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Abstract 

In our talk we present an algorithm for determining initial bound for the Branch and Bound (B&B) 

method. The idea of the algorithm is based on the use of the "ray" introduced in the "ray-method" 

developed for solving integer programming problems [13], [14]. Instead of solving a common integer 

programming problem we use the main idea of the ray-method to find an integer feasible solution of 

integer linear programming (ILP) problem along the ray as close to optimal solution of relaxation 

problem, as possible. Objective value obtained in this way may be used as an initial bound for B&B 

method. The algorithm has been implemented in the frame of educational package WinGULF [3] for 

linear and linear-fractional programming and has been tested on various ILP problems. Then inspired 

by the results obtained we implemented the method using the so-called callable library of CPLEX 

package by IBM. Computational experiments with the algorithm proposed show that such 

preprocessing procedure in many cases results an integer feasible solution very close to the solution of 

relaxation problem. Initial bound for branch and bound method determined in this way often can 

significantly decrease the size of the binary tree to be searched and in this manner can improve 

performance of the B&B method. 
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1. INTRODUCTION 

 

The Branch and Bound (B&B) algorithm, first proposed by Land and Doig [16], is a well known and 

efficient algorithm for solving Integer Programming (IP) or Mixed Integer Programming (MIP) 

problems, it is used by all commercial solvers. 
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It is well known that the performance of the B&B method mainly depends on the following three main 

factors: 

 the rule used for choosing the branching variable,  

 the strategy used for generating binary search tree and 

 the value of the initial bound. 

Numerous efforts have been made in past decades to investigate general properties and behavior of 

B&B method, e.g. [5], [8], [9], [15], [17], [18], [19], [20], to improve its computational efficiency, e.g. 

[6], [10], [11], [12], to maximize its performance in different computational environments, see for 

example [7], [21], etc. 

Generally speaking, while branching variable and searching strategy determine the size of binary tree 

to be generated, getting a "good" bound as soon as possible can dramatically reduce the size of the tree 

to be considered, since the bound is used to prune those parts of the tree where the value of objective 

function cannot be better than the current bound. Our aim was to construct such a general algorithm 

which could provide a bound before we start the tree-building. 

Below we describe a procedure which can define a feasible integer solution aspiring to the best 

possible objective value using minimal computational effort and time.  

 

2. RAY METHOD 

 

Let us consider the following integer linear programming problem (ILP): 

 
n

j j

j 1

f (x) c x min   (1) 

st. 

 
n

ij j i

j 1

a x b , i 1,2, ,m     (2) 

 jx 0,  integer, j 1,2, ,n  (3) 

Here and in what follows we assume that the corresponding relaxation problem of (1)-(3) is solvable 

(i.e. has a non-empty feasible set S and objective function f(x) over the feasible set has a finite lower 

bound) and vector 

 
min min min min

1 2 nx (x ,x , , x )  
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is its relaxation non-integer solution.  

Furthermore, we suppose that the corresponding maximization relaxation problem is solvable too, and 

vector  

 
max max max max

1 2 nx (x ,x , , x )  

is its optimal solution. 

These two assumptions play a very important role in the new algorithm we proposed since points 
minx  

and 
maxx  are used to determine the ray for indicating the direction of the search. Moreover we assume 

that 

 
min maxx x  

 

2.1. Main steps 

  

Using notation given above, the new algorithm proposed can be described in the following way.  

1. Initial point. Let us denote point 
minx  by 

0x ,  and then let us enter vector 1 2 nl = (l , l ,  , l ) , 

where 

   
max min

j j jl x x , j 1,2, ,n . 

 

 

Figure 1:  The ray L. 
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2. Ray. Define the ray in the following way: 

 
0 max 0L x (x x ), 0 1.  

 

Note that since feasible set S is convex, it means that all points of ray L are elements of set S. 

3. Constructing set
0O(x ) . Let 

0J  be a set of indexes of integer components of vector 
0x , i.e. 

 
0 0 0

j jJ {j J | x [x ]},  where J {1,2, ,n}.  

Define set 
0O(x )  as the set of such points x which satisfy the following constraints: 

 

0 0 0

j j j

0 0 0

j j j j

0 0 0

j j j j

0 0

j j j

[x ] x [x ] 1,  if j J

[x ] x [x ] 1,  if j J  and l 0,

[x ] 1 x [x ],  if j J  and l 0,

x [x ],  if j J  and l 0,

 (4) 

  

Figure 2: The first unit-cube. 

Before starting the iterations we have to define point 
0x : x  and calculate the first 

perforation point 

 act 1 2 nP (p ,p , , p )  

solving the following optimization problem: 

 max  (5) 

st. 
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0

j j jp x l j 1,2, ,n,  (6) 

 

0 0 0

j j j

0 0 0

j j j j

0 0 0

j j j j

0 0

j j j

[x ] p [x ] 1,  if j J ,

[x ] p [x ] 1,  if j J  and l 0 ,

[x ] 1 p [x ],  if j J  and l 0 ,

p [x ],  if j J  and l 0 .

 (7) 

4. Shifting. Now we enter new variables j j jy x [x ], j 1,2, ,n,  and construct new 

feasible set S'  in the following way 

 
n

ij j i

j 1

S : a y b , i 1,2, ,m ,  

where 

 
n

i i ij j

j 1

b b a [x ], i 1,2, ,m .  

  

Figure 3: The shifted problem. 

 

Obviously, set S' is the intersection of the current set O(x') and feasible set S shifted to point 0. 

Then we solve the following 0-1 LP problem 

 
n

j j 0

j 1

f (y) c y c max  (8) 

st. 

 
n

ij j i

j 1

a y b , i 1,2, ,m,  (9) 

 jy 0 /1, j 1,2, ,n,  (10) 

where 
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n

0 j j

j 1

c c [x ] ,  

using Balas' additive algorithm (implicit enumeration) [4]. If problem (8)-(10) has 0-1 

optimal solution 
*y , then we determine vector 

* * * *

1 2 nx (x ,x , , x ) , where 

 
* *

j j jx y [x ], j 1,2, ,n ,  

and use value 
* *f (x ) f (y )  as an initial bound for the branch and bound method. Stop. 

Otherwise, 

5. Perforation point. We determine point nextP  where the ray "perforates" the hull of the next 

unit-cube along the ray solving the following optimization problem: 

 max  (11) 

st. 

 
0

j j jx x l j 1,2, ,n ,  (12) 

 

j j j

j j j j

j j j j

j j j

[p ] x [p ] 1, j J ,

[p ] x [p ] 1, j J  and l 0 ,

[p ] 1 x [p ], j J  and l 0 ,

x [p ], j J  and l 0 ,

 (13) 

where 
j jJ {j J | p [p ]} . Here constraints (12) and (13) provide nextP L and next actP O(P )  

correspondingly. Obviously, this problem is solvable, i.e. has a non-empty    feasible set and its 

objective function is bounded from above. Let next 1 2 nP (p ,p , , p )  solve    problem (11)-(13) and 

 be the maximal value of objective function (11). 

Let us define middle point x' of the line segment act next[P ; P ] : 

 
j j

j

p p
x j 1,2, ,n .

2
 (14) 

Furthermore, we do not need point actP   anymore, so we overwrite it with the value of nextP , i.e. 

act nextP : P . 

6. Next unit-cube. Having point x' we can determine the next unit-cube along the ray using the 

following rule: 

 

j j j

j j j j

j j j j

j j j

[x ] x [x ] 1,  if j J ,

[x ] x [x ] 1,  if j J  and l 0 ,

[x ] 1 x [x ],  if j J  and l 0 ,

x [x ],  if j J  and l 0 ,

 (15) 
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where 
j jJ {j J | x [x ]}. Go to step 3. 

Since the number of unit-cubes "perforated" by the ray is finite, the process will terminate in a finite 

number of iterations. It may occur that when determining next perforation point x' we obtain 1 . It 

means that unit-cubes constructed along the ray do not contain any integer feasible point for original 

problem (1)-(3). It means the method fails. 

 

3. NUMERIC EXAMPLE 
 

Here the main steps of the method proposed using a small numerical example are illustrated. The 

method proposed was partially implemented in the frame of the educational linear and linear-fractional 

package WinGULF [3]. The package has numerous options for the B&B method - we can choose the 

direction of the search (first left node and then right one or vice versa), different rules for selecting a 

branching variable (for example, "fractional part most close to 0.5", "smallest fractional part", "biggest 

fractional part", "smallest value", "biggest value", etc.), user defined initial bound, etc. When testing 

the method proposed, most of the options built in were used. 

Consider the following numerical example: 

 1 2 3f (x) 20x 21x 18x min  

st. 

 

1 2 3

1 2 3

1 2 3

1 2 3

9x 1.5x 7x 1350 ,

5.5x 1x 9x 1250 ,

4.5x 10x 2.5x 1050 ,

x , x , x  integer.

 

Solving both (minimization and maximization) relaxation problems we obtain the following: 

 

min

max

x ( 65.042, 97.799, 88.274) ,

x ( 0.000, 523.076, 80.769) ,

L ( 65.042, 425.277, 7.504) .

 

Let us denote 
minx  with 

0x  and construct set 
0O(x ), i.e. the following unit-cube: 
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1

0

2

3

65 x 66 ,

O(x ) : 97 x 98 ,

88 x 89 .

 

So the first shifted problem will be as follows: 

 

1 2 3

1 2 3

1 2

1 2 3

3

1 2 3

f (y) 20y 21y 18y 4921 max

st.

9y 1.5y 7y 3.5 ,

5.5y 1y 9y 3.5 ,

4.5y 10y

y ,y ,y -

2.5y 7.5 ,

 0/1

 

Since this problem is infeasible, we have to determine the next unit-cube along the ray. In order to 

obtain the next unit-cube first we solve the following problem (see (12)-(13)): 

 max  

st. 

 

1

2

3

x 65.042 ( 65.042) ,

x 97.799 (425.277) ,

x 88.274 ( 7.504) ,

 

 

1

2

3

65 x ,

x 98 ,

88 x

  

and obtain the first perforation point 1P : 

 10.00047, P (65.011, 98, 88.270) .  

To find the next perforation point 2P  we have to solve the following problem: 

 max  

st. 

 

1

2

3

x 65.042 ( 65.042) ,

x 97.799 (425.277) ,

x 88.274 ( 7.504) ,
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1

2

3

65 x ,

x 99 ,

88 x ,

 

so we obtain  

 20.00064, P (65, 98.07, 88.26) .  

Using these points 1P  and 2P  we find the middle point 

 x'=(65.006, 98.03, 88.26).  

This point allows us to construct the next shifted problem: 

 

1 2 3

1 2 3

1

1

3

1

3

2

2 3

2

f (y) 20y 21y 18y 4942 max

st.

9y 1.5y 7y 2 ,

5.5y 1y 9y 2.5 ,

4.5y 10y 2.5y 2.5 ,

y ,y ,y  - 0/1.

 

This problem has no feasible solution. 

Proceeding to the next perforation point 3P , we obtain the following optimization problem to solve 

 max  

st. 

 

1

2

3

x 65.042 ( 65.042) ,

x 97.799 (425.277) ,

x 88.274 ( 7.504) ,

 

 

1

2

3

64 x ,

x 99 ,

88 x .

 

We obtain 0.0028  and the next perforation point 3P (64.85, 99, 88.25) . Therefore the next 

middle point is x (64.93, 98.53, 88.26)  and the shifted problem is as follows: 
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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

f (y) 20y 21y 18y 4922 max

st.

9y 1.5y 7y 11,

5.5y 1y 9y 8 ,

4.5y 10y 2.5y 2 ,

y , y , y 0 /1.

 

The optimal solution of this problem is 
*y (0,1,1)  and 

*f (y ) 4961. This value may be used as 

an initial bound. The corresponding integer point is 
*x (64, 99, 89) . 

Note that the initial bound obtained (4961) is very close to the optimal value (after solving the 

problem we obtain 4959). 

Below is presented the table with results obtained from WinGULF 11F

1
 after running B&B method on this 

numerical example using different strategies (from left to right and vice versa) and different branching 

rules. "Wo.I.B." means "without an initial bound" and "W.I.B." means "with an initial bound". 

 

Table 1:   

  

In this numeric example the average reduction of the number of nodes to be processed in the binary 

tree is equal to 32.4%, while the best result is 90.5%. 

 

4. MIPLIB TESTS 

 

Encouraged and inspired by this results we performed further numeric experiments and tests using the 

professional solver CPLEX (i.e. IBM ILOG CPLEX Optimizer) and official test files from MIPLIB 

collection (see for instance http://miplib.zib.de/). 

Therefore A. Rácz implemented the MIP adaptation of the method proposed using callable library of 

package CPLEX. 

                                                 
1
 Web site: http://zeus.nyf.hu/~bajalinov 
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The steps of the test code developed are as follows: 

1. Reading .mps or .lp input file with the test problem.  

2. CPLEX solves the problem without our bound. 

3. Ray method calculates an initial bound. 

4. CPLEX solves the problem using the bound defined in the previous step. 

The following table shows the results obtained. Most of the files can be found in MIPLIB library 

(contributor A. Atamtürk, [1], [2]).  

 
Table 2: Test results with MIPLIB problems 

  

This table shows the corresponding information about the test problems in the first five column (name, 

number of rows and columns, number of integer variables and nonzero coefficients). The other 

columns present the test results. In column "Time without bound" you can find the time in sec which 

was needed for IBM CPLEX for solving the IP problem without our bound. In the column "Time to 

define bound" we see the time elapsed while method was calculating the initial bound. Finally, column 

"Time with bound" shows CPLEX's reduced run time while solving the same IP problem but using 

initial bound calculated by our ray-method. As we can see an overall about 20,9% average 

improvement on run time can be observed in case of these test files. So spending a very little time for 

calculating an initial bound using our method often leads to significant improvement in performance 

of branch and bound procedure. 

 

5. CONCLUSIONS 

 
Summarizing results presented above, we have to emphasize that when choosing a ray it is very 

important to find such a ray that is located in the most inner part of feasible set S, since it gives us a 

hope that the ray selected in such a way will result a unit-cube with at least one feasible vertex quite 

quickly.  
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Originally the idea of using some sort of ray when solving IP problems was proposed by V.R. 

Khachaturov12F

2
 et al. [13], [14]. Instead of search an optimal integer solution we use the idea of the ray 

to find a feasible integer solution as soon as possible. Our experiments with our package WINGULF 

have shown that such type of procedure often results such a good initial bound that dramatically 

reduces the size of the binary tree to be searched. All these results inspired us for experiments with 

callable library of CPLEX. The experiments with CPLEX have shown that the main idea of the 

method proposed may be useful, so we intend to continue numeric experiments and check the method 

with using package GUROBI13F

3
. 
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