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Introduction

The industrial application of porous solids is quite widespread.
Porous heterogeneous catalysts, adsorbents and membranes are
used in the chemical industry and biotechnology, porous materi-
als are common in building engineering, porous catalysts form the
basis of mufflers in cars, etc. The rates of processes taking place in
the pore structure of these materials are affected or determined
by the transport resistance of the pore structure. Inclusion of
transport processes into the description of the whole process is
essential when reliable simulations/predictions have to be made.
Trends, in modern chemical/biochemical reaction engineering,
point to utilization of more sophisticated and therefore more
reliable models of processes. The basic idea is that the better
the description of individual steps of the whole process the better
its description and, perhaps, even extrapolation. Dependable
process description forms the basis of process control and process
optimization. For example, optimum pore structure of adsorb-
ents, membranes, enzyme/cell supports or heterogeneous cata-
lysts can be suggested which will guarantee best activity or selec-
tivity. Similarly, optimum operating conditions can be found
when the process description is based on as full as possible
knowledge of the process steps.

Because of the unique nature of pore structure of various materi-
als, the pore structure characteristics relevant to transport in pores
have to be determined experimentally. One of the possibilities is
the evaluation of simple transport processes taking place in the
porous solid in question. The relevance of evaluation of transport
parameters from simple transport processes which take place in
the porous solid in question stems from the possibility to use the
same pore-structure model both for evaluation of transport
parameters and for description of the process in question. It is a
good idea to use a mass transfer process, which is similar to the

gas transport process under consideration. It is of advantage to
choose for determination of transport parameters a (simple)
process that can be followed easily at near-laboratory conditions
and does not require sophisticated instrumentation.

Various choices can be made:
– pure counter-current diffusion of gas mixtures under steady-

-state conditions;
– binary diffusion under dynamic conditions;
– dynamic or steady-state permeation of individual gases;
– combined diffusion and permeation gas transport.

At the same time it is a good choice to use inert (i.e. nonadsorb-
able) gases; this eliminates transport of adsorbed gas along the
surface of pores (surface diffusion) the nature of which is not very
well understood.

The best way for experimental evaluation of transport parameters
(material constants that are independent on pressure, tempera-
ture as well as the composition of used gases) are the mentioned
simple transport processes. Thus, at least four combinations of
transport processes can be used.1

The practical utilization of described methods and their wide
practical impact are presented as examples from different areas of
chemical engineering.

Determination of effective diffusion coefficients
of exhaust gases in automotive catalyst
Structured catalyst supports are widely used in automotive
exhaust-gas converters.2 Small sized channels are contained in
monoliths to provide large surface area of the car catalytic conver-
tors. Typically, both metal and ceramic monoliths are used.3,4

Ceramic monoliths made from cordierite with square cross-
section channels are employed quite extensively because of rela-
tively low production costs.5,6 The active catalyst is supported
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The intention of the new management of the Institute is to create
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for evaluation of quality of scientists.

Further development depends on the manner of research funding
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(washcoated) onto the monolith by dipping it into slurry contain-
ing the catalyst precursors. A commonly used washcoat material is
�-Al2O3 with a typical surface area of 100–200 m2 g–1. The excess
of the deposited material (washcoat) is then blown out with hot
air and the monolith is calcined to obtain the finished catalyst.4,6,7

This process gives a thin washcoat layer; however, it also results in
a variation in thickness around the channel perimeter. Although
the washcoat layer is thin, pore diffusion can affect monolith per-
formance,8–12 and thus need to be included in any realistic
mathematical model. Therefore, it is necessary to have reliable
information on the mass transport rate in the porous medium as
well as the effective diffusivities of exhaust gases in the washcoat
layer.

F i g. 1 – Washcoat monolith channels; A – Ceramic support, B
– Washcoat layer on the ceramic support

S l i k a 1 – Kanali monolitnog katalizatora; A – keramièka pod-
loga, B – sekundarni nosaè katalizatora

The square shape of the cells for the blank ceramic support
monolith and the variation of the washcoat thickness around the
perimeter after the monolith is coated by the washcoat procedure
can be recognized in Fig. 1. To obtain the effective diffusion coef-
ficients with relatively high accuracy, the inverse gas chromatog-
raphy method was employed. True densities of washcoat samples
(which were cut from different positions around the monolith
perimeter) vary more than 10 %. The chromatographic technique
suppressed this problem since the results were averaged over
many pellets (more than two hundred pellets were packed into
the columns). The obtained transport characteristics2 were used
for estimation of effective diffusion coefficients for CO–N2,
CH4–N2 and C3H6–N2 pairs, which are of interest world-wide.
Such coefficients are found only rarely in the literature.

Description of gas transport in strata during
underground coal gasification

Underground coal gasification (UCG) is a method for in-situ coal
conversion into a combustible gas with a high-energy value.13

UCG minimizes the environmental damages in comparison with
the traditional coal mining techniques.14 Several modifications of
UCG15–17 were suggested and tested for in situ production of
hydrogen through gasification of the unmineable coal seams not
feasible for modern classic mining technologies. Especially for the
deep coal seams, this method seems to be very promising.

During UCG the injected gas-oxidizing mixture (oxygen, air,
steam/oxygen or steam/air) reacts with coal to form a product gas
which is subsequently brought to the surface, then cleaned and
used as a syngas both for power and fuel production (e.g. hydro-
gen, synthetic natural gas or liquid fuels).14 In any case, the gases
produced in the reaction zones could leak through overburden

strata. Therefore, the knowledge of the gas transport rates through
porous layers is essential for project applicability to a wide range
of geological conditions. Moreover, the coal seams are often situ-
ated near densely populated areas which could cause a serious
problem during UCG without precise appraisal of the gas trans-
port front in time.

Based on the knowledge of the real structure characteristics
(determined by the classic textural analysis) of stratum and coal
seam samples, the transport processes were modeled in order to
evaluate the significance of the individual processes and their
possible consequences. The influence of the kind of transported
gases, temperature, and pressure together with transport-pore
size were evaluated. It was found that the pressure increase influ-
ences the speed of the gas front movement more significantly
than the temperature increase that is almost negligible.

The direct proportionality of the effective permeability coefficient
to the effective squared mean pore radius was confirmed. At the
same time, the effect of evaluated pore sizes on the rate of gas
front movement was lower than the effect of the pressure
increase. It was also found that the movement of the gas front for
individual gases corresponds to gas viscosities; the higher the gas
viscosity the lower the gas transport rate. The front of individual
gases will move in the order hydrogen > ammonia > methane >
hydrogen sulphide > carbon dioxide > carbon monoxide. The
rate of the hydrogen front movement is approximately only twice
higher than the movement of CO2 front; nevertheless, H2 front
appears at the distance lower than one kilometre for the highest
evaluated pressure after some years.

Evaluation of gas transport through nanofibre
membranes prepared by electrospinning

In recent years, the practical application (e.g. catalysis, filtration,
tissue engineering and wound care) of nanofibre membranes has
increased tremendously.18 By the electrospinning process, which
is the most common technology used for nanofibre prepara-
tion,19–23 the prepared nonwoven mats include the submicron
fibres with large surface area per unit mass and also very high
macroporosity. Density of these materials is usually very low
(commonly 0.01–0.1 g cm–3). Especially, in heterogeneous cataly-
sis nanofibre systems (membranes) promising seem to be porous
carriers for immobilization of homogeneous catalysts based on
the biopolymer compounds.19,24,25 Immobilization on the non-
woven supports allows an accurate controlling of the catalytic
activity and accessibility of the catalyst as well as its recovery from
the reaction mixture. Sufficiently high specific surface area (rang-
ing from 5–35 m2 g–1 in dependence on the fibres diameter)
together with generally low transport resistance of nanofibrous
membranes competes with the traditionally supported porous
catalysts. Nanofibrous membranes seem to be promising supports
owing to their fine porous structure, good pore interconnectivity,
high specific surface area and appropriate transport properties
(generally low diffusion resistance). It must be noted that mem-
branes prepared from the layered nanofibres reveal enhanced
transport properties useful for catalytic processes as well as vari-
ous separation systems. These parameters depend on the fibre
diameter, thickness of membrane, weight per unit area, etc.

The study was focused on optimization of preparation of polysty-
rene (PS) (shown in Fig. 2), polyurethane (PU) as well sandwich
PU–PS–PU nanofibre membranes based on knowledge of their
structural description and diffusion characteristics. Thus, the
properties of prepared individual membranes can be optimized
with respect to requirements for individual practical utilization. It
was found that the diffusion resistance of the polyurethane mem-
brane was much higher than that of the polystyrene membranes
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of the same thickness. The diffusion flow resistance increased
with membrane thickness in the whole range of areal weights
(usualy expressed in kg m–2) for the polyurethane membranes. On
the other hand, it remained nearly unchanged for the polystyrene
membranes with a three times lower area weight. The diffusion
resistance of the sandwich membrane correlates well with the dif-
fusion resistance of the pure PU membrane and the diffusion
transport through the PU membrane is the rate determining step.
Thus, alternation of PU, PS membrane components together with
the PU membrane thicknesses can control adjustment of the
PS–PU sandwich membrane permeability.

Preparation and microstructure optimization
of iron oxide pellets for hydrogen storage

There exists a long known approach for hydrogen storage based
on the steam iron process. By this method, hydrogen storage can
be described as a reduction of iron oxides to metallic iron by

hydrogen26–29 (Fe3O4 + 4H2 � 3Fe + 4H2O) and hydrogen pro-
duction is achieved through the oxidation of iron by steam water
(3Fe + 4H2O � Fe3O4 + 4H2). The redox cycle of iron oxides
can be applied as a new method of storage and supply of hydro-
gen. In this method, hydrogen is not stored directly, because
redox cycle of iron/iron oxides works apparently as a medium for
hydrogen storage. Theoretical amount of hydrogen stored as Fe
metal is 4.8 wt. %. At high temperature and pressure, the reaction
equilibrium is shifted to the right (i.e. hydrogen storage), at lower
temperature and pressure the equilibrium is shifted to the left (i.e.
hydrogen recovery). High repeatability of these cycles can be
achieved by addition of various additives (e.g. Al2O3) to iron.

The iron oxides were prepared by precipitation of aqueous ferric
nitrate. The addition of aluminium oxide into iron oxides (see
Fig. 3) prevents the sintering of metal iron and/or iron oxides dur-
ing repeated redox cycles. Inverse gas chromatography technique
together with classic texture analyses were employed to find the
optimal porous structure based on the amounts of alumina addi-
tive together with the optimal calcination temperature for pellets
preparation. It was found that pellet stability, which is essential for
repetition of redox reaction and thus, process successfulness,
depends on the material sintering during the process (and thus on
its texture properties) and can be crucially affected by initial calci-
nation temperature.

Conclusions

The wide practical impact of the pore structure characteristics
(transport parameters) relevant to transport in pores evaluated by
the diffusion and/or permeation transport processes was demon-
strated. Thus were determined the effective diffusion coefficients
for CO–N2, CH4–N2 and C3H6–N2 pairs (exhaust gases in auto-
motive catalyst), which are of worldwide interest but rarely found
in the literature. Similarly, the transport of process gases that form
in surrounding strata during underground coal gasification was
intimately described. The application of this method was also
shown for the detail characterization of nanofibre membranes
prepared by the electrospinning technique. The practical impact
for the microstructure optimization of iron oxide pellets used for
hydrogen storage was thoroughly discussed and explained.
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