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A novel approach to the construction of invariants for characterization of 2-D maps, such as
2-D proteome maps, 2-D NMR spectral maps, etc., is put forward. The approach is based on
consideration of the neighborhood of points (spots) of the map and it is sufficiently flexible to
allow one to vary not only the number of nearest neighbor spots used in characterization of a
map but also the density of information on the relative distance of the selected map points. The
method is illustrated with a Coomassie brilliant blue stained 2-D gel electrophoresis pattern of
the Fisher F344 rat liver proteome.
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INTRODUCTION

In order to arrive at a numerical characterization of graphi-
cal and visual 2-D maps, we have recently outlined the
steps that allow construction of 2-D map invariants.1–10

By the word »map« we mean a region of X-Y plane with
N discrete points or spots given by their Cartesian coordi-
nates. Here characterization means constructing of a set
of M numerical invariants, which are quantities that are
independent of the orientation of X, Y coordinate axes and
independent of the labeling of the N points. Thus, if two
laboratories consider the same map and have selected the
same set of protein spots for characterization of a
proteome map, then they should arrive at the same set of
values of numerical descriptors of the map. The availabili-

ty of such schemes makes it possible to catalogue visual
data in a digital format, which enables one to numerically
characterize 2-D maps and quantify their degree of simi-
larity. Moreover, this will make it possible to explore the
relationship between the structure of foreign agents (e.g.,
toxins) and the effects they have on the proteome.

ON MATHEMATICAL OBJECTS ASSOCIATED
WITH A MAP

The underlying structure of hitherto reported characteriza-
tions of 2-D maps, all of which have been illustrated with
data from proteome laboratories, is summarized in Figure
1. The first step consists in associating with a map a suita-
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ble mathematical object, which is then represented by a
numerical matrix, which allows construction of additional
matrices, all of which are used as the source of various
map descriptors. In the past, the following mathematical
objects were associated with 2-D maps: (i) embedded zig-
zag curve over a selection of N points of a map;1–3,6 (ii)
embedded graph of partial ordering on a selection of N

points of a map;4,5,7,9 and (iii) embedded cluster graph on
a selection of N points of a map.8 One can always associ-
ate with a set of N points in 2-D Voronoi polygons (in
3-D Voronoi polyhedra) and its dual, the Delaney triangu-
lation of the plane,11 but construction of these objects re-
quires prior computer processing of the data. The ques-
tion poses itself: Can we arrive at alternative mathemati-
cal objects that can be the basis for map characterization
not being computer-intensive? As we will outline in this
article, not only is the answer positive but the here pro-
posed scheme has some advantages over the existing
schemes for characterization of 2-D maps.

For N points in a plane, an embedded zigzag curve
introduces N–1 line segments (edges), while the embed-
ded graph of partial ordering will have approximately N 2

edges. In contrast, the number of edges of an embedded
cluster graph is variable and it depends on the selection
of the critical distance. Hence, in this respect the ap-
proach based on the cluster graph has the flexibility that
the other two schemes do not possess. On the other
hand, it is still an open question what is the optimal
»density« of a mathematical object that is sufficient to
capture the most essential features of a map. Here we
speak of »density« in the sense of »dense graphs« and
»sparse graphs«, which is analogous to »dense matrices«
and »sparse matrices«.12 Hence, how many lines would
suffice to adequately characterize a 2-D map? For exam-
ple, does the use of N–1 line segments of a zigzag curve
or N 2 edges of a graph of partial ordering suffice for ade-
quate characterization of a 2-D map? As we will see, us-
ing the nearest neighborhood of each spot for character-
ization of maps offers an answer to the above question.

OUTLINE OF THE APPROACH

The novel approach is based on the concept of the neigh-
borhood of a point (spot) in a 2-D map. In this respect
there is some similarity between this approach and the
cluster approach, but with a distinction that the present ap-
proach generates approximately uniform »density« for the
embedded neighborhood graph. This is not the case of the
cluster approach, which may lead to dense cluster graphs
in some parts of the map and sparse cluster graphs in other
parts. We will illustrate the novel approach with the data
considered in our earlier work3,9 shown in Table I, where
we have listed the (x, y) coordinates of locations of protein
spots, separated by the 2-D PAGE (PolyAcrylamide Gel
Electrophoresis) technique. The data represent a proteome
pattern from liver cells of male Fisher F344 rats. Figure 2

346 M. RANDI] et al.

Croat. Chem. Acta 77 (1–2) 345¿351 (2004)

Figure 1. The underlying structure of quantitative methods for
characterization of 2-D maps by map invariants.

TABLE I. The list of coordinates (x, y) and abundance (z) of the 30
most intensive spots in the proteome map of liver cells of male
Fisher F344 rats

Spot
no.

x y z Spot
no.

x y z

1 2117.7 2278.6 1443.57 16 2032.7 902.8 800.15

2 2804.3 903.6 1436.30 17 2752.7 765.6 798.70

3 1183.9 959.6 1366.53 18 2334.2 980.2 727.91

4 2182.2 928.8 1272.95 19 1053.6 864.3 721.73

5 2685.6 1196.1 1185.81 20 2519.5 1365.9 694.52

6 1527.9 825.5 1149.29 21 2552.5 2409.4 677.72

7 1546.0 1352.5 1122.51 22 1214.3 620.0 648.84

8 2868.5 778.0 1088.93 23 2651.1 1149.6 610.74

9 1406.3 1118.1 982.24 24 2327.9 677.3 592.94

10 2450.2 409.2 936.01 25 2094.5 680.5 589.77

11 1474.0 665.1 900.04 26 1021.7 390.2 580.01

12 2974.9 772.8 867.30 27 1702.7 2138.3 574.00

13 2068.4 823.1 848.42 28 2070.4 929.6 554.02

14 642.2 669.8 824.92 29 2771.7 1451.0 538.96

15 2860.7 1649.9 819.65 30 2772.8 1326.9 513.47
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Figure 2. The simplified proteome map of liver cells of male Fisher
F344 rats showing the locations of the spots of 30 most abundant
proteins listed in Table I.



shows the simplified proteome map, in which only the po-
sitions of the spots of 30 most abundant proteins are given.

We first calculate the Euclidean distances between
protein spots and make a short list of its nearest neigh-
bors for each spot in order to obtain the desired mathe-
matical object, the neighborhood graph. We then select
the number of nearest neighbors, NN, to be NN = 1, 2,...,
6. For a given NN, we find NN nearest neighbors for
each spot separately and connect the spot considered by
lines with these NN spots. Figures 3 and 4 show the
neighborhood graphs obtained for the 30 protein spots of
Table I when NN = 1 and NN = 6, respectively. Observe
that in the case NN = 1 some vertices (spots) have de-
gree one, while most of the other spots have degree two
and one has degree three. Neighborhood graphs not only
span all the spots of a map but they also have a fairly
uniform density. For NN = 4, we have a connected graph
for the first time, while for NN = 6 we obtain the graph
depicted in Figure 4, having no cutvertex, which means
that the embedded graph can be fully reconstructed from
the AD matrix, in which only Euclidean distances be-
tween adjacent points are given. A vertex in a graph is
called a cutvertex if its removal increases the number of
components.13

NEIGHBORHOOD GRAPHS FOR NN = 1–6

Table II lists the six nearest neighbors for each of the 30
protein spots of Table I and the corresponding distances.
The first entry in the second column (indicated by 1st),
which is 27, means that the nearest neighbor of spot # 1
is spot # 27. Next entries in the first row: 21, 15, 20, 29,
and 30 mean that the second, third, fourth, fifth and the
sixth neighbors of spot # 1 are spots 21, 15, 20, 29, and
30, respectively. One should note that, e.g., the nearest
spot to spot 2 is spot 8 but the nearest spot to spot 8 is

not spot 2 but spot 12. The number of edges in the
graphs of the nearest neighborhood increases at an ap-
proximately constant rate, at least for the initial steps.
For NN = 1 to NN = 6 the number of edges is: 22, 41, 57,
74, 92, and 111, respectively.

We will associate the relative distance matrix R, de-
rived from the AD matrix, with a neighborhood graph
embedded in a proteome map. The R matrix is symmet-
ric, R = RT, and its non-zero element �R�ij is defined as
the quotient of the Euclidean distance between the corre-
sponding pair of adjacent vertices (spots) (i, j) and the
maximal Euclidean distance Dmax between two spots in
the map. In the case of the map in Figure 2, Dmax is the
distance between spots # 21 and # 26. For small values
of NN, the R matrix is a sparse matrix. One should note
that the present approach does not require searching for
the shortest paths, as is the case with the approach using
clustering of spots. Moreover, we preserve the flexibility
of the cluster approach by having the opportunity to vary
the number of edges in a graph by changing the number
of nearest neighbors, the parameter NN.

In the second column of Table III, indicated by NN =
1, we list the row sums of the R matrix associated with
the neighborhood graph for NN = 1. In the last row of Ta-
ble III, we show the average row sum of the R matrix
(0.12009), which is a map invariant. The individual row
sums allow one to construct local map invariants. Sup-
pose that we are interested in a smaller region of the
proteome map, for example, a cluster of spots around the
protein spot # 30, which involves spots 5, 15, 20, 23, 29,
and 30. We can then consider only the row sums corre-
sponding to these spots and view the average as a
descriptor of this region. Thus, when using just the near-
est neighbor, NN = 1, we obtain for the region: (0.11659 +
0.08599 + 0.09374 + 0.02285 + 0.13497 + 0.04898) / 6 =
0.08385; for NN = 2: 0.26414; for NN = 3: 0.45559, etc.
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Figure 3. The neighborhood graph for the 30 protein spots of
Table I for NN = 1.
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Figure 4. The neighborhood graph for the 30 protein spots of
Table I for NN = 6.



The question arises: Is there an optimal number NN

that suffices for characterization of a map, or do we get
more and more information about the map if NN in-
creases until all distances are incorporated and the
neighborhood graph becomes the complete graph? As
we will see, in the present approach it is sufficient to ana-
lyze any of the three initial neighborhood graphs in or-
der to obtain map characterization, because it is possible
to obtain the corresponding invariants of larger neigh-
borhood graphs from smaller ones. Hence, if we select
neighborhood graphs for NN = 1–3, it appears that ap-
proximately 2N edges may offer useful map character-
ization. This finding enables us to increase the efficiency
of analyzing the data on proteome maps.

INCORPORATION OF ABUNDANCES INTO
ANALYSIS

Thus far, we have not considered information on protein
abundances in the proteome map studied. As outlined in
our previous papers on graphical representation and nu-
merical characterization of proteome maps,1,2 inclusion of
these data does not cause any difficulties. There are two
alternative ways of including abundance as a third coordi-
nate: Either (i) we construct neighborhood graphs using
(x, y, z) coordinates; or (ii) we use 2-D neighborhood
graphs but calculate map vectors (to be outlined later) us-
ing (x, y, z) coordinates. We prefer the latter approach for
the following reasons: (i) There is no need to construct
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TABLE II. The six nearest neighbors for each of the 30 protein spots of Table I and the corresponding Euclidean distances in parentheses

Spot no. Nearest neighbor protein spot (distance)

1st 2nd 3rd 4th 5th 6th

1 27 (432.39) 21 (459.80) 15 (973.30) 20 (999.66) 29 (1058.55) 30 (1158.79)

2 8 (141.06) 17 (147.33) 12 (214.97) 23 (289.80) 5 (315.67) 30 (424.47)

3 19 (161.43) 9 (273.10) 22 (340.96) 6 (369.21) 11 (413.39) 7 (425.03)

4 28 (111.80) 16 (151.74) 13 (155.32) 18 (161.11) 25 (263.33) 24 (290.66)

5 23 (57.90) 30 (157.20) 20 (237.53) 29 (269.05) 2 (315.67) 18 (411.38)

6 11 (169.21) 9 (316.86) 3 (362.21) 22 (374.93) 19 (475.88) 16 (510.68)

7 9 (242.03) 3 (425.03) 6 (557.51) 19 (569.07) 11 (699.22) 22 (744.25)

8 12 (106.53) 17 (116.46) 2 (141.06) 23 (430.52) 5 (456.36) 24 (549.90)

9 7 (242.03) 3 (273.10) 6 (316.86) 19 (434.52) 11 (458.03) 22 (533.82)

10 24 (294.68) 25 (447.35) 17 (467.47) 8 (557.66) 13 (563.10) 18 (584.62)

11 6 (169.21) 22 (263.59) 3 (413.39) 9 (458.03) 19 (465.21) 26 (529.29)

12 8 (106.53) 2 (214.97) 17 (222.32) 23 (496.81) 5 (512.72) 30 (589.81)

13 16 (87.33) 28 (106.52) 25 (144.97) 4 (155.32) 24 (297.65) 18 (309.65)

14 19 (455.06) 26 (471.38) 22 (574.26) 3 (614.35) 11 (831.81) 9 (885.90)

15 29 (217.90) 30 (334.75) 20 (443.93) 5 (486.41) 23 (542.43) 2 (748.43)

16 28 (46.26) 13 (87.33) 4 (151.74) 25 (230.73) 18 (311.78) 24 (571.47)

17 8 (116.46) 2 (147.33) 12 (222.32) 23 (397.21) 24 (433.88) 10 (467.47)

18 4 (161.11) 28 (268.99) 24 (304.97) 16 (311.78) 23 (358.40) 25 (385.33)

19 3 (161.43) 22 (292.42) 9 (434.52) 14 (455.06) 11 (465.21) 26 (475.17)

20 5 (237.53) 23 (253.19) 30 (256.28) 29 (266.17) 18 (426.00) 15 (443.93)

21 1 (459.80) 15 (819.65) 27 (892.00) 29 (983.15) 20 (1044.02) 30 (1104.69)

22 11 (263.59) 19 (292.42) 26 (299.84) 3 (340.96) 6 (374.93) 9 (533.82)

23 5 (57.90) 30 (215.05) 20 (253.19) 2 (289.80) 29 (324.63) 18 (358.40)

24 25 (233.42) 4 (290.66) 10 (294.68) 13 (297.65) 18 (304.97) 28 (360.50)

25 13 (144.97) 16 (230.73) 24 (232.42) 28 (250.26) 4 (263.33) 10 (447.35)

26 22 (299.84) 14 (471.38) 19 (475.17) 11 (529.29) 3 (592.05) 6 (667.63)

27 1 (432.39) 7 (862.97) 21 (892.00) 9 (1062.38) 20 (1124.17) 15 (1256.78)

28 16 (46.26) 13 (106.52) 4 (111.80) 25 (250.26) 18 (268.99) 24 (360.50)

29 30 (124.10) 15 (217.90) 20 (266.17) 5 (269.05) 23 (324.63) 2 (548.37)

30 29 (124.10) 5 (157.20) 23 (215.05) 20 (256.28) 15 (334.75) 2 (424.47)



3-D neighborhood graphs to replace the already available
2-D neighborhood graphs; and (ii) Experimental errors in
measuring the position of spots are separated from errors
in measuring intensities of spots, and the only experimen-
tal errors affecting construction of neighborhood graphs
are those of measuring the positions of spots. Proteome is
not a fixed characteristic of the cell. The same cells ex-
posed to different influences have different proteomes,
but in the maps of these proteomes the same proteins are
located in the same positions. Consequently, the x, y coor-
dinates can be obtained with greater precision (after cal-
culating the averages).

We will now construct a 2-component vector for each
protein spot of the map. The first component of vector vi

associated with the protein spot i equals the sum of en-
tries in the i-th row of the R matrix associated with the
neighborhood graph embedded in the map. The second
component is the protein abundance. Clearly, the magni-
tude of vi, �vi�, depends on NN, the number of the nearest
neighbors considered. The components of these vectors
are local descriptors. Table IV lists, for the 30 protein
spots of Table I, the magnitudes of the 2-component vec-
tors for NN = 1 to NN = 6. The entries of Table IV are ob-
tained by combining the corresponding entries in Table
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TABLE III. Row sums of the relative distance matrices R associated with the neighborhood graphs representing the proteome map of
Figure 1 for NN = 1, 2,..., 6

Row Row sum of R

NN = 1 NN = 2 NN = 3 NN = 4 NN = 5 NN = 6

1 0.35210 0.35210 0.73803 1.13255 1.55031 2.00763

2 0.05567 0.19865 0.19865 0.31302 0.43760 1.11691

3 0.06371 0.33923 0.78265 1.02511 1.25876 1.25876

4 0.10770 0.28224 0.34359 0. 34359 0.44751 0.44751

5 0.11659 0.17899 0.17899 0.47713 0.98416 1.14651

6 0.06678 0.19183 0.55756 0.70553 0.89334 1.35836

7 0.09552 0.60383 0.82385 1.04844 1.32439 1.61811

8 0.14365 0.14365 0.14365 0.53364 0.71374 0.93076

9 0.09552 0.32833 0.44981 1.09984 1.09984 1.66013

10 0.11630 0.29285 0.47734 0.69742 0.91961 1.15033

11 0.17081 0.17081 0.33396 0.72361 1.51144 1.51144

12 0.04204 0.12688 0.21462 0.41069 0.61304 0.84581

13 0.09168 0.13372 0.19502 0.43469 0.65688 0.65688

14 0.17959 0.36562 0.59225 0.83471 1.16299 1.51261

15 0.08599 0.54158 1.10271 1.29467 1.50874 2.30010

16 0.05273 0.20367 0.20367 0.20367 0.32671 0.67485

17 0.04596 0.10410 0.37633 0.53309 0.70432 0.70432

18 0.06358 0.16974 0.29010 0.41230 0.70350 1.23801

19 0.24330 0.35870 0.71771 0.94230 1.31371 1.31371

20 0.09374 0.19366 0.57504 0.96956 1.99341 1.99341

21 0.18146 0.50494 0.85697 1.24497 1.65700 2.09297

22 0.22236 0.33776 0.69895 0.84692 0.84692 1.35131

23 0.02285 0.20764 0.20764 0.84475 1.18694 1.32838

24 0.20841 0.32312 0.44348 0.56095 0.73218 1.23807

25 0.14894 0.41655 0.41655 0.51532 0.61924 0.61924

26 0.11833 0.30436 0.49189 0.70078 0.93443 1.19791

27 0.17064 0.51121 0.86324 1.28251 1.72617 2.22216

28 0.06238 0.21058 0.21058 0.30935 0.30935 0.45162

29 0.13497 0.13497 0.24001 0.73419 1.28007 1.49649

30 0.04898 0.32800 0.42914 0.42914 0. 42914 1.72272

Average 0.12009 0.28531 0.47347 0.72015 0.99485 1.30557



III and Table I (column indicated by z whose entries have
to be divided by 1443.57, the abundance value for protein
# 1 in the list). For example, the first two entries in the
second column of Table IV are 1.06018 = 0 35210 12 2. �
and 0.99652 = 0 05567 0 994962 2. .� . As NN increases,
the magnitudes of the vectors also increase, or remain the
same if the particular protein has no additional neighbors.
In the last row of Table IV, we give the average magni-
tudes of the 2-component vectors, which are 0.60868 for
NN = 1; 0.67844 for NN = 2, etc. These quantities are
invariants of the proteome map considered. Using the aver-
age magnitudes of the 2-component vectors for NN = 1 to
NN = 6 one can construct a novel map invariant, a vector

in 6-D space, which in the case of the proteome map
considered reads (0.60868, 0.67844, 0.80256, 0.96642,
1.19346, 1.46402).

ANALYSIS OF MAP DESCRIPTORS

It is of considerable interest to see if there is some hid-
den structure in the collection of map descriptors. First,
recall that each column of Table IV corresponds to one
of the six neighborhood graphs such as those of Figures
3 and 4 for NN = 1 and NN = 6, respectively. While the
number of edges in the neighborhood graphs increases
as NN increases, there is no clear simple way of predicting
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TABLE IV. Magnitudes of the 2-component vectors associated with the 30 protein spots of Table I for NN = 1 to NN = 6

Spot no. Magnitude of 2-component vector

NN = 1 NN = 2 NN = 3 NN = 4 NN = 5 NN = 6

1 1.06018 1.06018 1.24285 1.51085 1.84485 2.24290

2 0.99652 1.01460 1.01460 1.04304 1.08694 1.49581

3 0.94877 1.03039 1.22827 1.39533 1.57499 1.57499

4 0.88767 0.92521 0.94573 0.94573 0.98824 0.98824

5 0.82972 0.84071 0.84071 0.94996 1.28193 1.41041

6 0.63830 0.81892 0.97196 1.06377 1.19662 1.57448

7 0.78343 0.98451 1.13286 1.30532 1.53579 1.79525

8 0.76782 0.76782 0.76782 0.92395 1.03843 1.19801

9 0.68709 0.75549 0.84426 1.29330 1.29330 1.79416

10 0.65875 0.71147 0.80516 0.95227 1.12521 1.32049

11 0.64645 0.64645 0.70729 0.95516 1.63499 1.63499

12 0.60227 0.61405 0.63798 0.72775 0.85836 1.03748

13 0.59483 0.60274 0.61923 0.73101 0.88142 0.88142

14 0.59900 0.67840 0.82298 1.01158 1.29580 1.61695

15 0.57426 0.78466 1.24030 1.41370 1.61204 2.36914

16 0.55697 0.59052 0.59052 0.59052 0.64341 0.87330

17 0.55503 0.56283 0.66900 0.76820 0.89555 0.89555

18 0.50823 0.53204 0.58174 0.65134 0.86555 1.33676

19 0.55601 0.61533 0.87468 1.06672 1.40563 1.40563

20 0.49016 0.51862 0.74976 1.08236 2.05065 2.05065

21 0.50332 0.68947 0.97714 1.33055 1.72222 2.14498

22 0.50022 0.56112 0.83025 0.95815 0.95815 1.42366

23 0.42370 0.47129 0.47129 0.94477 1.26009 1.39413

24 0.46060 0.52261 0.60448 0.69526 0.83953 1.30443

25 0.43485 0.58346 0.58346 0.65762 0.74187 0.74187

26 0.41885 0.50405 0.63513 0.80779 1.01715 1.26350

27 0.43270 0.64765 0.95042 1.34274 1.77138 2.25746

28 0.38882 0.43776 0.43776 0.49293 0.49293 0.59266

29 0.39700 0.39700 0.44384 0.82367 1.33341 1.54236

30 0.35905 0.48384 0.55738 0.55738 0.55738 1.75906

Average 0.60868 0.67844 0.80256 0.96642 1.19346 1.46402



the precise number of edges, except that they approxi-
mately increase at a constant rate (in this illustration
18.5). Thus, there is no simple relationship between the
magnitudes of individual entries shown in Table IV for
different NN, except that they steadily increase (or occa-
sionally stay unchanged). The question arises: Are the
average magnitudes of the 2-component vectors for NN

= 1 to NN = 6 related? The answer is affirmative. A plot
of the values in the last row of Table IV versus NN is
shown in Figure 5. As one can see from Figure 5, the av-
erage magnitude of the 2-component vectors, �v�av, for
NN = 1 to NN = 6 shows a quadratic dependence on NN

of very high quality: �v�av = 0.0253(�0.0007)NN2 –
0.0059(�0.0036)NN + 0.5896(�0.0055), the correlation
coefficient r = 0.9999, the standard error of estimate s =
0.0031, and the Fisher ratio F = 28204. This allows us to
make the following two important conclusions: (i) We
can reduce the number of significant descriptors from 6,
the six components of 6-D vectors, to three, the parame-
ters a, b, c defining the quadratic regressions: y = ax2 +

bx + c; (ii) Because the parabolic regression is of such
high quality, it means that already with three neighbor-
hood graphs, e.g., NN = 1, 2, and 3, we have captured
much of the characteristic of the parabolic regression.
This then means, at least in this particular approach for
characterization of proteome maps, that inclusion of a
larger number of nearest neighbors does not contribute
additional information on a map and hence we can work
with neighborhood graphs of a relatively small number
of nearest neighbors. This, of course, will be of interest
when screening a large number of maps.
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SA@ETAK

Karakteriziranje 2-D proteomskih mapa temeljeno na najbli`oj okolini mrlja

Milan Randi}, Nella Ler{, Dejan Plav{i} i Subhash C. Basak

Predlo`en je novi pristup konstrukciji invarijanata za karakteriziranje 2-D mapa kao {to su na primjer 2-D
proteomske mape, 2-D NMR spektralne mape itd. Pristup se temelji na razmatranju okoline to~aka (mrlja) mape i
dovoljno je fleksibilan da ne samo da omogu}ava mijenjanje broja razmatranih najbli`ih susjeda pri karakteriziranju
mape ve} i gusto}e informacija o relativnoj udaljenosti odabranih to~aka mape. Metoda je prikazana na proteomskoj
mapi jetrenih stanica Fisher F344 {takora dobivenoj 2-D elektroforezom i bojanjem s Coomassie plavim.
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Figure 5. The plot of the average magnitude of two-component
vectors �v�av for different NN versus NN. The least-squares pa-
rabola is drawn in the plot.


