CROATICA CHEMICA ACTA CCACAA **77** (1–2) 175–178 (2004) ISSN-0011-1643 *CCA*-2915 Original Scientific Paper

C-Acylation of 2-Methylfuran and Thiophene using N-Acylbenzotriazoles*

Alan R. Katritzky,** Kazuyuki Suzuki, and Sandeep K. Singh

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

RECEIVED JUNE 3, 2003; REVISED JULY 16, 2003; ACCEPTED JULY 18, 2003

Key words
C-acylation
2-methylfuran
thiophene
N-acylbenzotriazoles

Reactions of 2-methylfuran and thiophene with readily available N-acylbenzotriazoles (RCOBt, where R=4-tolyl, 4-methoxyphenyl, benzyl, 4-nitrophenyl, 4-diethylaminophenyl, 2-pyridyl and 1-naphthyl) in the presence of $TiCl_4$ or $ZnBr_2$ produced 2-methyl-4-acylfurans **2a-e** and 2-acylthiophenes **3a-f** in average yields of 54 % and 75 %, respectively. Literature yields for the preparation of the same compounds are significantly lower.

INTRODUCTION

We recently described the C-acylation of pyrroles and indoles using N-acylbenzotriazoles in the presence of TiCl₄ under mild conditions to give high yields of isomerically pure 2- and 3-acylated pyrroles and 3-acylated indoles.¹ As part of our continuing interest in the chemistry of Nacylbenzotriazoles, we describe here analogous C-acylations of 2-methylfuran and thiophene. Some Friedel-Crafts reactions of furans and thiophenes are complicated by the high reactivity of these heterocyclic rings under strong Lewis acid conditions.² Syntheses of acylthiophenes have been reported using carboxylic acid chlorides and catalysis with AlCl₃³ and SnCl₄.⁴ Other reported methods for C-acylation of furans and thiophenes require special reagents and/or give low to moderate yields.5-9 We now apply readily available *N*-acylbenzotriazoles for C-acylations of 2-methylfuran and thiophene in good to excellent yields in the presence of the relatively mild Lewis acids, TiCl₄ or ZnBr₂. Our method is particularly useful in cases where the corresponding acyl chlorides are unstable or difficult to prepare, for example, the 4-diethylaminobenzoyl or pyridyl-2-carboxyl derivatives. Yields obtained by our method are compared in Tables I and II with literature yields.

RESULTS AND DISCUSSION

Preparation of N-Acylbenzotriazoles

N-Acylbenzotriazoles **1a**–**f** with aryl or heterocyclic groups (R = 4-tolyl, 4-methoxyphenyl, benzyl, 4-diethylaminophenyl, 2-pyridyl, and 1-naphthyl) were readily prepared in 70–90 % yields from the corresponding carboxylic acids following the earlier reported one-step procedure. ¹⁰

Synthesis of 2-Acyl-5-methylfurans

The C-acylation proceeds with TiCl₄ catalysis at 25–35 °C or by heating up to 90 °C in dichloroethane with ZnBr₂. As shown in Table I, when 4-methylphenyl- (1a), benzyl- (1c), or 4-diethylaminophenylacylbenzotriazole (1d) were

^{*} Dedicated to Professor Nenad Trinajstić on the occasion of his 65th birthday.

^{**} Author to whom correspondence should be addressed. (E-mail: katritzky@chem.ufl.edu)

A. R. KATRITZKY et al.

TABLE I. C-Acylation of 2-Methylfuran

Compnd.	R	Lewis	temp.	time	yield ^(a)	previous work	
		acid	°C	h		reagent	yield / %
1a	4-CH ₃ C ₆ H ₄	ZnBr ₂	90	3.5	2a (94) ^(b)	4-CH ₃ C ₆ H ₄ COCl/AlCl ₃ ^(c)	59
1b	$4-MeOC_6H_4$	TiCl ₄	22	3.5	2b (81) ^(d)	4-MeOC ₆ H ₄ COCl/AlCl ₃ ^(c)	40
1c	$C_6H_5CH_2$	$ZnBr_2$	90	12	2c (68)	$C_6H_5CH_2Br/Pd(PPh_3)_2Cl_2^{(e)}$	81
1d	$4-\text{Et}_2\text{NC}_6\text{H}_4$	$ZnBr_2$	90	3.5	2d (98) ^{(f)(g)}	_	_
1e	2-pyridyl	TiCl ₄	35	12	2e (54) ^{(h)(i)}	2-Cyanopyridine/n-BuLi ^(j)	_

(a) Isolated yield; (b) Yield with TiCl $_4$ was 63 %; (c) Ref. 2; (d) Yield with ZnBr $_2$ was 75 %; (e) Coupling with 4-methyl-2-furanyl acid chloride 7 ; (f) Yield with TiCl $_4$ was 49 %; (g) m.p. 66–67 °C; (h) Yield with ZnBr $_2$ was 20 %; (i) m.p. 52–53 (lit. 11 m.p. 52–53 °C); (j) Ref. 11.

TABLE II. C-Acylation of Thiophene

Compnd.	R	Lewis	temp.	time	yield ^(a)	previous work		
		acid	°C	h	%	reagent	yield / %	
1a	4-CH ₃ C ₆ H ₄	ZnBr ₂	90	3.5	3a (89) ^{(b)(c)}	4-CH ₃ C ₆ H ₄ COCl/Stannic chloride ^(d)	93	
1b	4-MeOC ₆ H ₄	TiCl ₄	22	3.5	3b (78) ^(e)	4-MeOC ₆ H ₄ COCl/AlCl ₃ ^(f)	67	
1c	$C_6H_5CH_2$	$ZnBr_2$	90	12	3c (80)	$C_6H_5CH_2Br/KF^{(g)}$	50	
1d	$4-\text{Et}_2\text{NC}_6\text{H}_4$	$ZnBr_2$	90	3.5	3d (58) ^(h)	_	_	
1f	1-naphthyl	$ZnBr_2$	90	24	3f (97) ⁽ⁱ⁾	α-Naphthoyloxytrichlorosilane/AlCl ₃ ^(j)	69	

(a) Isolated yield; (b) Yield with TiCl₄ was 65 %; (c) m.p. 72–74 (lit.⁴ m.p. 75–76); (d) Ref. 4; (e) m.p. 73–74 (lit.¹² m.p. 73.5–74.0); (f) Ref. 12; (g) Coupled with 2-thenoyl acid chloride⁹; (h) Yield with TiCl₄ was 10 %; (i) Lit.¹³ m.p. 69.5–70.0; (j) Ref. 13.

used with ZnBr₂, higher yields of the corresponding acylfurans **2a** (84 %), **2c** (68 %) and **2d** (98 %) were obtained as compared to using TiCl₄. On the other hand, 4-methoxybenzoyl- (**1b**), or 2-pyridylacylbenzotriazole (**1e**) gave higher yields of **2b** (81 %) and **2e** (54 %) with TiCl₄ as compared to using ZnBr₂. 2-Acylfurans **2a**–**e** were characterized by ¹H and ¹³C NMR spectroscopy and also by elemental analysis for novel **2d**.

Synthesis of 2-Acylthiophenes

Using the method developed for the preparation of 2-acylfurans, the preparation of 2-acylthiophenes was carried out. As shown in Table II, 4-methylphenyl- (1a), benzyl-(1c), 4-diethylaminophenyl- (1d) or 1-naphthyl-acylbenzotriazole (1f) in the presence of $ZnBr_2$ gave the acylthiophenes 3a, 3c, 3d, and 3f in 89, 80, 58, and 97 % yields, respectively. In the presence of $TiCl_4$, (4-methoxyphenyl)(2-thienyl)methanone (3b) was obtained in 78 % yield (Table II).

CONCLUSION

We have shown that *N*-acylbenzotriazoles offer a convenient route for direct access to 2-acyl-5-methylfurans and 2-acylthiophenes.

EXPERIMENTAL

General

Dichloromethane was freshly distilled from calcium hydride. ZnBr₂ was dried in the oven for 24 hours prior to use. Column chromatography was performed on silica gel (200–425 mesh). Melting points are uncorrected. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded in CDCl₃ (with TMS for ¹H and chloroform-*d* for ¹³C as the internal reference) unless specified otherwise.

General Procedure for the Preparation of N-Acylbenzotriazoles (1a-f)

A mixture of aromatic or heteroaromatic acid (20 mmol), 1-(methylsulfonyl) benzotriazole¹⁰ (20 mmol) and triethyl-

amine (4.0 mL, 28 mmol) were dissolved in THF (120 mL) and the solution was refluxed overnight. The solvent was evaporated under reduced pressure and the residue was dissolved in chloroform. Aqueous work-up gave the crude product that was recrystallized to give pure *N*-acylbenzotriazoles **1a–f.**

1H-1,2,3-Benzotriazol-1-yl(4-methylphenyl)methanone (1a)

Colorless prisms (from ethanol). Yield: 91 %; m.p. 123–124 °C (Lit. 6 m.p. 123–124 °C).

IH-1,2,3-Benzotriazol-1-yl(4-methoxyphenyl)methanone (1b)

Colorless flakes (from ethanol); Yield: 72 %; m.p. 96–97 °C (Lit. 6 m.p. 96–97 °C).

1-(IH-1,2,3-Benzotriazol-1-yl)-2-phenyl-1-ethanone (1c) White crystals (from CH $_2$ Cl $_2$ /hexanes); Yield: 84 %; m.p. 65–66 °C (Lit. 6 m.p. 66–67 °C).

IH-1,2,3-Benzotriazol-1-yl[4-(diethylamino)phenyl]-methanone (1d)

Yellow crystals (from ethanol/hexanes); Yield: 85 %; m.p. 86–87 °C (Lit.⁶ m.p. 86–87 °C).

1H-1,2,3-Benzotriazol-1-yl(2-pyridyl)methanone (1e) Brown crystals (from CHCl₃/hexanes); Yield: 91 %; m.p. 98–100 °C (Lit.⁶ m.p. 98–100 °C).

1H-1,2,3-Benzotriazol-1-yl(1-naphthyl)methanone (1f) White microcrystals (from benzene); Yield: 88 %; m.p. 136-137 °C (Lit.⁶ m.p. 136-137 °C).

General Procedure for C-Acylation of 2-Methylfuran and Thiophene Using N-Acylbenzotriazoles 1a-f

To the mixture of 2-methylfuran or thiophene (2.5 mmol) and N-acylbenzotriazole (2.0 mmol) in CH_2Cl_2 (15 mL), $TiCl_4$ (1.0 M in CH_2Cl_2 , 4 mL, 4 mmol) or $ZnBr_2$ (4 mmol) was added and the mixture was stirred for a specified time and temperature (see Tables I–II for details). The reaction was quenched by adding MeOH (2 mL). The solvents were evaporated under reduced pressure and the residue was subjected to column chromatography on silica-gel using hexanes/ethyl acetate (2:1) as the eluent to give the C-acylated furan 2a-e or thiophene 3a-f.

(5-Methyl-2-furyl)(4-methylphenyl)methanone (2a)

Yellow oil; Yield: 94 %. 1 H NMR δ /ppm: 2.43 (s, 3H), 2.45 (s, 3H), 6.20 (d, J = 3.3 Hz, 1H), 7.10 (d, J = 3.3 Hz, 1H), 7.28 (d, J = 7.9 Hz, 2H), 7.84 (d, J = 7.9 Hz, 2H). 13 C NMR δ /ppm: 14.1, 21.6, 108.9, 122.4, 129.0, 129.2, 134.9, 142.9, 151.0, 158.4, 181.9.

(4-Methoxyphenyl)(5-methyl-2-furyl)methanone (2b)

Yellow oil; Yield: 81 %. ¹H NMR δ/ppm: 2.45 (s, 3H), 3.88 (s, 3H), 6.20 (dd, J = 0.8, 3.4 Hz, 1H), 6.95–6.99 (m, 2H), 7.10 (d, J = 3.4 Hz, 1H), 7.95–7.99 (m, 2H). ¹³C NMR

 δ /ppm: 14.1, 55.4, 108.8, 113.6, 121.8, 130.2, 131.4, 151.2, 158.0, 163.0, 180.8.

2-Phenyl-1-(5-methyl-2-furyl)-1-ethanone (2c)

Yellow oil; Yield: 68 %. 1 H NMR δ /ppm: 2.39 (s, 3H), 4.05 (s, 2H), 6.14 (d, J = 3.5 Hz, 1H), 7.13 (d, J = 3.5 Hz, 1H), 7.20–7.32 (m, 5H). 13 C NMR δ /ppm 14.0, 45.1, 109.1, 120.0, 126.8, 128.6, 129.4, 134.5, 151.0, 158.0, 185.8.

[4-(Diethylamino)phenyl](5-methyl-2-furyl)methanone (2d)

Yellow needles; Yield: 98 %; m.p. 66-67 °C. ¹H NMR δ /ppm: 1.21 (t, J = 7.0 Hz, 6H), 2.44 (s, 3H), 3.43 (q, J = 7.0 Hz, 4H), 6.17 (d, J = 2.6 Hz, 1H), 6.67 (d, J = 9.1 Hz, 2H), 7.08 (d, J = 3.3 Hz, 1H), 7.96 (d, J = 9.1 Hz, 2H). ¹³C NMR δ /ppm: 12.5, 14.1, 44.5, 108.4, 110.2, 120.3, 124.1, 131.9, 150.9, 151.8, 156.8, 180.2.

Anal. Calcd for $C_{16}H_{19}NO_2$ ($M_r = 257.34$): C 74.68, H 7.44, N 5.44 %; found: C 74.81, H 7.56, N 5.42 %.

(5-Methyl-2-furyl)(2-pyridinyl)methanone (2e)

Brown solid; Yield: 54 %; m.p. 52–53 °C (Lit.¹¹ m.p. 52–53 °C). ¹H NMR δ /ppm: 2.46 (s, 3H), 6.25 (d, J = 3.5 Hz, 1H), 7.44–7.48 (m, 1H), 7.83–7.89 (m, 1H), 7.97 (d, J = 3.5 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 8.70 (d, J = 4.2 Hz, 1H). ¹³C NMR δ /ppm: 14.1, 109.4, 123.7, 126.3, 126.4, 136.8, 148.4, 150.0, 154.2, 159.2, 178.4.

(4-Methylphenyl)(2-thienyl)methanone (3a)

White solid; Yield: 89 %; m.p. 72–74 °C (Lit.⁴ m.p. 75–76 °C). ¹H NMR δ /ppm: 2.41 (s, 3H), 7.11–7.14 (m, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 3.7 Hz, 1H), 7.67 (d, J = 4.8 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H). ¹³C NMR δ /ppm: 21.4, 127.7, 128.9, 129.2, 133.7, 134.3, 135.2, 142.9, 143.6, 187.7.

(4-Methoxyphenyl)(2-thienyl)methanone (3b)

Brown solid; Yield: 78 %; m.p. 73–74 °C (Lit. 12 m.p. 73.4–74.0 °C). ¹H NMR δ /ppm: 3.89 (s, 3H), 6.98 (d, J = 8.9 Hz, 2H), 7.15 (dd, J = 3.9, 4.8 Hz, 1H), 7.63–7.64 (m, 1H), 7.68 (dd, J = 0.8, 4.9 Hz, 1H), 7.91 (d, J = 8.9 Hz, 2H). ¹³C NMR δ /ppm: 55.4, 113.6, 127.7, 130.6, 131.5, 133.4, 134.0, 143.7, 163.0, 186.8.

2-Phenyl-1-(2-thienyl)-1-ethanone (3c)

Gummy solid; Yield: 80 %. ¹H NMR δ /ppm: 4.16 (s, 2H), 7.08 (t, J = 4.4 Hz, 1H), 7.22–7.33 (m, 5H), 7.58 (d, J = 5.0 Hz, 1H), 7.74 (d, J = 3.7 Hz, 1H). ¹³C NMR δ /ppm: 46.2, 126.9, 128.1, 128.6, 129.3, 132.6, 134.0, 134.2, 143.7, 190.3.

[4-(Diethylamino)phenyl](2-thienyl)methanone (3d)

Yellowish gummy solid; Yield: 58 %. 1 H NMR δ /ppm: 1.22 (t, J = 7.0 Hz, 6H), 3.44 (q, J = 7.0 Hz, 4H), 6.70 (d, J = 9.1 Hz, 2H), 7.13 (dd, J = 3.7, 4.8 Hz, 1H), 7.61 (dd, J = 0.9, 4.9 Hz, 1H), 7.65 (dd, J = 0.9, 3.7 Hz, 1H), 7.89 (d, J = 9.1 Hz, 2H). 13 C NMR δ /ppm: 12.5, 44.5, 110.1, 124.4, 127.4, 131.9, 132.2, 132.7, 144.5, 151.0, 185.8.

Anal. Calcd. For $C_{15}H_{17}NOS$ ($M_r = 259.37$): C 69.46, H 6.61, N 5.40 %; found: C 69.03, H 7.70, N 5.32 %.

178 A. R. KATRITZKY et al.

1-Naphthyl(2-thienyl)methanone (3f)

Yellow oil¹³; Yield: 97 %. ¹H NMR δ /ppm: 7.10 (t, J = 3.8 Hz, 1H), 7.46–7.56 (m, 4H), 7.71–7.75 (m, 2H), 7.89–7.92 (m, 1H), 7.99 (d, J = 8.3 Hz, 1H), 8.15–8.18 (m, 1H). ¹³C NMR δ /ppm: 124.2, 125.4, 126.5, 127.0, 127.2, 128.1, 128.3, 130.5, 131.2, 133.7, 135.0, 135.6, 136.1, 145.3, 189.6.

REFERENCES

- 1. A. R. Katritzky, K. Suzuki, S. K. Singh, and H.-Y. He, *J. Org. Chem.* **68** (2003) 5720–5723.
- S. Yohina, A. Tanaka, and K. Yamamoto, *Yakugaku Zasshi* 88 (1968) 997–1002.
- L. I. Kruse, D. L. Ladd, P. B. Harrsch, F. L. McCabe, S.-M. Mong, L. Faucette, and R. Johnson, *J. Med. Chem.* 32 (1989) 409–417
- 4. J. J. Spurlock, J. Am. Chem. Soc. 75 (1953) 1115-1117.

- N. A. Bumagin, P. G. More, and I. P. Beletskaya, J. Organomet. Chem. 365 (1989) 379–387.
- S.-K. Kang, H.-C. Ryu, and S.-W. Lee, J. Chem. Soc., Perkin Trans. 1 (1999) 2661–2663.
- 7. T. Sato, K. Naruse, M. Enokiya, and T. Fujisawa, *Chem. Lett.* (1981) 1135–1138.
- B. J. Mohrbacher, V. Paragamian, E. L. Carson, B. M. Puma, and C. R. Rasmussen, *J. Org. Chem.* 31 (1966) 2149–2159.
- 9. A. Ricci, A. Degl'Innocenti, S. Chimichi, M. Fiorenza, and G. Rossini, *J. Org. Chem.* **50** (1985) 130–133.
- A. R. Katritzky, H.-Y. He, and K. Suzuki, *J. Org. Chem.* 65 (2000) 8210–8213.
- 11. R. W. J. Chubb, M. R. Bryce, and B. Tarbit, *J. Chem. Soc.*, *Perkin Trans. 1* (2001) 1853–1854.
- 12. D. R. Arnold and R. J. Birtwell, *J. Am. Chem. Soc.* **95** (1973) 4599–4606.
- Y. K. Yur'ev, Z. V. Belyakov, and V. P. Volkov, *Zhur. Obshchei Khim.* 29 (1959) 3873–3838.

SAŽETAK

C-acilacija 2-metilfurana i tiofena pomoću N-acilbenzotriazola

Alan R. Katritzky, Kazuyuki Suzuki i Sandeep K. Singh

Reakcije 2-metilfurana i tiofena s već pripravljenim *N*-acilbenzotriazolima (RCOBt, gdje je R = 4-tolil, 4-metoksiofenil, benzil, 4-nitrofenil, 4-dietilaminofenil, 2-piridil i 1-naftil) u prisutnosti TiCl₄ ili ZnBr₂ daju 2-metil-4-acilfurane **2a-e** i 2-aciltiofene **3a-f** u prosječnom iskorištenju od 54 % odnosno 75 %. Iskorištenja dana u literaturi za pripravu istih spojeva značajno su manja.