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In this paper, a four-wheel driving force distribution method based ondriving force control is proposed. Driving
force control is an anti-slip control method, previously proposed by theauthors’ research group, which generates
appropriate driving force based on the acceleration pedal. However,this control method cannot completely prevent
reduction of driving force when a vehicle runs on an extremely slipperyroad. If the length of a slippery surface
is shorter than the vehicle’s wheel base, the total driving force is retained by distributing the shortage of driving
force to the wheels that still have traction. On the other hand, when either theleft or right side runs on a slippery
surface, yaw-moment is suppressed by setting total driving forces of left and right wheels to be the same. Therefore,
four-wheel driving force distribution method is proposed for retainingdriving force on instantaneous slippery roads,
and suppressing yaw-moment on split ones. The effectiveness of the proposed distribution method is verified by
simulations and experiments.

Key words: Electric vehicle, Traction control, Slip ratio, Driving force, Least squares method

Metoda za raspodjelu pogonske sile elektrǐcnih vozila sa četiri kota ča na kratkotrajno ili polovi čno
skliskim cestama. U ovom radu predložena je metoda za raspodjelu pogonske sile električnih vozila sačetiri
kotǎca temeljena na upravljanju pogonskom silom. Upravljanje pogonskom silomje metoda upravljanja koju je
ranije predložila autorova istraživačka grupa, a koristi se za sprječavanje proklizavanja. Ova metoda generira prik-
ladnu pogonsku silu temeljem pritiska na papučicu ubrzanja. Ipak, ova metoda upravljanja ne može u potpunosti
sprijěciti smanjenje pogonske sile kada vozilo nai�e na ekstremno sklisku cestu. Ako je dužina skliske površine
kraća od me�uosovinskog razmaka vozila, ukupna pogonska sila se zadržava redistribucijom manjka pogonske sile
na kotǎce koji i dalje imaju trakciju. S druge strane, kada lijeva ili desna strana vozila nai�e na sklisku površinu,
moment zakretanja se potiskuje postavljanjem ukupne pogonske sile lijevih idesnih kotǎca na jednaki iznos. Dakle,
metoda za raspodjelu pogonske sile predložena je za zadržavanje pogonske sile na kratkotrajno skliskim cestama, te
za sprjěcavanje momenta zakretanja na polovično skliskim cestama. Ǔcinkovitost predložene metode verificirana
je simulacijski i eksperimentalno.

Klju čne riječi: elektrǐcno vozilo, upravljanje proklizavanjem, omjer proklizavanja, pogonskasila, metoda najman-
jih kvadrata

1 INTRODUCTION

As a solution for energy and environmental problems,
electric vehicles (EVs) have been receiving great attention.
In addition, EVs have many advantages over internal com-
bustion engine vehicles, since electric motors and inverters
are utilized in EV drive systems. Their advantages can be
summarized as follows [1]:

1. The torque response of electric motors is 10–100
times faster than that of engines.

2. All wheels can be controlled independently by adopt-

ing small high-power in-wheel motors.

3. The output torque of an electric motor can be mea-
sured accurately from the motor current.

Based on these advantages, many traction control meth-
ods for anti-skid on slippery surface have been proposed.
These methods are based on torque observer [2, 3], max-
imum transmissible torque estimation [4], slip ratio con-
trol [5, 6], sliding mode control [7] and so on. In addition,
since the road friction coefficientµ decides the maximum
torque that a wheel can generate on the surface, estimation
methods of theµ have been proposed [8–10].
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The authors’ research group also has proposed trac-
tion control methods [11–14]. Driving force control (DFC)
[11], the latest one, is a control method that directly con-
trols driving force with driving force outer loop based on
driving force observer, and wheel-speed inner loop based
on slip ratio control [12, 13], which can generate large yet
uncertain driving force on slippery roads. With this con-
trol system, the desired driving force is generated within
the saturator limits, and traction is retained by slip ratio
control when the driving force saturates. Moreover, driv-
ing force commanded by a driver can be generated by using
the acceleration pedal as the driving force reference.

Since DFC proposed in [11] is considered for front-
wheel-driven EVs, it is inevitable that total driving force
diminishes on extremely slippery roads, which also applies
to the other traction control methods. However, sudden
decrease of driving force leads to driver discomfort, and
thus a novel control method is needed to retain total driving
force. In addition, the left and right driving forces need to
be equal to prevent yawing.

In this paper, a four-wheel driving force distribution
method based on DFC is proposed for EV with in-wheel
motors. As mentioned, it is one of EVs’ advantages that
all-wheel-drive vehicles can easily be realized by adopt-
ing small high-power in-wheel motors. Even when a ve-
hicle runs into a slippery road such as scattered snow or
wet manholes, whose length is shorter than the vehicle’s
wheel base, total driving force is retained by distributing
the shortage of driving force to wheels that still have trac-
tion. Additionally, when either left or right side are on a
slippery surface, yaw motion is suppressed by generating
the difference between left and right driving force to follow
desired yaw-moment — zero when running straight. The
four-wheel driving force distribution method proposed in
this paper can realize both functions simultaneously. The
effectiveness of the proposed method is verified by simu-
lations and experiments.

2 EXPERIMENTAL VEHICLE AND VEHICLE
MODEL

2.1 Experimental Vehicle

The experimental EV “FPEV2-Kanon,” developed by
the authors’ laboratory, is used for performance verifica-
tion as shown in Fig. 1. In this section the characteristics
of the experimental vehicle are explained.

Outer-rotor-type in-wheel motors shown in Fig. 2 are
installed in each wheel. Since these motors adopt direct
drive system, reaction forces from the road are directly
transferred to the motors without gear reduction or back-
lash. The maximum torque of each of the front motors
is ±500 [Nm], and that of the rear is±340 [Nm]. Addi-
tionally, an optical sensor is installed to measure the vehi-

Fig. 1. FPEV2-Kanon. Fig. 2. In-wheel mo-
tor.

Table 1. Vehicle specifications.
Vehicle Mass (m) 870 [kg]

Wheel Base (l) 1.7 [m]
Distance from C.G to Front Axle (lf ) 0.999 [m]
Distance from C.G to Rear Axle (lr) 0.701 [m]

Tread Base (df , dr) 1.3 [m]
Wheel Radius (r) 0.302 [m]

cle velocity accurately. The vehicle’s specification is ex-
pressed in Table 1.

2.2 Equations of Vehicle Dynamics

In this section, equations of vehicle dynamics are ex-
plained [11].

The equation of rotational motion of each wheel (as
shown in Fig. 3) can be described as

Jijω̇ij = Tij − rFdij , (1)

whereJ is the wheel inertia,ω is the wheel angular ve-
locity, T is the motor torque,r is the wheel radius,Fd is
the driving force at the point where the wheel makes con-
tact with the ground. Also,i and j are indices forf/r
(front/rear) andl/r (left/right) respectively.

The equation of longitudinal motion of the vehicle
body (as shown in Fig. 4) can be described as

mV̇ = Fdfl + Fdfr + Fdrl + Fdrr, (2)

wherem is the vehicle mass,V is the vehicle velocity.

When the vehicle accelerates or decelerates, the wheel
velocity Vω = rω differs from the vehicle velocityV be-
cause of tire’s elastic deformation. Therefore the slip ratio
λ is defined as

λ =
Vω − V

max(Vω, V, ǫ)
, (3)

whereǫ is a tiny value to prevent division by zero. The
driving forceFd and the driving stiffnessDs at each wheel
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Fig. 3. Rotational motion of wheel.
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Fig. 4. Variables in vehicle motion.

are obtained as

Fdij = µijNij , (4)

Dsij =
dFdij

dλij

∣∣∣∣
λij=0

, (5)

whereN is the normal reaction force on each wheel, and
µ is the friction coefficient.

Figure 5 demonstrates theµ — λ relationship which
depends on the road condition [15]. There areλpeak,p,
λpeak,n on whichµ is the maximum or the minimum. In
the domain ofλpeak,n ≤ λ ≤ λpeak,p, µ is a monotoni-
cally increasing function ofλ, and outside the domain, a
monotonically decreasing function.

3 TRACTION CONTROL

3.1 Driving Force Control

In this section, the driving force control (DFC) method
is explained [11]. The block diagram of DFC is shown
in Fig. 6. The outer loop is a driving force loop based
on driving force observer and the inner loop is a wheel
velocity loop that controls the slip ratio.F ∗

d is the driving
force reference and̂Fd is the estimated driving force.

Since the definition of slip ratioλ for acceleration
(Vω ≥ V ) differs from that of the definition for deceler-
ation (Vω < V ), λ is inconvenient to control. Therefore,
instead of the slip ratio, the control inputy, defined as fol-
lows, is controlled.

y =
Vω

V
− 1 (6)

This is the same definition as the definition of slip ratio
for deceleration. The relationship betweenλ andy in the
domain ofλ > 0 is calculated as

y =
λ

1− λ
, (7)

which indicates thaty equals toλ when|λ| ≪ 1 and they
are always one to one correspondence as shown in Fig. 7.

From (6), the wheel velocity referenceV ∗
ω of the inner

loop is calculated as

V ∗
ω = (1 + y)V, (8)

which shows that the vehicle can not start moving when at
rest (V = 0) sinceV ∗

ω is equal to 0 independent ofy. To
prevent this problem, the referenceV ∗

ω is modified where
V is smaller than a given constantσ as shown in (9).

{
V ∗
ω = V + yσ (V < σ)

V ∗
ω = V + yV (V ≥ σ)

(9)

From (5), it can be considered thatFd = Dsλ provided
that |λ| ≪ 1. In addition, assuming that wheel velocity
control is fast enough such thaty ≃ λ, the transfer function
from y to Fd is assumed to be zero order as

Fd = Dsλ ≃ Dsy. (10)

Therefore, the driving force controller is set as I control
with gainKI , whose initial value is set asy0 = 0. Satu-
ration is applied to the integrator output for limitingy to
ymin ≤ y ≤ ymax. With this saturation, traction can be
retained by keeping the slip ratio within the domain where
µ is monotonic function ofλ.

In Fig. 6, feed-forward to motor torque referenceT ∗

is obtained by addingrF ∗
d , which is added anew in this

paper in order to improve response speed. If the wheel has
traction, thenTij ≃ rFdij holds, sinceJijω̇ij is assumed
to be small in (1). Therefore, due to the feed-forward, the
system can generate approximate driving force, and slight
differences are compensated for by the driving force feed-
back. Also, when a wheel is on a slippery surface, traction
is maintained due to the wheel-speed feed-back.

3.2 Driving Force Observer

In this section, the driving force observer (DFO) is ex-
plained.

J andr are given in (1), andω can be measured. More-
over, the motor torqueT can be controlled accurately.
Therefore, with the DFO shown in Fig. 8, the driving force
Fd at each wheel can be estimated with motor torque refer-
enceT ∗ and wheel velocityω, assuming that current con-
trol of motor is fast enough forT = T ∗ to be valid. τ is
the time constant of the DFO.

AUTOMATIKA 54(2013) 1, 103–113 105



Four-wheel Driving-force Distribution Method for Instantaneous or Split Slippery Roads for Electric Vehicle K. Maeda, H. Fujimoto, Y. Hori

−1 −0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

0.3

slip ratio λ

fr
ic

tio
n 

co
ef

fic
ie

nt
 µ

λ
peak,p

λ
peak,n

Fig. 5. Typicalµ-λ relationship.

y

1
y + 1

PI
Vehicle
Plant

Wheel Speed Control

Driving Force Control

Driving Force Observer

+

−
F ∗
d 1

s

V

ω

Js1
τs+1

T ∗ω∗V ∗
ω

KI

F̂d

+ −
+

++

+

+

−

1
r

1
r

r
Feed-forward

1
τs+1

Fig. 6. Block diagram of DFC.

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

0.3

slip ratio λ

y

Fig. 7. The relationship betweenλ andy.

rFd

1
Js

ω

Js

1
τs+1

1
r

T

F̂d

+ −

+ −

Fig. 8. Block diagram of driving force observer.

4 PROPOSED METHOD

4.1 Driving Force Distribution Method

In this section, four-wheel driving force distribution is
explained. When slip ratioλ increases on a slippery sur-
face and the control inputy of DFC approaches the upper
limit, driving force is saturated and reduced. To avoid this
reduction,λ of each wheel need to be small enough to pre-
vent saturation. Therefore, the proposed method decides
the driving force referenceF ∗

dij of each wheel to minimize
λij of each wheel, satisfying total driving force reference
F ∗
dall and yaw-moment referenceM∗

z generated by driving
force difference between left and right.

The relationship between driving force of each wheel
Fdij andFdall, Mz is as follows:

[
1 1 1 1

−df

2
df

2 −dr

2
dr

2

]



Fdfl

Fdfr

Fdrl

Fdrr


 =

[
Fdall

Mz

]
.

(11)
Here, by setting the coefficient matrix in the left-hand
side asA, the vector of driving force of each wheel
[Fdfl, Fdfr, Fdrl, Fdrr]

T as x, and that of total driving

force and yaw-moment[Fdall,Mz]
T as b, (11) can be

rewritten asAx = b. From (10) driving stiffness of each
wheelDsij in the domain of|λ| ≪ 1 can be obtained as

Dsij =
Fdij

λij
. (12)

Then the cost functionJ is defined as the sum of squares
of slip ratioλij .

J = λ2
fl + λ2

fr + λ2
rl + λ2

rr

=
F 2
dfl

D2
sfl

+
F 2
dfr

D2
sfr

+
F 2
drl

D2
srl

+
F 2
drr

D2
srr

(13)

Therefore, the weighted least squares solutionxopt of (11)
that minimizesJ , and weighting matrixW are as follows.

xopt = W−1AT (AW−1AT )−1b (14)

W = diag

(
1

D2
sfl

,
1

D2
sfr

,
φr

D2
srl

,
φr

D2
srr

)
(15)

Here,φr is the tuning gain which adjust front and rear driv-
ing force distribution ratio. Larger amount of driving force
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Fig. 10. Instantaneous low-µ road.
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Fig. 11. Split low-µ road.

is distributed to rear wheels than front ones during acceler-
ation, which possibly leads to excessive driving force ref-
erences on rear wheels over the upper limit of rear motor
torque and total driving force saturates even on a high-µ
surface. Thereforeφr is set asφr ≥ 1 during acceleration
to prevent the saturation.

4.2 Driving Stiffness Estimation

From (12), the relationship betweenFd andλ is Fd =
Dsλ. Therefore the driving stiffness of each wheel at sam-
ple k Dsij(k) can be estimated by the Recursive Least
Squares (RLS) Method as follows [14].

D̂sij(k) = D̂sij(k − 1)− Γ(k − 1)λ(k)

w + λij(k)Γ(k − 1)λij(k)

×
[
λij(k)D̂sij(k − 1)− F̂dij(k)

]
(16)

Γ(k) =
1

w

[
Γ(k − 1)− Γ(k − 1)λij(k)

2Γ(k − 1)

w + λij(k)Γ(k − 1)λij(k)

]

(17)

wherew is the forgetting factor. If regressorλij(k) equals
zero, the persistent excitation is not satisfied. Therefore

D̂sij(k) andΓ(k) are not updated if|λij(k)| < 0.005.
Lower limitations1000 are imposed tôDsij avoiding divi-
sion by zero in (15).

Figure 9 shows the block diagram of the whole system.
The driving force referencesF ∗

dij are given byxopt.

5 SIMULATION

5.1 Simulation Setup

In this section, simulation results of acceleration test
are explained. In this paper, “2D-Tire Model” [16] is used
for vehicle running simulation.

As shown in Fig. 10 and Fig. 11, an extremely low
µ (µ = 0.15) surface of length0.9 [m], shorter than the
wheel base of “FPEV2-Kanon", is set at the distance of
2.0 [m] from the start point. The experimental vehicle
starts at the start point and accelerates with total driving
force referenceF ∗

dall = 2000 [N].

The parameters are,KI = 0.01, τ = 30 [ms], ymax =
0.25 which corresponds to a slip ratio ofλ = 0.2, σ =
0.5 [m/s]. The wheel speed PI controller is designed by
the pole assignment method towards the plant1

Js , which
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Fig. 12. Simulation of instantaneous slippery road (without control).
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Fig. 13. Simulation of instantaneous slippery road (only DFC).
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Fig. 14. Simulation of instantaneous slippery road (proposed).

is from (1) ignoringFd, setting the pole−20 [rad/s]. The
forgetting factor of the driving stiffness estimation isw =
0.995. All parameters are the same for each wheel.

5.2 Instantaneous Slippery Road

Figures 12 – 14 show the simulation results of acceler-
ation test on instantaneous slippery surface. In each result,
front wheels are on slippery surface from about1.8 [s] to
2.1 [s], and rear ones are from about2.3 [s] to 2.5 [s].

The simulation results are compared with three con-
ditions. Figure 12 shows the results of acceleration test
without any traction control, i.e., motor torque on each
wheel is set as500r = 151 [Nm] constantly. Then Fig.
13 shows the results of the conventional method with only
DFC and without driving force distribution, i.e., driving
force references on each wheel are the same. Finally Fig.

14 shows the results of the proposed method with DFC and
the driving-force distribution.

In case without control, extreme slip occurs in Fig.
12(a) then the driving force decreases in Fig. 12(b), 12(c).
In case with only DFC, although the traction is obtained in
Fig. 13(a), the driving force decreases in Fig. 13(b), 13(c),
similar to the case without control.

On the contrary, with the proposed method, Fig. 14(b)
shows that the driving force on each wheel is distributed
to retain total driving force as shown in Fig. 14(c), as well
as the traction shown in Fig. 14(a). In addition, compared
to Fig. 13(d), Fig. 14(d) shows that the proposed method
prevents the satulation of the DFC control inputy.

In Fig. 14(c), the total driving force is not completely
retained and slightly decreases from the reference when
front wheels are on the slippery surface. This is because
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Fig. 15. Simulation of split slippery road (only DFC).
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Fig. 16. Simulation of split slippery road (proposed).

the rear motor torque approaches to the upper limit and
therefore the rear driving forces are saturated.

5.3 Split Slippery Road

Figures 15 and 16 show the simulation results of ac-
celeration test on split slippery surface. In each result,
front-right wheel is on slippery surface from about1.8 [s]
to 2.1 [s], and rear-right one is from about2.3 [s] to 2.5 [s].

Since the traction of DFC is indicated in the previous
section, result of acceleration test without control is ex-
cluded. In case with only DFC, Fig. 15(a) shows that the
driving forces in only the right wheels reduce. As a result,
the total driving force decreases as shown in Fig. 15(b),
and the undesired yaw-moment is generated as shown in
Fig. 15(c). In contrast, with the proposed method, driving
force of each wheel is distributed as shown in Fig. 16(a)
to retain driving force while preventing the generation of
yaw-moment, which can be confirmed by comparing Fig.
15(b), 15(c) with Fig. 16(b), 16(c). In addition, compared
to Fig. 15(d), Fig. 16(d) shows that the proposed method
prevents the saturation ofy.

6 EXPERIMENTS

6.1 Experimental Setup

In this section, experimental results on an instantaneous
slippery road are explained under the same condition as
the simulation in Section 5. A polymer sheet is utilized to

simulate slippery road condition. This sheet, called “low-µ
sheet" in this paper, can realize a friction coefficientµ of
about0.2 by watering on it. The control parameters are as
same as simulation, while tuning gain of the driving force
distribution is set asφr = 1.3.

Vehicle velocity is measured using an optical sensor.
Since it can not measure velocity accurately on low speed,
the slip ratio of each experimental result before1.2 [s] is
not correct.

6.2 Instantaneous Slippery Road

The experimental results are shown in Fig. 17–19. Re-
sults are compared with three cases as explained in Section
5.2. In each result, front wheels are on slippery surface
from about2.0 [s] to 2.3 [s], and rear ones are on slippery
surface from about2.5 [s] to 2.7 [s].

Comparing Fig. 17(a) with Fig. 18(a) and 19(a), trac-
tion is obtained by DFC. As for driving force, without con-
trol and with only DFC, driving force decreases in Fig.
17(b), Fig. 17(c), Fig. 18(b), Fig. 18(c), similar to the
simulation results. In contrast, with the proposed method,
Fig. 19(b) shows that driving force on each wheel is dis-
tributed to retain total driving force as shown in Fig. 19(c).
Additionally, comparing with Fig. 18(d), Fig. 19(d) shows
that the proposed method prevents the saturation ofy when
the front wheels are on the slippery road.

Rear wheels do not reduce their driving force by the
conventional method as shown in Fig. 18(b). This is be-
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Fig. 17. Experiment of instantaneous slippery road (without control).
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Fig. 18. Experiment of instantaneous slippery road (only DFC).
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Fig. 19. Experiment of instantaneous slippery road (proposed).

cause the rear static load of “FPEV2-Kanon" is larger than
the front one. Moreover, load is transferred to rear axis
during acceleration.

6.3 Split Slippery Road

The experimental results on the split slippery surface
are shown in Fig. 20 and Fig. 21. In each result, front-right
wheel is on slippery surface from about2.0 [s] to 2.3 [s],
and rear-right one is on slippery surface from about2.5 [s]
to 2.7 [s].

Similar to Section 5.3, Fig. 20 shows the results of
the conventional method and Fig. 21 shows those of the
proposed one. With only DFC, only the front-right driving
force decreases as shown in Fig. 20(a), which leads to the
diminution of the total driving force as shown in Fig. 20(b)

and the generation of the undesired yaw-moment of about
−200 [Nm] as shown in Fig. 20(c).

In comparison with the conventional method, the front-
right and the rear-right driving force is compensated for
each other as shown in Fig. 21(a), and consequently the
total driving force is retained to the reference as shown in
Fig. 21(b). Also the undesired yaw-moment is suppressed
as shown in Fig. 21(c). Additionally, comparing with Fig.
20(d), Fig. 21(d) shows that the proposed method prevents
the saturation ofy.

6.4 Deceleration Test

The proposed method can also apply to deceleration as
shown in Fig. 22 and Fig. 23, the results of deceleration
test on instantaneous slippery surface. Vehicle accelerates
to 30 [km/h] and starts to decelerate with total driving
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Fig. 20. Experiment of split slippery road (only DFC).
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Fig. 21. Experiment of split slippery road (proposed).
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Fig. 22. Deceleration test (only DFC).
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Fig. 23. Deceleration test (proposed).

force referenceF ∗
dall = −2000 [Nm]. The low-µ road

of length0.9 [m] is set at the distance of8.3 [m] from the
point where the vehicle starts to decelerate. In each result,
front wheels are on slippery surface from about2.0 [s] to
2.1 [s], and rear ones are on slippery surface from about
2.3 [s] to 2.5 [s].

In case with only DFC, Fig. 22(a) shows that absolute
values of the front driving forces decrease on slippery sur-
face, and next those of the rear driving forces decreases.
As a result, absolute value of the total driving force de-
creases as shown in Fig. 22(b). On the other hand, with
the proposed method, the front and rear driving forces are
compensated for each other as shown in Fig. 23(a), and
consequently the total driving force is retained to the refer-
ence as shown in Fig. 23(b).

7 CONCLUSION

In this paper, four-wheel driving force distribution
method for instantaneous or split slippery roads is pro-
posed, and its effectiveness is verified by simulations and
experiments. With the proposed distribution method, the
reduction of total driving force and generation of yaw-
moment is prevented. Therefore EVs can be driven without
difficulty no matter what road condition.

In future, the authors’ research group plans to consider
cornering and braking, to apply the estimation method of
the vehicle velocity without using the optical sensor [12,
13], and to estimateλpeak in realtime based on DFC.
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