from solution, the origin of the driving force appears to

be the difference of concentrations inside and outside the

nucleus. Moreover, we cannot use the high temperature

method, because high temperature can destroy the struc-

ture of organic macromolecules.

One of the most popular methods used by experimenta-

lists to produce organic crystals is crystallization by vapour

diffusion method, conventionally named the hanging-drop

method. This technology ensures temperature and super-

saturation control. Temperature control is very important

in the growth of organic crystals. Most frequently, the

growth proceeds under constant temperature.

A droplet containing the biological macromolecule

(in our case, lyzosyme) to crystallize with buffer, crys-

tallizing agent, and additives, is equilibrated against a

reservoir containing a solution of crystallizing agent at

higher concentration than that of the droplet (Figure 1).15

Equilibration proceeds by diffusion of the volatile spe-

cies (water or organic solvent) until vapor pressure in

the droplet equals the one of the reservoir. If equilibra-

tion occurs by water exchange (from the droplet to reser-

voir), it leads to a droplet volume change. Consequently,

the concentration of all constituents in the drop will

change. For species with a vapour pressure higher than

water, the exchange occurs from reservoir to drop.

The most popular crystallization protocol proceeds

as follow:15

(i) prepare stock solution of 3 M NaCl and 50 mg ml–1

(3.43 � 10–3 M) lyzosyme in 50 mM acetate pH 4.5 and

buffer stock solution (50 mM sodium acetate at pH 4.5),

(ii) fill up reservoir of vessel with solution of NaCl,

(iii) on a coverslip, mix 4 �l of protein stock solu-

tion with 4 �l of reservoir, flip it and set it on the

greased rim,

(iv) maintain the experiment at 18 oC. We have to

note that addition of NaCl to water causes association of

the acid and thereby appearance of Na+ and Cl– ions

(NaCl � H2O � Na+ + Cl–). This phenomenon influ-

ences very strongly the growing process. (The idea of

using NaCl or KCl precipitants seems quite old and ap-

pears to be efficient even for crystal growth from metal-

lic melts, e.g. those based on Zn, Pb, Sn, as elaborated

by J. Czochralski, who added KCl to Zn melt at 232 °C,

and NaCl to Pb and Zn melts at 320 °C and 416 °C, re-

spectively.16 This also applies to crystals grown from a

solution, i.e. in the case studied here.)

Why does this method suit to our model? In the first

step of the growing process as well as in its later stages,

the growing crystal has spherical symmetry (our model

is based on spherical symmetry of the growing object).

Moreover, there is quasiequilibrium between the crystal

and its vapor, which makes the hanging-drop method

suitable for our modelling.

CHARGED-MASS CONSERVATION LAW

Let us consider two subsequent time instants, t and t1,

where t >> t1 (see Figure 2). Let us assume that the mass

of the growing object is equal to:17
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Figure 1. Exemplified scheme of the experimental setup for the
growth of lyzosyme crystals (hanging drop).



m(t1) = C r V
V t

( )
( )

�

d

1

� (3)

but for time t one has:

m(t) = C r V
V t

( )
( )

�

d� + c r V
V t V t

( )
( ) ( )

�

d

1 �
� (4)

where the second term of the right-hand side follows

from taking into account the concentration field c(
�

r) sur-

rounding the object; here, C(
�

r) is the object (nucleus)

density,
�

r represents a particle position.

Let us further evaluate the net account of mass �m =

m(t1) – m(t) during the time step �t = t1 – t, namely:

D

D
[ ]

m

t t t
C r c r V

V t V t

� �
�
�

1

1 1
–

( ) ( )
( ) ( )

� �

d (5)

which after noting that

�

�

m

t
j S

t

� 	� d
S( )1

(6)

yields:

d

dt
[ ]C r c r V

V t

( ) ( )
( )

� �

� �� d j c r S
t

[ ]
S

( )
( )

�

	� d

1

(7)

where the limit t1 
 t is valid and »	« denotes the scalar

product; here
�

j �
�

j[c(
�

r)] stands for the incoming matter flux.

Because we assume a spherical symmetry of the

growing object, we have to specify all the necessary

details18 of using it while performing integration (5).

Then, in a possible simple choice, it leads to an evo-

lution equation in a full spherical coordinate system

(r, �, �); note that now
�

r becomes a position vector in

the spherical coordinate system.

If we further assume that the nucleus is homoge-

neous and its density C(
�

r) = C = const, and when we

take, for simplicity, an ideal spherical symmetry, we are

able to write down:

�C – cS (R)
d

d
S

R

t
c R v R� ( ) ( ) , (8)

but under observation that19

j�c(
�

r) = c(
�

r) v(R) , (9)

on the surface � (the so-called overdamped regime ap-

proximation); here c(
�

r) = cS(R).

We know that the equilibrium Gibbs-Thomson bound-

ary condition is fulfilled

c(
�

r) S = c0 (1 + � K) (10)

provided � is a constant (independent of � and �).

[C – cS (R)
d

d

R

t
= cS (R)

F

g
= cS (R) nmi , (11)

where � is damping constant (for the overdamping re-

gion � >> 1); note that now v(R) is substituted by nmi.

After some algebra from (8)–(11), it follows imme-

diately that

d

d

R

t
= s nmi

R

R R

�
�

2G

c

(12)

where � = c0 / (C – c0) but measured in the double layer;

it is in fact an equivalent of the bulk supersaturation

characteristic of the crystal growth, where the crystal is

fed by diffusion over long distances from the crystalliza-

tion centre.

Moreover, note that nmi = F/�, where F is the elec-

trostatic force, also holds (see next section). Eq. (12)

will be our starting evolution equation, the solution of

which reads:

R(t) – R(t = 0) – (Rc + 2G) ln
R t

R t

( )

( )

�
� �

�

�
�

�

�
� �

2

0 2

G

G

s nmi t (13)

and its large time asymptotic becomes:

R � t , (14)

which means that the crystal growth rate, defined as Vgr =

dR / dt, approaches a constant.

Radius vs time dependence for three different values

of parameter � is shown in Figure 3.
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Figure 2. Two consecutive snapshots showing the mass conserva-
tion effect.

Figure 3. Radius vs. time dependence for three different values of
parameter ��



PHYSICAL LENGTH SCALES

Dynamic processes occurring in complex fluids, e.g.

protein crystallization from solution, include many dis-

parate length scales.

We can distinguish two groups of lengths. The first

is directly connected with the kinetic-thermodynamical

properties of the growing object. Characteristic lengths

belonging to this group are:

� – capillary length, which aims at smoothening out

the surface of the growing object and is proportional to

the surface tension; Rc = 2� � – critical radius of the nu-

cleus; R(t = 0) – initial radius; R � – radius of the object

in the mature stage of the process, i.e. at some t being

large enough. For t >> 1, R(t) 
 R � ; Rv – radius of the

crystallization vessel, that can take on either a finite

value (Rv 
 Rv: for real vessel crystallization) or an »in-

finite« value (Rv 
 R � : no external boundary influ-

ence). Among these lengths, the following relations ap-

pear to be true:

0 < Rc < 2� < R(t = 0) < R � < Rv .

Since we know that 2� is of the order 10–8 m, the

critical radius from which the process starts to nucleate

must be less then 10–8 m, but the growth readily occurs

at some higher values, starting somewhere about

R(t = 0).

The second group includes lengths, that characterize

both the growing system and diffusion along the surface.

These are: �–1 – Debye length; LB = Qn Qp / 	0 	H2O kBT

– Bjerrum length, where Qn and Qp are the surface

charge of the nucleus and protein molecule, respectively;

screening electrostatic length, rmin � 2rp (a minimalistic

assumption) or higher, where rp is the radius of the pro-

tein molecule; LD � 2�R � – approximate path length of

the surface diffusion of a single biomolecule on the sur-

face of the growing object.

As we remember, our solution is an electrolytic one.

When ions, which can easily diffuse, are present in the

solution they will tend to concentrate in the vicinity of the

oppositely charged ions. For Cl– ions the lyzosyme mole-

cule is an oppositely charged macroion, because under the

pH of interest a lyzosyme has quite a big positive charge

on its surface. This will increase the apparent dielectric

constant of the solution, and will depend on the concen-

tration of the ions. This is called the Debye-Hückel

screening, and the effect is a distance dependent dielectric

constant: 	eff = 	H2O exp(+ � r), where � is a parameter of

the solution, and r is the interaction distance between two

ionic forms. (In general, one can feel free to use the

Kirkwood approximation for 	 as well; in this way, there

is a possibility of taking into account the hydrophobic ef-

fect clearly present in the electrolyte.)

Using the linearized Boltzmann equation, which re-

lates distribution of ions around the central ion, and the

Poisson equation from electrostatics, which in turn, de-

scribes the charge density distribution around the central

ion, we obtain the linearized Poisson-Boltzmann equa-

tion20 �
r = (	0 	H2O kBT)–1 n z e r ri i

0 2

0

2 2� �y k y , where

n i

0 , z i

2 , e 0

2 have their usual meanings, and the solution of

this equation is yr = A exp(– k r) / r, where A =

zi e0 / 4� e0 eH2O. After expanding the exponential term,

exp(– k r) � 1 – k r in a Taylor series up to the second

term, we can write down the resulting equation of the

electrostatic potential that would be found at a distance r

from the ion:20

yr = yion + ycloud =

z e

r

i

H2O

0

04pe e
–

z ei

H2O

0

04

k

e ep
=

z e

r

i

H2O

0

0

14

1 1

pe e k
��

��
�

���
(15)

Note that for relatively large r's the potential ap-

proaches a constant, yr, and the electric field intensity is

expected to be approximately yr times the distance from

the crystal surface, which at some constant distances

from the surface will roughly be constant, too. We see

that the first term is the potential that would be found at

distance r from the ion under consideration if there were

no screening. This is reduced by the effect of the other

ions, which screen the interactions of this ion from the

others – and from the solvent – lowering the free energy.

The screening is controlled by the �–1, and the screening

operates exponentially with the distance. This screening

has the effect of lowering the potential surrounding any

ion, and the growing crystal too, which will lower the

total free energy of the ionic solution, and cut back inter-

actions between the ions.

Moreover, it may generate the possibility of bringing

together lyzosyme molecule to the surface of the growing

object, so close that the Van der Waals attracting force

will dominate repulsive electrostatic force and hydrogen

bonds between these two objects would be created.

The Bjerrum length LB represents the approximate

distance within which electrostatic interactions dominate

thermal motion for two elementary charges. (We pro-

pose that this is true of interactions between two mole-

cules or between a molecule and the growing object.)

Beyond this distance, the thermal energy is bigger than

electrostatic energy, and hydrogen bonds may not be

created. In that case, thermal diffusion on the surface is

possible as long as the molecule does not find a place

where electrostatic energy is bigger than thermal energy.

In such a place, an association can occur. The maximum

thermal diffusion length is equal to LD.

A careful reader has immediately noticed that nmi

from Eq. (12) has not been determined yet. We will do it

now.
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From elementary electrostatics,21 i.e. applying the

Maxwell-Gauss law to a charged conductor, we know the

fact that the attractive force F (see previous section) equals:

F =
s

e e

n p

H2O

Q

0

, (16)

(	0 has its well-known meaning), but the speed �mi is,

within the realm of overdamped regime approximation,

just a ratio:

nmi =
F

g
, (17)

where � (here: � >> 1) denotes the damping constant

closely related to the viscosity (�) of the solution in the

monolayer adjacent to the crystal surface (presumably

half of the double-layer). The relation is:

� = 2rp � , (18)

where it is presumed that the adjacent monolayer is of

the order of a protein molecule diameter (again, an im-

plicit notification of the double-layer arises; the

lyzosyme diameter is of the order of 3 nm). Then, after

utilizing the above, applying the Einstein-Smoluchowski

relation,22 using a standard definition of the surface

charge density �n = Qn / Sn, where Sn stands for the crys-

tal area, and finally replacing Sn by some LD

2 (for sim-

plicity, we wish to compare them directly, like Sn = LD

2 ,

but in a thorough replacement one should expect a geo-

metrical pre-factor to appear) as well as reasonably pos-

tulating a (surface) diffusional natural scaling, like

tD = d 0 LD

2 (19)

with a characteristic surface diffusion time, denoted by

tD, one may easily arrive at the final result, namely:

nmi =
lB

At
(20)

where lB = LB exp(– 2 k rp).

Formula (20) was derived under a weak geometrical

restriction, d0 D0 = (3 p)–1, because the Einstein-Smolu-

chowski formula D = kBT / 6 � h rp is valid for spheri-

cally symmetric objects for any diffusion coefficient D,

which in turn can be expressed by D = D0 exp(– EA �),

where b = 1 / kB T is the inverse thermal energy, whereas

EA represents the activation energy for the surface diffu-

sion process; as expected, kB stands for the Boltzmann

constant; the argument EA� is thus dimensionless.

Recalling all the data and experimental studies

known so far, we would like to opt for a double-layer

scenario of Stern type. In Stern’s model, the first layer is

»pinned« electrostaticly to the crystal (Figure 4). This is

an immovable layer and consists of immovable ions,

whereas the second layer is diffusive. We can see that a

diffusion controlled adsorption mechanism can be real-

ized also in such a case.

ASYMPTOTIC KINETIC LIMIT OF THE CRYSTAL
GROWTH RATE

Typically nmi >> dR / dt, which seems to be very natural,

at least in the late time zone, because the crystal grows

much slower than an individual protein molecule

(»macroion«) can move. The solution of (12) is, in gen-

eral, a nonlinear solution, but for the mature stage of the

growing process and under the given set of growing con-

ditions, a simple asymptotic (late time) solution can be

typically recast, namely R ~ t, which in turn leads to the

conclusion that the growth rate, Vgr, should, roughly

speaking, be constant, i.e. Vgr = dR / dt 
 for t >> 1.

As seen from (13), the main rate-limiting factor ap-

pears to be the product of � �mi, where � and �mi have

been thoroughly determined above.

Let us assume that the double-layer experiences

fluctuations of the velocity field within it. Fluctuating

part of the velocity field is a Gaussian white noise

(non-correlated fluctuation) of the strength 1 >> D > 0:

�(r,t) = �mi + V(t) , (21)

where �mi = n( , )r t is a positive constant and V(t) is the

fluctuating part

V t( ) = 0 , V t V s D t s( ) ( ) ( )� �2 d (22)

where d( )t s� is the Dirac distribution.

In this case, our starting Eq. (12) is:

d

d
mi

c

R

t
V t

R

R R
� �

�
�

s n
G

( ( ))
2

(23)

Relation R t( ) versus t for several values of the

fluctuation strength D is shown in Figure 2 in Ref. 23.

We can see that when the field fluctuations grow, then

the growth velocity increases. At the early stage of evo-
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Figure 4. Naive picture of protein crystallization controlled by the
double-layer effect.



lution, field fluctuations cause a very fast growth of the

sphere in a nonlinear fashion. For long times, in turn, the

growth is observed to be linear in time.

COMPARISON WITH SEMINAL LITERATURE
DATA (on lyzosyme crystal growth)

The comparison, we would like to sketch briefly, is due

to the kinetics of the crystal growth presented in the

Chernov’s model.1

In the Chernov’s model, the kinetic coefficient of a

crystal face taken as a distinguished unit is b = bst p,

where the vicinal slope, p, is typically equal to 10–2 (p is

the average step density normalized by the step height).

Therefore � � 10–6 – 10–5 cm s–1.

In our model we have Vgr = � �mi, where Vgr –

growth rate and �mi – single molecule speed, and �mi =

(LB / D) exp(–2�rp – EA / kBT), where D is the elemen-

tary diffusion jump time from one of the minima to an-

other: the deepest minimum is the best; EA is the ener-

getic barrier (activation energy of the jump).

In the Chernov’s model, the lyzosyme diffusivity is

D � 10–6 cm2 s–1. Therefore, the growth length of a crys-

tal less than D / � � 0.1 cm in size should be controlled

mainly by incorporation of species at the interface rather

than by bulk diffusion, though in generally coupling is

possible between the interface kinetics, diffusion and

liquid flow to produce instabilities.

Our characteristic length for the growing crystal

reads lchar = �–1(LD

2 /LB )e
ymin , where ymin = 2�rp + EA �,

and where 0 < ymin � 1.

Therefore:

lcr ~ �–1
L

L

D

2

B

(24)

because again e
ymin � 1+ymin, and for water one has

LB � 10–9 m. One may state that for a sphere

LD

2 � 4�r2 ~ 10–16 m2, so that for � ~ 10–4 we are able to

get lchar ~ 10–3 m = 10–1 cm, which confirms, at least

qualitatively, a typical characteristic crystal length as es-

timated by Chernov1 and others (see also Drenth &

Haas, private communication).24

We see that our model is in agreement with other

types of models. Other models are geometrical models,

because there are terraces and spiral growth. We can

crudely substitute terraces characteristic of the Burton

et. al. model25 just by including a perturbation of sphe-

ricity. Other models do not have any parameters charac-

teristic of the electrolyte. Our model includes some pa-

rameters that characterize the growth from electrolyte: lB

and �–1. Our model, like that recommended in Chernov’s

review, includes also the quantities that can be available

from experiment.

FINAL ADDRESS

First of all, we wish to underline that we have investi-

gated a model of protein crystal growth in its, perhaps

oversimplified, version, which can be named: the evolu-

tion of a spherical object in water-based electrolyte.

There are, however, certain reasons for which our ap-

proximation looks promising:

(i) The apparent simplicity of our approach: to ob-

tain an evolution equation, we use a straightforward and

very natural procedure.

(ii) The above is, in fact, in full agreement with pre-

scribing an equilibrium boundary condition for the

evolving sphere, where, however, the evolution is real-

ized in its large time limit, so that the curvature of the

sphere is of negligible value, cf. the Gibbs-Thomson

capillarity condition. This is the so-called mature stage

of the growing process, being certainly of prior techno-

logical importance.

(iii) The PDH electrostatic scenario, assigned to the

double-layer, fits very well such a prescription at the

boundary, and appears to be a context, being in excellent

agreement with the diluted regime approximation (see

Introduction).

(iv) The crystal growth rate, predicted by our deter-

ministic evolution equation, resulting from the charged-

mass conservation law, takes on a constant value for the

large time limit, and shows some »logarithmically-influ-

enced« discrepancies from that linear growth, but mostly

for initial stages of the evolution; it should be underlined

that it is in excellent accord with the well-known Burton

et. al. model,25 where the growth is realized via deposi-

tion on surface terraces in a spiral-like manner, for

which also the growth rate appears to tend to a con-

stant.26 Moreover, an analogous product to our � �mi ap-

pears also in another study, viz. that of the surface diffu-

sion controlled ADP crystal growth from solution27 (see

Eq. 16 therein).

(v) The physically-motivated incorporation of a sto-

chastic perturbation into our model (in general, some

well-defined escape of the system from the PDH sce-

nario could be modelled in this way) acts at least two-

fold: first, it gives an opportunity to determine a charac-

teristic crystal growth length (see above), and second, it

enables to make a comparison between our modelling

and some other models, accepted recently as a thorough

process description.

(vi) Our final result(s) can be fully expressed by

quantities that are, no doubt, measurable quantities, so

that such a comparison can, in principle, be quantified.

(vii) For simplicity, it is possibile to extend our model

toward applying to nanocrystals and/or to make it more

specific, e.g. modify the equilibrium Gibbs-Thomson inter-

nal boundary condition (c(R) = c0(1 + � K0), where K0 =

2/R), by adding a nonlinear curvature term i.e. the

A NOVEL MODEL OF PROTEIN CRYSTAL GROWTH 135

Croat. Chem. Acta 76 (2) 129–136 (2003)



Gaussian curvature (K1 = 1/R2), specifically c(R) =

c0(1 + � K0 + � T

2
K1) where �T is the Tolman parame-

ter.10,28 The solution of our starting evolution Eq. (12),

asymptotically, is linear in time, but in the entire time

domain (for specific physically-motivated choice of pa-

rameters), the solution includes additional (e.g. logarith-

mic) corrections.

(viii) One ought to be aware of simplifications, en-

abled by our modelling, which at the first glance seem to

abandon all the specifics of individual protein crystal

growth processes, which is surely very important as well.
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SA@ETAK

Novi model rasta proteinskih kristala: kineti~ke granice i uloga elektri~noga dvosloja

Adam Gadomski and Jacek Siódmiak

Predlo`en je kineti~ki model, kojim se, uz pretpostavku o~uvanja mase i naboja, mogu opisati najva`nija

fizikalno-kemijska svojstva sustava pri kristalizaciji iz vodene otopine elektrolita. Iako se prou~avane pojave

odvijaju u re`imu konvekcije masa, one su ipak kontrolirane pojavama na me|upovr{ini, i to vjerojatno elektri~kim

dvoslojem Sternova tipa, koji okru`uje rastu}e ~estice. Umno`ak presi}enja i brzine biomolekule u dvosloju

pokazao se kontroliraju}im kineti~kim faktorom, a ujedno i asimptotskom granicom kinetike promatranoga

procesa. Model je uspje{no testiran na rastu kristala lizozima.
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