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Abstract 
In this paper we consider an Infeasible Full Newton-step Interior-Point Method (IFNS-IPM) for 

monotone Linear Complementarity Problems (LCP). The method does not require a strictly feasible 

starting point. In addition, the method avoids calculation of the step size and instead takes full 

Newton-steps at each iteration. Iterates are kept close to the central path by suitable choice of 

parameters. The algorithm is globally convergent and the iteration bound matches the best known 

iteration bound for these types of methods. 

 
 
1. INTRODUCTION 

We consider a class of Linear Complementarity Problems (LCP) formulated in the standard form: 

Given a matrix nxnRM ∈ and a vector nRq∈ , find a pair of vectors nRsx 2),( ∈ such that 

)(P   .0),(,0, ≥=+= sxsxqMxs T     (1.1) 

Note that 00 =⇔= xssxT where xs denotes the component-wise (Hadamard) product of  the 

vectors x and s . 

Although LCP is feasibility and not an optimization problem, it is closely related to the optimization 

problems. It is well known that the Karush-Kuhn-Tucker (KKT) optimality conditions for Linear 

Optimization (LO) and Convex Quadratic Optimization (CQO) can be written as LCP. Moreover, LCP 
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also has a close connection to variational inequalities: some classes of variational inequalities can be 

formulated as an LCP and vice versa. In addition, many important practical problems in economics 

theory (equilibrium problems), game theory, transportation planning (assignment problems), optimal 

control, engineering, etc. can be directly formulated as LCP. For a comprehensive treatment of LCP 

theory and practice we refer the reader to the monographs of Cottle et al. [4], Fachinei and Pang [6] 

and Kojima et al. [7]. 

It is well known that for general matrices M  the problem is NP-complete [3]. Therefore, it is natural 

to look for classes of matrices M for which the corresponding LCP can be solved in polynomial time.  

Most common and most studied is the class of monotone-LCPs, where matrix  M is a positive-

semidefinite matrix. This is largely due to the fact that the Karush-Kuhn-Tucker conditions (KKT) of 

the Quadratic Optimization problem with the quadratic objective function defined by the positive-

semidefinite matrix can be formulated as monotone-LCP. In addition, most practical problems that can 

be directly formulated as LCP are usually monotone-LCP. We also recall that in the special case of LO 

problem, matrix M  becomes a skew-symmetric matrix. For these reasons, in this paper we consider a 

monotone LCP. 

Due to the theoretical and practical importance of LCP, efficient methods for solving LCPs are of a 

significant interest. The existing tradition of generalizing results for LO to LCP dates back to the early 

days of the development of simplex-type algorithms (pivoting algorithms) and it continues to this day. 

The Interior-Point Methods (IPMs) that have been a great success for LO are no exception. Various 

IPMs for LO have been successfully generalized to LCP. Besides the aforementioned monographs, 

and without any attempt to be complete, we mention few other relevant references [1, 2, 8, 10]. 

IPMs can be grouped in two groups, feasible algorithms which require the knowledge of a strictly 

feasible starting point and infeasible algorithms that do not. The algorithm presented in this paper falls 

into the second category. Furthermore, most IPMs control the closeness to the central path, which then 

reflects on the iteration bound, by appropriate choice of the step size along the search directions. A full 

Newton-step, where step size is always one, would be preferable; however, without other safeguards 

this may cause even infeasibility and divergence of the algorithm. By appropriate choice of parameters 

we manage to design an IPM that uses full Newton-steps, while still preserving global convergence 

and matching the best known complexity for these types of IPMs, namely, )log(
ε
nnO . The method 

is a generalization of the infeasible full Newton-step IPM for LO discussed in [9]. 

The paper is organized as follows. The outline of the method is given in Section 2. The analysis and 

complexity of the algorithm are presented in key Section 3. Section 4 contains brief concluding 

remarks. 
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2. INFEASIBLE FULL  NEWTON-STEP  IPM  

In this section we present an outline of the Infeasible Full Newton-step IPM (IFNS-IPM) for 

monotone LCP.  We assume that the LCP (1.1) has a solution ( )** , sx  such that  

{ } ,,,max, **
dpp qMesx ρρρ ≤≤

∞∞∞∞
       (2.1) 

which basically means that the solution is inside a certain  cube. The additional conditions are not 

restrictive and are added the ease of the analysis. Furthermore, we define  

,,, 0
00

dpdp esex ρρµρρ ===        (2.2) 

as the initial starting point. Then, the initial residual is given by qMxsr −−= 000 . 

We consider a family of perturbed LCPs )( υP for ]1,0(∈υ  

)( υP   .0),(,0,0 ≥==−− sxxsrqMxs υ        (2.3)  

Note that for 1=υ  the ),( 00 sx is a strictly feasible solution of )( υP . Moreover, we have the 

following lemma. 

Lemma 2.1. If the original LCP, )(P , is feasible, than )( υP is strictly feasible for ]1,0(∈υ . 

 

As it is customary in the theory of IPMs, we perturb the complementarity equation in )( υP (2.3) and 

consider the perturbed problem. 

    .0),(,,0 >==−− sxexsrqMxs µυ           (2.4) 

Given the fact that )( υP is strictly feasible, the above system has a unique solution, for each 0>µ . 

This solution is denoted as )),(),,(( µυµυ sx  and we call it the −µ center of LCP )( υP . The set 

of  −µ centers forms a trajectory (homotopy path), which is called a central path of  the LCP. 

Moreover, if 0→µ , the limit of the central path exists and it is a solution of the LCP )( υP . Thus, we 

have a family of central paths for ]1,0(∈υ . 

However, we are not interested in the solution of )( υP , we are interested in the solution of )(P .  

Thus, we approximately trace a family of central paths while simultaneously reducing µ and υ  at 

each iteration. The 'engine' to accomplish this task is a Newton Method (NM).  
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The µ and υ  are connected in the following way:
0µ
µυ = . The proximity measure of ),( sx  to the 

µ - center is measured by norm-based measure 

   ,
2
1:)(:),,( 1−−== vvvsx δµδ where 

µ
xsv =:     (2.5) 

is called a variance vector. It is easy to see exsev µ=⇔= , i.e., ev =  iff ),( sx is a µ - center. 

The method can be started because ),( 00 sx is a 0µ -center of the )( υP for 1=υ  and 

0),,( 0
00 =µδ sx  . We assume that the iterate, ),( sx  is given in the 'neighborhood’ of the µ - 

center )),(),,(( µυµυ sx , where the neighborhood is determined by τµδ ≤),,( sx for some (small) 

threshold parameter 0>τ . Next, µ is decreased µθµ )1( −=+  for some barrier parameter 

)1,0(∈θ . Thus, υ  is decreased for the same amount, υθυ )1( −=+ .  A new iterate ),( ++ sx is 

calculated so that it satisfies the same inequalities as above with υµ,,, sx  replaced by 

++
++ υµ ,,, sx . This is accomplished by performing a feasibility step and several centering steps at 

each iteration. First, a feasibility step is performed that moves from the old iterate ),( sx  in )( υP to a 

point ),( ff sx  in  )( +υ
P  targeting new +µ - center. However, this point, although feasible, may not 

be close enough to the +µ -center; thus, several centering steps are performed to obtain a new iterate 

that is in the τ -neighborhood τµδ ≤+
++ ),,( sx of the +µ -center.  

In what follows we describe a feasibility part and centering part of the iteration in more details. 

Feasibility step 

Given µθµ )1( −=+ , a direct application of the Newton’s method to the system (2.4) leads to the 

following Newton system for the search direction ),( sx ff ∆∆ : 

   
.)1(

0

xsesxxs
rsxM

ff

ff

−−=∆+∆

=∆−∆

µθ

θυ
     (2.6) 

Given the assumptions this system has a unique solution for any 0),( >sx  because the matrix of the 

system is non-singular if M is positive-semidefinite matrix (and even for more general matrices). By 

taking a full Newton-step along the search direction ),( sx ff ∆∆ , one constructs a new point 

),( ff sx with  

   sssxxx ffff ∆+=∆+= ,  
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In the next section we will show that with the appropriate choice of values (small enough) for barrier 

parameter θ  and threshold parameter τ we can guarantee that a point ),( ff sx is strictly feasible in 

)( +υ
P and moreover 

2
1),,( ≤+µδ ff sx . 

Centering steps 

While performing centering steps we stay in )( +υ
P , that is, we do not change +µ  and +υ ; however, 

we rename them to  new µ  and υ , i.e. += µµ :  and +=υυ : . We start from the strictly feasible point 

),(:),( sxsx ff = in )( υP . The goal is to come closer to the µ -center in )( υP . A direct application 

of Newton's method to the system (2.4) leads to the following Newton system for the centering search 

direction ),( sx cc ∆∆  

   
.

0
xsesxxs

sxM
cc

fc

−=∆+∆

=∆−∆

µ
      (2.7) 

The first equation has zero on the right hand side because we search for a new strictly feasible point in 

the same LCP )( υP and the term θ−1 is not present in the second equation because we are targeting 

the same µ -center. Again, for the same reasons as in feasibility step, this system has a unique solution 

for M positive semidefinite matrix. By taking a full Newton-step along the search direction 

),( sx cc ∆∆ , one constructs a new pair ),( cc sx with  

   sssxxx cccc ∆+=∆+= ,  

Moreover, we will show in the next section that 
2

1),,( ≤µδ sx  is a neighborhood where centering 

steps achieve quadratic convergence. Hence, the number of centering steps required to get to a 

τµδ ≤),,( sx neighborhood of the µ -center is very small. 

 The algorithm is stopped when we obtain an iterate ),( sx  for which the norm of the residual 

0: rr υ=  and sxT  are very small, i.e.,  εµ ≤n  and ε≤r for a small accuracy 

parameter 0>ε . This will certainly be achieved in a finite (even polynomial) number of steps 

because µ  and υ  are reduced at each iteration for a factor θ−1 . 

 The outline of the IFNS-IPM for LCP (1.1)  is given in the Figure 1 below. 
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Algorithm 2.1 IFNS-IPM for LCP 
Input: 
 accuracy parameter 0>ε ; 
 barrier update parameter 10 <<θ ; 
 a threshold parameter 0>τ ; 
 starting point ),( 00 sx with nsx T /)()( 00

0 =µ ;  
 
begin 
 1:,:,:,: 00

00 ===== υυµµssxx ; 

 while { } ευµ >0,max rn  

  υθυµθµ )1(:,)1(: −=−= ; 

  calculate feasibility direction ),( sx ff ∆∆ from (2.6); 

  update sssxxx ffff ∆+=∆+= , ; 
  calculate fvv =: from (2.5); 
  while τδ >)(v  

   calculate centering direction ),( sx cc ∆∆ from (2.7); 

   update  sssxxx cccc ∆+=∆+= , ; 
  endwhile 
 endwhile 
end 
Figure 1: IFNS-IPM for LCP 
 
 

3. ANALYSIS AND COMPLEXITY OF THE ALGORITHM 
 
In this section we determine the appropriate values of the barrier parameter θ  and threshold 

parameterτ for which the IFNS-IPM in Figure 1, in the sequel called just Algorithm, is 

globally convergent. We also derive the iteration bound for the Algorithm that matches the 

best known iteration bound for these types of methods.  

Feasibility step 

The major part of the analysis is devoted to finding the values of θ  and τ that will guarantee 

a strict feasibility of ),( ff sx . In order to facilitate the analysis we introduce the scaled 

search directions 

   ,,
s

svd
x

xvd
f

f
s

f
f

x
∆

=
∆

=      (3.1) 

where v  is defined in (2.5). Using the above scaled search directions the system (2.6) can be 

transformed to the system 
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,)1(

1~

1

0

vvdd

rDddM

f
s

f
x

f
s

f
x

−−=+

=−

−θ

µ
θυ

    (3.2) 

where DMDM =~
 and 2/12/1 SXD = . The matrices X  and S represent diagonal matrices 

of vectors x  and s , i.e. )(xdiagX =  and )(sdiagS = . 

The following key lemma gives sufficient and necessary conditions for strict feasibility of 

),( ff sx . 

Lemma 3.1 The point ),( ff sx  is strictly feasible iff 0)1( >+− f
s

f
x ddeθ . 

The more practical, however, just sufficient condition for strict feasibility is given in the 

following corollary. 

Corollary 3.2 The point ),( ff sx  is strictly feasible if θ−<
∞

1f
s

f
x dd . 

Next, we give an upper bound on the proximity measure )( fvδ after the feasibility step. 

Lemma 3.3  If θ−<
∞

1f
s

f
x dd , then 

    .

1
1

1
))((4

2

2

∞
−

−

−
≤

θ

θ
δ

f
s

f
x

f
s

f
x

f

dd

dd

v      

Recall that we want to obtain
2

1)(),,( ≤=+
fff vsx δµδ . It immediately follows that this 

will be satisfied if the right hand side of the  above inequality is less than or equal 2. Given 

the fact that 




 +≤

∞

22

2
1 f

s
f

x
f

s
f

x dddd , we have  

  .2

12
11

14
1

1
1

1
))((4 22

222
2

2 ≤

−

+
−















−

+

≤

−
−

−
≤

∞ θ

θ

θ

θ
δ

f
s

f
x

f
s

f
x

f
s

f
x

f
s

f
x

f

dd

dd

dd

dd

v  
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If we denote 
θ−

+
=

1
:

22 f
s

f
x dd

u  the above inequality becomes 

   084)
2
11(2

4
1 22 ≤−+⇔−≤ uuuu  

with solution  

  ).1(46.146.11220
22

θ−≤+⇔≈+−≤≤ f
s

f
x ddu    (3.3)  

 Note that this is a stronger result than the condition on u  that follows from Corollary 3.2 

  )1(221
12

1
1

22
22

θ
θθ

−≤+⇔≤⇔≤
−

+
≤

−
∞ f

s
f

x

f
s

f
x

f
s

f
x

ddu
dddd

. 

Thus, the problem of finding the conditions for 
2

1)( ≤fvδ  to hold reduces to finding the 

upper bound on 
22 f

s
f

x dd + . In order to find this upper bound we have to examine the 

system (3.2) using the following lemma. 

Lemma 3.4 Given a system bzuazuM ~,~~ =+=− , the following hold 

(1) ,),()~( 1 DubDzbaMIDu −=++= −  

(2) baDu +≤  

(3) ababDzDu ++≤+ 2222 , 

where DMDM =~
,  2/12/1 SXD =  and aDa ~= ,  bDb ~

= . 

 

Applying the above lemma to the system (3.2) we obtain the following bound 

     0102122 1)1(12)1( rDvvrDvvdd f
s

f
x

µ
θυθ

µ
θυθ














−−++−−≤+ −−  (3.4) 

Now, we need to find bounds for vv −− −1)1( θ  and 01 rD
µ

θυ . Using the definitions 

of D , v , and relationship between norms, we obtain 

   
1

0

min0

0 11 xr
v

rD
∞

≤
µ
θ

µ
θυ , 
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where minv is the minimal component of the vector v . Since we assumed (2.2), we have 

qMeeqMxsr pd −−=−−= ρρ ,000  implying 

 







++≤−−=

∞∞
∞

∞
qMeqMeer

d
p

d
d

dd

p
d ρ

ρ
ρ

ρ
ρρ

ρ
ρ 1111,0 . 

Using the assumption (2.1) we obtain 

    
min

10 31
v
x

rD
pρ
θ

µ
θυ ≤ ,    (3.5) 

which explains the reason for the second part of the assumption (2.1). The upper bound for 

the second term is obtained as follows. 

.2)(4222

)1(2)1())(1(2)1()1(

221221

22122121221

nvnvvnvnv

vnvvvvvvv T

θδθθ

θθθθθ

+=+−=++−≤

+−−−=+−−−=−−

−−

−−−−

  

(3.6) 

Substituting (3.5) and (3.6) into the (3.4) we obtain 

 
min

12

min

1222 32)(4322)(4
v
x

nv
v
x

nvdd
pp

f
s

f
x ρ

θθδ
ρ
θθδ 










++++≤+ .    (3.7) 

Now we need an upper bound on 
1

x and lower bound on minv . This is given in the lemma 

below. 

Lemma 3.5 The following inequalities hold 

(1) )()(1 δσδσ ≤≤−
iv  

(2) ,))(2(,))(2( dxpx
nsnx ρδσρδσ +≤+≤  

where 1)( 2 ++= δδδσ  and )(vδδ = . 

 

Applying the lemma to (3.7) we obtain 

   

( ) )())(2(2)(46)())(2(182)(4 22222
δσδσθδθδσδσθθδ ++++++≤+ nvnnnvdd f

s
f

x

 

(3.8) 

Combining (3.3) and (3.8) we have 
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( ) )1(46.1)())(2(2)(46)())(2(182)(4 222 θδσδσθδθδσδσθθδ −≤++++++ nvnnnv  

(3.9) 

Finally, we have to determine the values of τ  (since τδ ≤ ) and θ  such that (3.9) is satisfied. 

Numerical examination shows that the values that make the left hand side very close to the 

right hand side are  

    
n12

1,
4
1

== θτ .                       (3.10) 

The above discussion can be summarized in the following theorem: 

Theorem 3.6 Let 
n12

1,
4
1

== θτ  and ( )sx,  be the starting iteration near µ -center with 

( )
4
1,, =≤τµδ sx . Then, after the feasibility step, we obtain a point ( )ff sx , that is strictly feasible 

in )( +υ
P with ( )

2
1,, ≤+µδ ff sx . 

Centering step 

 Our next goal is to perform several centering steps to get sufficiently close to the +µ -center of 

the )( +υ
P . Since ( )ff sx , is the starting point we denote it as ( )sx, , and +µ as µ  and we denote 

( )+µδ ,, ff sx  as δ . Similarly, as in feasibility step, we use scaled centering directions 

   ,,
s

svd
x

xvd
c

c
s

c
c
x

∆
=

∆
=      (3.11) 

 to transform the system (2.9) into the system 

   
.

0

xsedxds
dMd

c
s

c
x

c
s

c
x

−=+

=−

µ
     (3.12) 

 The following inequalities are helpful in the analysis of the centering steps. 

Lemma 3.7 The following inequalities hold 

2)( δ≤c
s

Tc
x dd ,  2δ≤

∞

c
s

c
x dd , 2δ≤c

s
c
x dd .   (3.13) 

 

It is straightforward to derive  

  )( c
s

c
x

cc ddesx += µ    and   )()( 2δµ +≤ nsx cTc .  (3.14) 

Similarly as in Lemma 3.1 and Corollary 3.2, the strict feasibility of the centering steps is preserved if 
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  0>+ c
s

c
x dde  or  1<

∞

c
s

c
x dd .     (3.15) 

The following lemma gives an upper bound on the ( )µδ ,, cc sx . 

Lemma 3. 8 If 1<δ , then ( )cc sx ,  is strictly feasible and  

   ( )
2

2

1
,,

δ

δµδ
−

≤cc sx .     (3.16) 

Proof: The strict feasibility follows from (3.15). Next, we have 

  

( )

.
12

1

12
1

2
1

2
1)()(

2
1

))(()(
2
1)(

2
1,,

2

2

1

211

δ

δ

µδ

−
≤

−
≤

+
≤

+
=−−+=

−=−=

∞

−

−−

c
s

c
x

c
s

c
x

c
s

c
x

c
s

c
x

c
s

c
x

c
s

c
xc

s
c
x

c
s

c
x

cccccc

dd

dd

dde

dd

dde

dd
ddeedde

vevvvsx

 

The third equality is due to the definition of 
cv  and (3.14) while the inequalities are due to norm 

properties and inequalities in (3.13).       

 Q.E.D. 

The immediate consequence of the lemma is the following corollary. 

Corollary 3.9 If 
2

1
≤δ , then ( ) 2,, δµδ ≤cc sx . 

The corollary states that the centering steps converge quadratically in the  −2/1  neighborhood of 

the central path. This implies that the number of centering steps necessary to obtain a point in the 

4/1=τ -neighborhood is no more than two. Thus, to obtain a new iterate ( )++ sx ,  we need one 

feasibility step and at most two centering steps per iteration. Hence, the following theorem: 

Theorem 3.10 If  
n12

1,
4
1

== θτ  , and dpρρµ =0 , then the Algorithm is globally convergent and  

requires at most   

   







ε

00 )(
32
33log12 sxn

T

  

iterations to obtain an ε -approximate solution of  LCP )(P  in (1.1). 

In other words, the theorem states that the Algorithm achieves an ε -approximate solution in 
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ε
nnO log        (3.17) 

iterations. The obtained iteration bound matches the best known iteration bound for these types of 

methods (infeasible algorithms).  

 Due to the page limitation, the proofs of the lemmas in this section are mostly omitted. They 

can be found in [5]. An LO versions of some results that can straightforwardly be generalized to LCP 

can also be found in [9, 10]. 

 

4. CONCLUDING REMARKS 

In this paper we have designed and analyzed IFNS-IPM presented in Figure 1. We have shown that the 

algorithm is globally convergent for the values of threshold and barrier parameters listed in (3.10). 

Furthermore, the algorithm matches the best known iteration complexity (3.17 for these types of 

methods.  

The advantages of the method are that it does not require strictly feasible starting point (infeasible 

algorithm) and it uses full Newton-steps, thus, avoiding calculations of a step-size at each iteration. 

Furthermore, a nice feature of the method is that it simultaneously works on reducing infeasibility and 

achieving optimality. The disadvantage is that the method is a short-step method, i.e., because of the 

required choice of parameters in (3.10), iterates are forced to be close to the central path. However, 

our initial and limited numerical testing shows that the absence of step-size calculations  provides the 

algorithm with some computational merit that still has to be investigated further with more extensive 

numerical testing. 

In addition to more numerical testing, some directions for further research include generalization of 

the method to more general classes of LCPs such as )(* κP -LCP and LCPs over symmetric cones. 

 

REFERENCES 
 
[1] M. Anitescu, G. Lesaja, and F. A. Potra. Equivalence between different formulations of the Linear 
complementarity problem. Optimization Methods and Software, 7:265-290, 1997. 

[2] Y.Q. Bai, G. Lesaja, C.Roos. A New Class of Polynomial Interior-Point Algorithms for Linear 
Complementarity Problems, Pacific Journal of Optimization, Vol. 4, No. 1, 19-41, 2008.  

[3] S.J. Chung. A note on the complexity of LCP. The LCP is strongly NP-complete. Technical Report 
792. Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor, 
Michigan, 1979. 

[4] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Academic 
Press, Boston, MA, 1992. 



Croatian Operational Research Review (CRORR), Vol. 3, 2012  

 
 
 

 175 

[5] A.M. Drummer. Infeasible full Newton-step Interior-point Method for the Linear Complementarity 
Problems. M.S. Thesis, Georgia Southern University, USA, 2012. 

[6] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity 
Problems. Springer, New York, 2003. 

[7] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point 
Algorithms for Linear Complementarity problems. Lecture Notes in Computer Science 538, Springer-
Verlag, New York, 1991. 

[8] G. Lesaja and C. Roos. Unified analysis of kernel-based interior-point methods for )(* κP -LCP. 
SIAM Journal on Optimization, 20(6): 3014-3039, 2010. 

[9] C. Roos. A full Newton-step O(n) infeasible-interior-point algorithm for linear optimization. SIAM 
Journal on Optimization, Vol. 16, No. 4, pp 1110-1136, 2006.  

[10] C. Roos, T. Terlaky, and J. Ph.Vial. Theory and Algorithms for Linear Optimization. An Interior-
Point Approach. Springer Science, 2005. 

   
 
 


