
Croatian Operational Research Review (CRORR), Vol. 3, 2012

 137

THE RAY-METHOD: THEORETICAL BACKGROUND AND

COMPUTATIONAL RESULTS

Erik Bajalinov

University College of Nyíregyháza, Institute of Mathematics and Informatics

H-4400 Nyíregyháza, Sóstói út 31/b, Hungary

E-mail: Bajalinov@NyF.Hu

Anett Rácz

Debrecen University, Faculty of Informatics

4028 Debrecen, Kassai u. 26, Hungary

E-mail: Racz.Anett@Inf.UniDeb.Hu

Abstract

In our talk we present an algorithm for determining initial bound for the Branch and Bound (B&B)

method. The idea of the algorithm is based on the use of the "ray" introduced in the "ray-method"

developed for solving integer programming problems [13], [14]. Instead of solving a common integer

programming problem we use the main idea of the ray-method to find an integer feasible solution of

integer linear programming (ILP) problem along the ray as close to optimal solution of relaxation

problem, as possible. Objective value obtained in this way may be used as an initial bound for B&B

method. The algorithm has been implemented in the frame of educational package WinGULF [3] for

linear and linear-fractional programming and has been tested on various ILP problems. Then inspired

by the results obtained we implemented the method using the so-called callable library of CPLEX

package by IBM. Computational experiments with the algorithm proposed show that such

preprocessing procedure in many cases results an integer feasible solution very close to the solution of

relaxation problem. Initial bound for branch and bound method determined in this way often can

significantly decrease the size of the binary tree to be searched and in this manner can improve

performance of the B&B method.

Key words: Branch and bound, Integer programming

1. INTRODUCTION

The Branch and Bound (B&B) algorithm, first proposed by Land and Doig [16], is a well known and

efficient algorithm for solving Integer Programming (IP) or Mixed Integer Programming (MIP)

problems, it is used by all commercial solvers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14461242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 138

It is well known that the performance of the B&B method mainly depends on the following three main

factors:

 the rule used for choosing the branching variable,

 the strategy used for generating binary search tree and

 the value of the initial bound.

Numerous efforts have been made in past decades to investigate general properties and behavior of

B&B method, e.g. [5], [8], [9], [15], [17], [18], [19], [20], to improve its computational efficiency, e.g.

[6], [10], [11], [12], to maximize its performance in different computational environments, see for

example [7], [21], etc.

Generally speaking, while branching variable and searching strategy determine the size of binary tree

to be generated, getting a "good" bound as soon as possible can dramatically reduce the size of the tree

to be considered, since the bound is used to prune those parts of the tree where the value of objective

function cannot be better than the current bound. Our aim was to construct such a general algorithm

which could provide a bound before we start the tree-building.

Below we describe a procedure which can define a feasible integer solution aspiring to the best

possible objective value using minimal computational effort and time.

2. RAY METHOD

Let us consider the following integer linear programming problem (ILP):

n

j j

j 1

f (x) c x min (1)

st.

n

ij j i

j 1

a x b , i 1,2, ,m (2)

 jx 0, integer, j 1,2, ,n (3)

Here and in what follows we assume that the corresponding relaxation problem of (1)-(3) is solvable

(i.e. has a non-empty feasible set S and objective function f(x) over the feasible set has a finite lower

bound) and vector

min min min min

1 2 nx (x ,x , , x)

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 139

is its relaxation non-integer solution.

Furthermore, we suppose that the corresponding maximization relaxation problem is solvable too, and

vector

max max max max

1 2 nx (x ,x , , x)

is its optimal solution.

These two assumptions play a very important role in the new algorithm we proposed since points
minx

and
maxx are used to determine the ray for indicating the direction of the search. Moreover we assume

that

min maxx x

2.1. Main steps

Using notation given above, the new algorithm proposed can be described in the following way.

1. Initial point. Let us denote point
minx by

0x , and then let us enter vector 1 2 nl = (l , l , , l) ,

where

max min

j j jl x x , j 1,2, ,n .

Figure 1: The ray L.

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 140

2. Ray. Define the ray in the following way:

0 max 0L x (x x), 0 1.

Note that since feasible set S is convex, it means that all points of ray L are elements of set S.

3. Constructing set
0O(x) . Let

0J be a set of indexes of integer components of vector
0x , i.e.

0 0 0

j jJ {j J | x [x]}, where J {1,2, ,n}.

Define set
0O(x) as the set of such points x which satisfy the following constraints:

0 0 0

j j j

0 0 0

j j j j

0 0 0

j j j j

0 0

j j j

[x] x [x] 1, if j J

[x] x [x] 1, if j J and l 0,

[x] 1 x [x], if j J and l 0,

x [x], if j J and l 0,

 (4)

Figure 2: The first unit-cube.

Before starting the iterations we have to define point
0x : x and calculate the first

perforation point

 act 1 2 nP (p ,p , , p)

solving the following optimization problem:

 max (5)

st.

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 141

0

j j jp x l j 1,2, ,n, (6)

0 0 0

j j j

0 0 0

j j j j

0 0 0

j j j j

0 0

j j j

[x] p [x] 1, if j J ,

[x] p [x] 1, if j J and l 0 ,

[x] 1 p [x], if j J and l 0 ,

p [x], if j J and l 0 .

 (7)

4. Shifting. Now we enter new variables j j jy x [x], j 1,2, ,n, and construct new

feasible set S' in the following way

n

ij j i

j 1

S : a y b , i 1,2, ,m ,

where

n

i i ij j

j 1

b b a [x], i 1,2, ,m .

Figure 3: The shifted problem.

Obviously, set S' is the intersection of the current set O(x') and feasible set S shifted to point 0.

Then we solve the following 0-1 LP problem

n

j j 0

j 1

f (y) c y c max (8)

st.

n

ij j i

j 1

a y b , i 1,2, ,m, (9)

 jy 0 /1, j 1,2, ,n, (10)

where

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 142

n

0 j j

j 1

c c [x] ,

using Balas' additive algorithm (implicit enumeration) [4]. If problem (8)-(10) has 0-1

optimal solution
*y , then we determine vector

* * * *

1 2 nx (x ,x , , x) , where

* *

j j jx y [x], j 1,2, ,n ,

and use value
* *f (x) f (y) as an initial bound for the branch and bound method. Stop.

Otherwise,

5. Perforation point. We determine point nextP where the ray "perforates" the hull of the next

unit-cube along the ray solving the following optimization problem:

 max (11)

st.

0

j j jx x l j 1,2, ,n , (12)

j j j

j j j j

j j j j

j j j

[p] x [p] 1, j J ,

[p] x [p] 1, j J and l 0 ,

[p] 1 x [p], j J and l 0 ,

x [p], j J and l 0 ,

 (13)

where
j jJ {j J | p [p]} . Here constraints (12) and (13) provide nextP L and next actP O(P)

correspondingly. Obviously, this problem is solvable, i.e. has a non-empty feasible set and its

objective function is bounded from above. Let next 1 2 nP (p ,p , , p) solve problem (11)-(13) and

 be the maximal value of objective function (11).

Let us define middle point x' of the line segment act next[P ; P] :

j j

j

p p
x j 1,2, ,n .

2
 (14)

Furthermore, we do not need point actP anymore, so we overwrite it with the value of nextP , i.e.

act nextP : P .

6. Next unit-cube. Having point x' we can determine the next unit-cube along the ray using the

following rule:

j j j

j j j j

j j j j

j j j

[x] x [x] 1, if j J ,

[x] x [x] 1, if j J and l 0 ,

[x] 1 x [x], if j J and l 0 ,

x [x], if j J and l 0 ,

 (15)

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 143

where
j jJ {j J | x [x]}. Go to step 3.

Since the number of unit-cubes "perforated" by the ray is finite, the process will terminate in a finite

number of iterations. It may occur that when determining next perforation point x' we obtain 1 . It

means that unit-cubes constructed along the ray do not contain any integer feasible point for original

problem (1)-(3). It means the method fails.

3. NUMERIC EXAMPLE

Here the main steps of the method proposed using a small numerical example are illustrated. The

method proposed was partially implemented in the frame of the educational linear and linear-fractional

package WinGULF [3]. The package has numerous options for the B&B method - we can choose the

direction of the search (first left node and then right one or vice versa), different rules for selecting a

branching variable (for example, "fractional part most close to 0.5", "smallest fractional part", "biggest

fractional part", "smallest value", "biggest value", etc.), user defined initial bound, etc. When testing

the method proposed, most of the options built in were used.

Consider the following numerical example:

 1 2 3f (x) 20x 21x 18x min

st.

1 2 3

1 2 3

1 2 3

1 2 3

9x 1.5x 7x 1350 ,

5.5x 1x 9x 1250 ,

4.5x 10x 2.5x 1050 ,

x , x , x integer.

Solving both (minimization and maximization) relaxation problems we obtain the following:

min

max

x (65.042, 97.799, 88.274) ,

x (0.000, 523.076, 80.769) ,

L (65.042, 425.277, 7.504) .

Let us denote
minx with

0x and construct set
0O(x), i.e. the following unit-cube:

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 144

1

0

2

3

65 x 66 ,

O(x) : 97 x 98 ,

88 x 89 .

So the first shifted problem will be as follows:

1 2 3

1 2 3

1 2

1 2 3

3

1 2 3

f (y) 20y 21y 18y 4921 max

st.

9y 1.5y 7y 3.5 ,

5.5y 1y 9y 3.5 ,

4.5y 10y

y ,y ,y -

2.5y 7.5 ,

 0/1

Since this problem is infeasible, we have to determine the next unit-cube along the ray. In order to

obtain the next unit-cube first we solve the following problem (see (12)-(13)):

 max

st.

1

2

3

x 65.042 (65.042) ,

x 97.799 (425.277) ,

x 88.274 (7.504) ,

1

2

3

65 x ,

x 98 ,

88 x

and obtain the first perforation point 1P :

 10.00047, P (65.011, 98, 88.270) .

To find the next perforation point 2P we have to solve the following problem:

 max

st.

1

2

3

x 65.042 (65.042) ,

x 97.799 (425.277) ,

x 88.274 (7.504) ,

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 145

1

2

3

65 x ,

x 99 ,

88 x ,

so we obtain

 20.00064, P (65, 98.07, 88.26) .

Using these points 1P and 2P we find the middle point

 x'=(65.006, 98.03, 88.26).

This point allows us to construct the next shifted problem:

1 2 3

1 2 3

1

1

3

1

3

2

2 3

2

f (y) 20y 21y 18y 4942 max

st.

9y 1.5y 7y 2 ,

5.5y 1y 9y 2.5 ,

4.5y 10y 2.5y 2.5 ,

y ,y ,y - 0/1.

This problem has no feasible solution.

Proceeding to the next perforation point 3P , we obtain the following optimization problem to solve

 max

st.

1

2

3

x 65.042 (65.042) ,

x 97.799 (425.277) ,

x 88.274 (7.504) ,

1

2

3

64 x ,

x 99 ,

88 x .

We obtain 0.0028 and the next perforation point 3P (64.85, 99, 88.25) . Therefore the next

middle point is x (64.93, 98.53, 88.26) and the shifted problem is as follows:

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 146

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

f (y) 20y 21y 18y 4922 max

st.

9y 1.5y 7y 11,

5.5y 1y 9y 8 ,

4.5y 10y 2.5y 2 ,

y , y , y 0 /1.

The optimal solution of this problem is
*y (0,1,1) and

*f (y) 4961. This value may be used as

an initial bound. The corresponding integer point is
*x (64, 99, 89) .

Note that the initial bound obtained (4961) is very close to the optimal value (after solving the

problem we obtain 4959).

Below is presented the table with results obtained from WinGULF 11F

1
 after running B&B method on this

numerical example using different strategies (from left to right and vice versa) and different branching

rules. "Wo.I.B." means "without an initial bound" and "W.I.B." means "with an initial bound".

Table 1:

In this numeric example the average reduction of the number of nodes to be processed in the binary

tree is equal to 32.4%, while the best result is 90.5%.

4. MIPLIB TESTS

Encouraged and inspired by this results we performed further numeric experiments and tests using the

professional solver CPLEX (i.e. IBM ILOG CPLEX Optimizer) and official test files from MIPLIB

collection (see for instance http://miplib.zib.de/).

Therefore A. Rácz implemented the MIP adaptation of the method proposed using callable library of

package CPLEX.

1
 Web site: http://zeus.nyf.hu/~bajalinov

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 147

The steps of the test code developed are as follows:

1. Reading .mps or .lp input file with the test problem.

2. CPLEX solves the problem without our bound.

3. Ray method calculates an initial bound.

4. CPLEX solves the problem using the bound defined in the previous step.

The following table shows the results obtained. Most of the files can be found in MIPLIB library

(contributor A. Atamtürk, [1], [2]).

Table 2: Test results with MIPLIB problems

This table shows the corresponding information about the test problems in the first five column (name,

number of rows and columns, number of integer variables and nonzero coefficients). The other

columns present the test results. In column "Time without bound" you can find the time in sec which

was needed for IBM CPLEX for solving the IP problem without our bound. In the column "Time to

define bound" we see the time elapsed while method was calculating the initial bound. Finally, column

"Time with bound" shows CPLEX's reduced run time while solving the same IP problem but using

initial bound calculated by our ray-method. As we can see an overall about 20,9% average

improvement on run time can be observed in case of these test files. So spending a very little time for

calculating an initial bound using our method often leads to significant improvement in performance

of branch and bound procedure.

5. CONCLUSIONS

Summarizing results presented above, we have to emphasize that when choosing a ray it is very

important to find such a ray that is located in the most inner part of feasible set S, since it gives us a

hope that the ray selected in such a way will result a unit-cube with at least one feasible vertex quite

quickly.

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 148

Originally the idea of using some sort of ray when solving IP problems was proposed by V.R.

Khachaturov12F

2
 et al. [13], [14]. Instead of search an optimal integer solution we use the idea of the ray

to find a feasible integer solution as soon as possible. Our experiments with our package WINGULF

have shown that such type of procedure often results such a good initial bound that dramatically

reduces the size of the binary tree to be searched. All these results inspired us for experiments with

callable library of CPLEX. The experiments with CPLEX have shown that the main idea of the

method proposed may be useful, so we intend to continue numeric experiments and check the method

with using package GUROBI13F

3
.

REFERENCES

1 Atamtürk, A. (2002), “On Capacitated Network Design Cut-Set Polyhedra” Mathematical

Programming, Vol. 92, pp. 425-437.

2 Atamtürk, A., Rajan D. (2002), “On Splittable and Unsplittable Capacitated Network Design Arc-

Set Polyhedra” Mathematical Programming, Vol. 92, pp. 315-333.

3 Bajalinov, E. (2003), Linear-fractional programming: theory, methods, software and applications,

Kluwer.

4 Balas, E. (1965), “An additive algorithm for solving linear programs with zero-one variables”

Operations Research, Vol. 13, pp. 517-46.

5 Berliner, H. (1979), “The B tree search algorithm: A best-first proof procedure” Artificial Intell.,

Vol. 12, no. 1, pp. 23-40.

6 Borchers, B., Mitchell, J.E. (1994), “An improved branch and bound algorithm for mixed integer

nonlinear programs” Computers and Operations Research, Vol. 21, issue 4, pp. 359-367.

7 Gendron, B., Crainic, T.G. (1994), “Parallel Branch-and-Bound Algorithms: Survey and Synthesis”

Opererations Research, Vol. 42 issue 6, pp. 1042-1066.

8 Gupta, O. K., Ravindran, V. (1985), “Branch and Bound Experiments in Convex Nonlinear Integer

Programming” Management Science, Vol. 31, no. 12, 1533-1546.

9 Hawkins, D. M. (2006), Branch-and-Bound method, Encyclopedia of Statistical Sciences, John

Wiley and Sons.

10 Ibaraki, T. (1976), “Computational efficiency of approximate branch-and-bound algorithms” Math.

Oper. Res., Vol. 1, no. 3, pp. 287-298.

11 Ibaraki, T. (1976), “Theoretical comparisons of search strategies in branch-and-bound algorithms”

Int. J. Computer and Information Sciences, Vol. 5, no. 4, pp. 315-343.

12 Ibaraki, T. (1977), “The Power of Dominance Relations in Branch-and-Bound Algorithms” Journal

of the ACM (JACM), Vol. 24, issue 2, pp. 264-279.

13 Khachaturov, V.R., Mirzoyan, N.A. (1987),”Solving problems of integer programming with ray-

method” Notes on applied mathematics, Computer Center of Soviet Academy of Science.

2
 Russian Academy Of Science, Computer Center, Moscow

3
 Gurobi Optimization

Croatian Operational Research Review (CRORR), Vol. 3, 2012

 149

14 Khachaturov, V.R. (2000), Combinatorial methods and algorithms for solving large-scale discrete

optimization problems, Nauka, Moscow.

15 Kumar, V., Kanal, L. N. (1983), “A general branch and bound formulation for understanding and

synthesizing and/or tree search procedures” Artificial Intell., Vol. 21, no. 1-2, pp. 179-198.

16 Land, A. H., Doig, A. G. (1960), “An Automatic Method for Solving Discrete Programming

Problems” Econometrica, Vol. 28, pp. 497-520.

17 Lawler, E. L., Wood, D. E. (1966), “Branch-And-Bound Methods: A Survey” Operations

Research, Vol. 14, no. 4, pp. 699-719.

18 Mitten, L. (1970), “Branch and bound methods: General formulation and properties” Operation

Research, Vol. 18, pp. 24-34.

19 Smith, D.R. (1984), “Random trees and the analysis of branch and bound procedures” Journal of

the Association for computing machinery, Vol.31, no.1, pp. 163-188.

20 Yu, C.-F., Wah, B.W. (1985), “Stochastic modeling of branch-and-bound algorithms with best-first

search” IEEE Transactions on Software Engineering, Vol. SE-11, no. 9, pp. 922-934.

21 Yu, C.-F., Wah, B.W. (1988), “Efficient Branch-and-Bound Algorithms on a Two-Level Memory

System” IEEE Transactions on Software Engineering, Vol. 14, no. 9, pp. 1342-1356.

