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EXTENDED ABSTRACT 

The derivative of a function f in n variables at a point x* is one of the most important tools in mathematical 
modelling. If this object exists, it is represented by the row n-tuple f(x*) = [∂f/∂xi(x

*)] called the gradient of 
f at x*, abbreviated: “the gradient”. The evaluation of f(x*) is usually done in two stages, first by calculating 
the n partials and then their values at x = x*. In this talk we give an alternative approach. We show that one 
can characterize the gradient without differentiation! The idea is to fix an arbitrary row n-tuple G and answer 
the following question: What is a necessary and sufficient condition such that G is the gradient of a given f at 
a given x*?  The answer is given after adjusting the quadratic envelope property introduced in [3].  

We work with smooth, i.e., continuously differentiable, functions with a Lipschitz derivative on a compact 
convex set with a non-empty interior. Working with this class of functions is not a serious restriction. In fact, 
loosely speaking, “almost all” smooth meaningful functions used in modelling of real life situations are 
expected to have a bounded “acceleration” hence they belong to this class. In particular, the class contains all 
twice differentiable functions [1]. An important property of the functions from this class is that every f can 
be represented as the difference of some convex function and a convex quadratic function. This 
decomposition was used in [3] to characterize the zero derivative points. There we obtained reformulations 
and augmentations of some well known classic results on optimality such as Fermats extreme value theorem 
(known from high school) and the Lagrange multiplier theorem from calculus [2, 3].  In this talk we extend 
the results on zero derivative points to characterize the relation G = f(x*), where G is an arbitrary n-tuple. 
Some special cases: If G = O, we recover the results on zero derivative points. For functions of a single 
variable on I = [a, b], the choice G = [f(b) – f(a)]/(b – a) yields characterizations of points  c where the 
instantaneous and average rates of change coincide [4], etc. The celebrated mean value theorem [2] claims 
that at least one such point c exists but it does not characterize it.  These ideas are illustrated by examples 
and a photograph of an overpass in Beijing. A successful implementation of the new approach requires 
familiarity with the basic theory of infinite sequences. 
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1 Full paper based on this talk, with the title: "Equivalent formulations of the gradient" is forthcoming in Journal of 
Global Optimization (published online January 25, 2011). 


	CRORR.Vol.2.NASLOVNICA
	CRORR.Vol.2



