
Pieter V. Reyneke, Norman Morrison, Derrick G. Kourie, Corné de Ridder

Polynomial Filtering: To any degree on irregularly sampled data

DOI
UDK
IFAC

10.7305/automatika.53-4.248
621.372.852.1:519.2/.6;621.396.969.3
5.8.3; 1.1 Original scientific paper

Conventionally, polynomial filters are derived for evenly spaced points. Here, a derivation of polynomial filters
for irregularly spaced points is provided and illustrated by example. The filter weights and variance reduction
factors (VRFs) for both expanding memory polynomial (EMP) and fading-memory polynomial (FMP) filters are
programmatically derived so that the expansion up to any degree can be generated. (Matlab was used for doing
the symbolic weight derivations utilizing Symbolic Toolbox functions.) Order-switching and length-adaption are
briefly considered. Outlier rejection and Cramer-Rao Lower Bound consistency are touched upon. In terms of
performance, the VRF and its decay for the EMP filter is derived as a function of length (n) and the switch-over
point is calculated where the VRFs of the EMP and FMP filters are equal. Empirical results verifying the derivation
and implementation are reported.

Key words: Radar tracking filters, Polynomial approximation, Smoothing, State estimation, Satellite tracking,
Discrete time filters, Laguerre processes, Legendre processes, Polynomial approximation, Smooth-
ing methods, Interpolation, Extrapolation

Polinomno filtriranje: postizanje bilo kojeg stupnja na nepravilno uzorkovanim podacima. Polinomni filtri
uobičajeno se rade za ravnomjerno raspored̄ene točke u prostoru. U ovom radu dana je derivacija polinomnih filtara
za neravnomjerno raspored̄ene točke. Težinske vrijednosti filtra i faktori smanjenja varijance (VRF-ovi) za polinom
proširene memorije (EMP) i polinom oslabljenje memorije (FMP) su programski podržani tako da se može napraviti
ekspanzija do bilo kojeg stupnja. Kratko su razmotreni i promjena poretka i adaptacija dužine filtra. Dotaknute su
i metode odbijanja jako raspršenih rezultata i Cramer-Raove konzistencije donje granice. VRF i njegovo opadanje
za EMP filtar izvedeno je kao funkcija duljine (n) i izračunata je točka prijelaza gdje su VRF-ovi od EMP i FMP
filtara jednaki. Predočeni su empirijski rezultati koji verificiraju izvod i implementaciju.

Ključne riječi: filtri za praćenje radara, polinomna aproksimacija, izglad̄ivanje, procjena stanja, praćenje satelita,
diskretni vremenski filtri, Laguerreovi procesi, Legendreovi procesi, aproksimacija polinomom,
metode izglad̄ivanja, interpolacija, ekstrapolacija

1 INTRODUCTION

The 1-step predictor and current-estimate filters intro-
duced by Morrison in [1] and [2] both recursively calculate
a least squares approximation of a process model, in ef-
fect determining the state of a polynomial curve fitted over
noisy input observations. The origin of the fitted curve is
on the last added observation’s timestamp.

The expanding memory polynomial filter (EMP) ad-
heres to the Cramér-Rao lower bound (CRLB1) on vari-
ance, thus it is CRLB consistent [2]. However, the fading
memory polynomial filter (FMP) is not CRLB consistent.

1The Cramér-Rao lower bound is a limit to the variance that can be
attained by a linear unbiased estimator of a parameter of a distribution.
See [3], [4] for fundamentals, [5] for a well-explained application and [1]
for the proof of CRLB consistency, specifically for polynomial filters.

In the present context, recursive refers to adding one
observation at a time. To date these filters have been sub-
ject to the constraint that observations have to be evenly
spaced. However, in natural environments, measurements
cannot always be assigned to an integer type time batch
without losing accuracy. Reasons therefore are threefold:

• Floating point time values more accurately position
updates in time, leading to less ambiguity caused by
natural variations (related to, for example, tempera-
ture, target clutter, occlusions, etc.).

• Detector or algorithm design may result in non-
deterministic jumps in the update intervals, or in
uneven even/odd time-interval symmetry. Examples
where variable update intervals can be expected in-
clude: nodding algorithms, zig-zag sweep detectors,
linear sensor integration and asynchronous mode

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 53(4), 382–397(2012)

382 AUTOMATIKA 53(2012) 4, 382–397

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/14458866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

changing.

For the above mentioned reasons this research proposes
a variable-step extension to the polynomial filters derived
in [1] and [2], refining the proposed filters in [6].

The biggest advantage of recursive EMP and FMP fil-
ters, other than being extremely fast, is that their use of
discrete orthogonal basis functions eliminates the need for
matrix inversions in the auto-regression (AR) process.

We prefer to distinguish between orthogonal and or-
thonormal function sets, although orthogonal is the term
generally attributed to a function set being both orthog-
onal and normalised. This opinion is becoming generally
acceptable and is reflected by Chihara in [7].

NOMENCLATURE

In what follows, the following notation is used:

• t represents time in seconds;
• τ represents the constant expected update period (or

system batch time) in seconds;
• δ represents delta-time in seconds;
• η (a real value) represents time in τ ’s;
• ζ (a real value) represents delta-time in τ ’s;
• Z the state on the last timestamp, the coefficients of a

polynomial function; and
• Z∗ the estimated state at a time other than the last

timestamp.

Additionally, the term order is used to refer to a non-
negative integer value attributed to a fit, a differential equa-
tion, a process model or a filter model; and the term degree
is used to refer to a value attributed to a polynomial.

The remainder of this article is laid out as follows. Sec-
tion 2 points to application areas for the proposed filtering
technique. As background Section 3 provides a solution
to the classical linear tracking differential equation and in
Section 4 a motivation for a change in the state transition
matrix is presented. An overview of the solutions for two
discrete orthonormal (DON) polynomial function sets is
given in Sections 5.1 and 5.2 respectively. Furthermore it is
shown in Section 5.3 that matrix-inversion can be avoided.
Section 5 provides the underpinnings of Section 6. An ex-
planation of the extension of the current-estimate filter to
a variable-step polynomial filter is given in Section 6.1.
Thereafter recursive weight updates for the EMP and FMP
filters are symbolically derived from the DON polyno-
mials. Section 7 provides methods of auto-initialisation,
combining, length-adaption and order switching for poly-
nomial filters. Section 8 reports on results obtained from
trial runs on simulated polynomial data thereby verifying
the prediction capability of a variable-step implementation.

The smoothing results on noisy, irregular, real data can be
found in 8.2. Results obtained during missile testing are
provided in 8.3. The article is concluded in Section 9.

To enhance the flow of the article, all relevant Matlab
code has been included in APPENDIX A. The reader is
referred to the code where applicable.

2 APPLICATION AREAS

Apart from the application areas dealing with irregu-
larly updating sensors mentioned in Section 1, two other
types of application areas can be distinguished: firstly, ar-
eas where polynomial filtering to a higher degree may be
required; and secondly, areas where extremely fast execu-
tion speed are required.

Polynomial fit application areas where PFs to a higher
degree were successfully demonstrated include:

(a.) Plant Control: when measurement noise in plant mon-
itoring systems is low enough, higher degree fitting
and predicting becomes feasible. New dynamic be-
havior can be observed in this manner.

(b.) In inertial kinematics, position derivatives are already
defined up to the sixth order, as follows: velocity (1st),
acceleration (2nd), jerk (3rd), snap (4th), crackle (5th)
and pop (6th), terminology proposed by Gibbs and
Gragert in 1996 [8]. These may require estimation and
plotting in the near future.

(c.) In structural dynamics, e.g. earth quake modeling,
higher degree fits may increase measurement and
modeling accuracy.

(d.) Finally, in tracking, if higher degrees are observable
in the underlying truth of a tracking scenario then, de-
pending on system noise levels, one can consider in-
creasing the memory timespan and doing a higher de-
gree fit than four. This is especially true in 2D imaging
systems where very high dynamic behavior is observ-
able in the end game of such target intercept systems.
Furthermore in 3D systems higher degree estimation
enables the tracking of sinusoidal functions and hence
circular manoeuvres more accurately.

Note that one should be careful not to use a higher de-
gree filter than the natural degree present in the underly-
ing truth of the controlled system, or points to be approxi-
mated.

The proposed variable-step filters have been applied in
two areas where extremely fast execution speeds are re-
quired:

AUTOMATIKA 53(2012) 4, 382–397 383

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

(a.) Image integration: An array of more than 10 000 poly-
nomial filters was recently used to integrate and aver-
age an imaging sensor with a longish history length of
200 frames. Subtracting the averaged image from the
current led to improved Signal-to-Noise ratio and sup-
pressed unwanted artifacts. The successfully demon-
strated filter array may be implemented in VHDL to
lessen processing load maintaining the required real-
time processing requirement.

(b.) Constant false-alarm rate (CFAR) mean estimator
filters for LADAR ranging and range-gate applica-
tions require fast robust pulse detection for time-of-
flight measurement and pulse repetition interval (PRI)
tracking. Signals are commonly sampled at above 2
Gsamples/s. The CFAR commonly thresholds any de-
viation of more than 3σ from a mean. PFs can be used
as a good mean-estimator for the segmenting, detec-
tion and tracking of wanted pulses.

3 MODELING A CLASSICAL DIFFERENTIAL
EQUATION

To explain polynomial filters, consider modeling the
classical 2nd-order linear differential equation (DE), where
it is assumed that the 3rd derivative is 0.

ṙ =
dr

dt
r̈ =

dṙ

dt

...
r =

dr̈

dt
= 0 (1)

If r is defined as r = [r1, r2, r3]T = [r, ṙ, r̈]T , the DE
becomes:

ṙ1 = r2 ṙ2 = r3 ṙ3 = 0 (2)

This may be written in matrix form as follows:

ṙ = Ar (3)

where:

A =

[
0 1 0
0 0 1
0 0 0

]
(4)

Note that r = Z, which is the nth order state vector.

Ψ(t) = eAt is a solution for the linear DE system in
Equation 3. The system has infinitely many solutions de-
pending on the initial conditions. Note that Ψ(δ) can be
used as a state transition matrix (STM). An STM is used to
shift the validity instant of a DE system’s state vector from
time t by an amount δ, a real number, to time t + δ via a
simple matrix multiplication (Equation 6).

Thus prediction can be done without recalculating the
state (Z). By using the STM one can shift the state along
time as follows: Z∗(t+ δ) = Ψ(δ)Z(t). Note, the asterisk
indicates that the newly calculated state is an estimate at

t + δ. The asterisk is omitted at t since t is where the last
fit was calculated.

One can either choose the Padé expanded STM, Ψ(δ),
or the commonly used STM for polynomial filtering
Φ(δ), [1, 6]. We prefer using the Padé expanded STM for
the derivation. (See Section 4.)

The linear DE in Equation 3 has the following discrete
solution [9] :

z(t+ δ) = Ψ(δ)z(t) (5)

The state transition matrix Ψ(δ)2, for the 2nd-order DE in
Equation 3, is:

Ψ(δ) =

 1 δ δ2

2!
0 1 δ
0 0 1

 (6)

and as will be seen, Equation 37, written out for the 2nd

order variable-step filter update, renders:

z2t = z∗2 t,t−δ + 2!Γ2en

z1t = z∗1 t,t−δ + Γ1en

z0t = z∗0 t,t−δ + Γ0en

where the Γ’s for the 2nd-degree for EMP and FMP for
use with the Ψ are simply (see Sections 6.4 and 6.6):

Γ2(n) = (2!)30

(n+3)(3)
Γ2(θ) = 2!(1−θ)3

2

Γ1(n) = 18(2n+1)

(n+3)(3)
Γ1(θ) = 3

2
(1− θ)2(1 + θ)

Γ0(n) = 3(3n2+3n+2)

(n+3)(3)
Γ0(θ) = 1− θ3

Note that the EMP filter is self-initializing and can be
switched with no degrading effects to the FMP filter at
the instant when their variance reduction factors (VRF) are
equal. (See Section 7.2.) Because of its fading memory, the
FMP filter effectively possesses a fixed memory3, and so it
has the advantage of being able to follow sinusoids. It can
therefore be used to approximate circular trends as well.

4 THE TWO STATE TRANSITION MATRICES
FROM WHICH TO CHOOSE

An STM is used to shift a DE system’s state vector from
time t by an amount δ, a real number, to time t + δ via a
simple multiplication. This is done without recalculating
the state (Z). Thus, using the STM one can shift the state

2The original expanding memory polynomial (EMP) and fading mem-
ory polynomial (FMP) filters as derived in Chapters 9 and 13 of [2], can
be adapted to utilise the STM in Equation 7. ΓΨ can be written in terms
of Γ(=ΓΦ) as follows ΓΨ(j, i) = ΓΦ(j, i) × (i− j)!, see [6].

3The history in the FMP filter’s case is discounted by the ratio θ per
update or over time. For example the value 0.91, if done per update, repre-
sents an approximate memory length of around 30 samples. The formula
N = 2/(1− θ) may be used to calculate an approximate effective mem-
ory length for the FMP filter for 0th order, see Section 7.2 for higher
orders.

384 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

as follows: Z∗(t+ δ) = Ψ(δ)Z(t). Note, the asterisk indi-
cates that the newly calculated state is an estimate at t+ δ.
The asterisk is omitted at t since t is where the last fit was
calculated.

As the STM of the polynomial one can either choose the
Padé expanded STM, Ψ(δ), or the commonly used STM
for polynomial filtering Φ(δ). (See [1].) Both can be used
directly for prediction of states at any time, with or without
denormalisation. For example in our case, as will be seen,
Zn
∗ could be predicted from Zη−ζ directly before updat-

ing the state, where η = t
τ with τ a real positive number,

and ζ = δ
τ .

Note that [9] compares many algorithms for computing
the matrix exponential. (See the expm function in [10].)

The Padé expanded STM is:

[Ψ(δ)]i,j =
δj−i

(j − i)!
{∀ i, j| 0 ≤ i ≤ j ≤ m}

0 elsewhere
(7)

where m = order + 1 is the dimension of the square
matrix Ψ.

This transition matrix (exactly the same as the one well-
known from least squares), can be written out as follows:

Ψ(δ) =

1 δ δ2

2!
· · · δm−1

(m−1)!
δm

m!

0 1 δ · · · δm−2

(m−2)!
δm−1

(m−1)!

0 0 1 · · · δm−3

(m−3)!
δm−2

(m−2)!

...
...

...
. . .

...
...

0 0 0 · · · 1 δ
0 0 0 · · · 0 1

(8)

The commonly used STM for polynomial filtering, defined
in [1], is represented as follows:

Φi,j(δ) =

(
j

i

)
δ(j−i)

{∀ i, j| 0 ≤ i ≤ j ≤ m}

0 elsewhere
(9)

=
j!

(j − i)!i!δ
(j−i) (10)

where m = order + 1 is the dimension of the square
matrix Φ.

This original transition matrix, in Equation 10, can be
written out as follows:

Φ(δ) =

1 δ δ2 · · · m−1!
(m−2)!1!

δm−2 m!
(m−1)!1!

δm−1

0 1 δ · · · m−1!
(m−3)!2!

δm−3 m!
(m−2)!2!

δm−2

0 0 1 · · · m−1!
(m−4)!3!

δm−4 m!
(m−3)!3!

δm−3

...
...

...
. . .

...
...

0 0 0 · · · 1 δ
0 0 0 · · · 0 1

(11)

The following discrete system results from the commonly
used STM:

r(t+ δ) = Φ(δ))r(t) or in normalized form (12)
r(t+ δ) = DΦ(τ)Φ(ζ)r(η) (13)

where DΦ(τ) = diag(
[

1 1!
τ . . . m!

τm

]
) is the di-

agonal denormalisation matrix for Φ, described in [1] and
this matrix is slightly different from the DΨ(τ) denormal-
isation in Section 6.1, Equation 33.

We prefer to utilize and extend the first STM option,
presented in Equation 7 and written out in Equation 8,
because Ψ(δ) can easily be differentiated by simply using
only one less row and column of Ψ(δ), e.g. in Matlab:
z_dot = Psi(1:N-1,1) * z'(2:N);. The same
holds for higher order derivatives. This characteristic is
also applicable to the multi-dimensional case.

Altering the original EMP and FMP to use with Ψ:
The original EMP and FMP filters as derived in Chap-

ters 9 and 13 of [2], can be adapted to utilise the STM in
Equation 7.

ΓΨ, the weight for updating the Ψ STM based filter, is
defined in terms of Γ(= ΓΦ), the weight for updating the
original Φ STM based filter, for the ith-degree polynomial
set for both the EMP and FMP filters, as follows:

ΓΨ(j, i) = ΓΦ(j, i)× (i− j)!

where j ∈ [0, i].
As an example, the change for the 4th degree ΓΨ is:

ΓΨ(4, 4) = αΨ = α× 0!

ΓΨ(3, 4) = βΨ = β × 1!

ΓΨ(2, 4) = γΨ = γ × 2!

ΓΨ(1, 4) = δΨ = δ × 3!

ΓΨ(0, 4) = εΨ = ε× 4!

(See Sections 3, 6.4 and 6.6)
Furthermore, denormalisation of obtained normalised

(i.e. τ 6= 1) state-vectors is done by either pre-multiplying
the state, by DΦ(τ) for Φ (see Equation 13); or by DΨ(τ)
if using the Ψ STM choice (see Equation 36). See Section 6
for a description.

5 TWO DISCRETE ORTHONORMAL (DON)
POLYNOMIAL SETS

Discrete orthogonal polynomials are encountered in dis-
crete probability theory. The weights of the Chebyshev,
Krawtchouk, and Charlier polynomials are, for example,
related to the uniform, binomial and Poisson distributions,
respectively. The discrete Legendre polynomials derived
by Morrison [1], and [2] in 1969, and independently by
Neumann and Schonbach [11] in 2000, are often used for
numerical integration and interpolation.

The discrete Legendre polynomials only differ from the
discrete Chebyshev polynomials by normalisation [12].

AUTOMATIKA 53(2012) 4, 382–397 385

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

5.1 The discrete orthonormal Legendre Polynomial
set

The differential equation below is referred to as the Leg-
endre differential equation (DE) — named after the French
mathematician Adrien-Marie Legendre:

d

dx

[(
1− x2) d

dx
pj(x, n)

]
+ n (n+ 1) pj(x, n) = 0 (14)

Functions that are solutions to Legendre’s differential
equation are called Legendre functions.

An orthonormal basis function solution set to Equa-
tion 14 presenting an approximation p(s) of the polyno-
mial f(s) of the form:

f(s) ≈ (p(s))n = (β0)nϕ0(s, n) + (β1)nϕ1(s, n)+ (15)
· · ·+ (βm)nϕm(s, n) (16)

The following properties hold:

• Any element can be written as:

ϕj(s, n) =
pj(s, n)

cj(n)
(17)

• Any two elements are orthogonal, and orthogonality
implies that if i 6= j then:

n∑

s=0

ϕi(s, n)ϕj(s, n) =

n∑

s=0

pi(s)pj(s) = 0

• Any element is normal, and normality implies the
sum over n if i = j renders:

n∑

s=0

(ϕj(s, n))2 =

n∑

s=0

(
pj(s, n)

cj(n)

)2

= 1

It therefore follows that for any i, j ∈ [0,m],∑n
s=0 ϕi(s, n)ϕj(s, n) = δij , where δij denotes the Kro-

necker delta function.
Through the backward summation theorem and Gram-

Schmidt orthogonalisation for discrete sets [13], we can
obtain a solution for pj(s).

pj(s) =

j∑

ν=0

(−1)ν
(
j

ν

)(
j + ν

ν

)
s(ν)

n(ν)
(18)

(See [2], Chapter 2 for a proof.)
Note, that this is in perfect analogy to Rodriguez’s theo-

rem for continuous Legendre polynomials. Normalisation
is achieved by writing the solution series over all samples
as a Newton series and then summing by parts.

A solution to the Legendre DE is presented by the fol-
lowing DON Legendre function set [14, 15]:

pj(s, n) =

j∑

v=0

(−1)v
(
j

v

)(
j + v

v

)
s(v)

n(v)

(n+j+1)(j+1)

(2j+1)n(j)

(19)

=
Pij(s, n)

c2j (n)
in matrix form, including derivatives

(20)

where P is the upper triangular matrix: Pij = 1
i!
djp
dsj . Note:

n(3) is the three-term product n(n − 1)(n − 2) and
(
j
i

)
is

defined as j!
(j−i)!i! . Furthermore, pj(s, n) is normalised by

c2j (n) in Equation 19 [1], Chapter 13, where:

c2j (n) =
(n+ j + 1)(j+1)

(2j + 1)n(j)

The symbolic expansion of Pij = 1
i!
djp
dsj matrix is done

by executing the pmatrix function. The function list-
ing is provided in Subsection A.1. Results could be cross-
validated up to the 4th degree with a table provided in [1],
Chapter 13, Appendix 13.3.

The solution polynomials are given as a function of s.
In our case the DE is usually a function of time. Therefore
the x used in the original DE and the s in the solution can
both be substituted with t.

By using the discrete Legendre polynomial set EMP fil-
ters of various degrees are realized. The polynomials form
an orthonormal basis set. Therefore matrix inversions are
avoided. Section 3 presented a low order example of the
variable-step update, whereas the higher order updates for
EMP and FMP filters can be found in Section 6.

5.2 The discrete orthonormal Laguerre Polynomial
set

The following is the Laguerre differential equation:

x
d2

dx2
pj(x, θ) + (ν + 1− x)

d

dx
+ λpj(x, θ) = 0 (21)

An orthonormal basis function solution set to Equation 21
presenting an approximation p(s) of the polynomial f(s)
is of the form:

f(s) ≈ (p(s))θ =
∞∑

s=0

[
(β0)θϕ0(s, θ)θs + (β1)θϕ1(s, θ)θs

+ · · ·+ (βm)θϕm(s, θ)θs

]
(22)

where the following properties hold.

• Any element can be written as:

ϕj(s, θ) =
fj(s, θ)

aj(θ)
(23)

• Any two elements are orthogonal, and orthogonality
implies that when i 6= j:
∞∑

s=0

ϕj(s, θ)ϕi(s, θ)θ
s =

∞∑

s=0

fi(s, θ)fj(s, θ)θ
s = 0

• Any element is normal, and normality implies that the
sum over∞ if i = j renders:

∞∑

s=0

(ϕj(s, θ))
2 θs =

∞∑

s=0

(
fj(s, θ)

aj(θ)

)2

θs = 1

386 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

Again we write for any i, j ∈ [0,m] that∑∞
s=0 ϕi(s, θ)ϕj(s, n)θs = δij , where δij denotes

the Kronecker delta function. A solution function set is
obtainable.

A set of DON Laguerre Polynomials (see [2] chapters
12 and 13), which satisfies a discretised version of the La-
guerre DE is as follows:

fj(s, θ) =

θ2j

j∑

v=0

(−1)v
(
j

v

)(
1− θ
θ

)v
s(v)

(
s

v

)

θj

1−θ
(24)

and in matrix form, including derivatives:
Fij(s, θ)

c2j (θ)
(25)

in which F is the upper triangular matrix: Fij = −1i

i!
djf
dsj .

Note that in Equation 24, fj(s, θ) is normalised by
c2j (θ) [1]:

cj(θ)
2 =

θj

1− θ

Matlab code for the symbolic expansion of Fij =
−1i

i!
djf
dsj can be found in Subsection A.2. The results could

be cross-validated up to the 4th degree with a table pro-
vided in [1], Chapter 13, Appendix 13.6.

FMP filters of various degrees are realized by using the
discrete Laguerre polynomial set in a way similar to dis-
counted least squares where the discounting factor is θ.

5.3 Why inversion is not required when using or-
thonormal basis-functions

Similar to the case of least squares, we want to assign
βn to minimize the sum-of-squared residuals:

en =

n∑

k=0

(yk − pi(k))2

Substituting Equation 16 gives:

en =
n∑

k=0

(
yk −

m∑

j=0

(βj)nϕj(k, n)

)2

Observe that s, is replaced by k which consists of n + 1
evenly spaced samples, hence the discrete property of the
set.

We now differentiate with respect to βn and set equal to
zero:

∂en
∂(βi)n

=

n∑

k=0

(
yk −

m∑

j=0

(βj)nϕj(k, n)

)
ϕi(k, n) = 0

0 ≤ i ≤ m

Making the yk terms the object and reversing the summa-
tion:
n∑

k=0

ϕi(k, n)yk =

m∑

j=0

(βj)n

n∑

k=0

ϕj(k, n)ϕi(k, n) 0 ≤ i ≤ m

This becomes:
n∑

k=0

ϕi(k, n)yk =

m∑

j=0

(βj)nδij 0 ≤ i ≤ m

Or in matrix form:

[Φ0...m]{m+1,1}[Yk]{1,m+1} = Im+1[β0...m]T

Clearly no inversion is needed to obtain a solution for the
[β0...m]T weight vector.

5.4 The Classical Least Squares Polynomial set
We first define the approximating function p(s) over n

points as a series — thus a linear combination of basis
functions for degree m:

p(s)n = (β0)n
s0

0!
+ (β1)n

s1

1!
+ · · ·+ (βm)n

sm

m!

Note that we have chosen s ∈ R as arbitrary domain vari-
able. Furthermore in the least squares case the n samples
don’t need to be evenly spaced.

The basis functions can be considered to be the set:

S =

{
s0

0!

s1

1!
. . .

sm

m!

}

We have to determine the optimal assignment for the {βn}
coefficient set for the n data-points, i.e. we have to find the
optimal linear combination:

{βn} = {(β0)n(β1)n . . . (βm)n}
We may write the original combination in matrix form as

follows:

Snβn = Yn

where Yn =
[
y1 y2 . . . yn

]T
is observation, the

concatenation of n measurement values each at a respec-
tive domain point sn.

There are two methods to solve for βn. Firstly, by tak-
ing the partial derivative of the squared difference between
the observation and approximation (the error) to βn can
be set equal to 0. Alternatively a pseudo-inverse of non-
rectangular matrix Sn can be taken to determine βn. These
are mathematically equivalent.

The solution when taking the pseudo-inverse gives:

Snβn =Yn

STn Snβn =STn Yn

βn =(STn Sn)−1STn Yn

It is clear that the answer involves finding an inverse of
an m + 1 by m + 1 matrix, where m is the degree of the
approximation.

AUTOMATIKA 53(2012) 4, 382–397 387

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

6 POLYNOMIAL FILTERS
Recursive polynomial filters calculate either a least

squares solution (the expanding memory polynomial
(EMP)); or a weighted least squares solution (the fading
memory polynomial (FMP)) with the weight (θ ∈ (0, 1))
fading the previous state estimate, i.e. Z(t) = θZ(t− δ) +
(1 − θ)et. For the EMP, Γ(n) (see Section 6.4), based on
orthonormal discrete Legendre polynomials, is used to up-
date a least squares fit. In the case of FMP, Γi(θ), based
on orthonormal discrete Laguerre polynomials, is used as
the update weights to update a weighted least squares fit.
The weight of the new datum is (1− θ). Hereby recursive
autoregressive state updates are realized, as derived in [2].

Morrison [1], distinguishes between a current-estimate
and a 1-step predictor. Equations 26 and 27 show the com-
putation of the predicted state, Z∗n and the error term en
for both the current-estimate filter and the 1-step predictor
filter.

Z∗n = Φ(1)Zn−1, . . . (predict state Z∗n) (26)

en = yn − z∗0n, . . . (calculate error term en) (27)

However, the formula for updating differs for the two
respective cases, as shown in equations 28 and 30. Further-
more, in each case below, either Γi(n) or Γi(θ) needs to
be used to do the update for the EMP or FMP respectively
(see Sections 6.4 and 6.6).

The current-estimate filter: Use either Γi(n) or
Γi(θ) and do the update:

Zn = Z∗n,n−1 + Γien (28)
Zn = Φ(1)Zn−1 + Γien (29)

This step written out for the 2nd order current-estimator,
gives:

z2n,n = z2n−1,n−1 + Γ2en
z1n,n = z1n−1,n−1 + 2z2n−1,n−1 + Γ1en
z0n,n = z0n−1,n−1 + z1n−1,n−1 + z2n−1,n−1 + Γ0en

The 1-step predictor filter: Use either Γi(n) or Γi(θ) and
do the update:

Φ(−1)Zn+1,n = Z∗n + Γien (30)

This last step, Equation 30, rewritten for the 2nd order,
1-step predictor update, gives the implementable form:

z2n+1,n = z2n,n−1 + Γ2en
z1n+1,n = z1n,n−1 + 2z2n+1,n + Γ1en
z0n+1,n = z0n,n−1 + z1n+1,n − z2n+1,n + Γ0en

6.1 Extending the Current-Estimate Polynomial Fil-
ter to a Variable-step Filter

In this section, the variable-step filter version is derived
from the current-estimate filter. (See Chapter 12 of [1].)
This filter is implemented in Matlab and verified on various
scenarios. Two steps to switch from an integer interval to a
real valued interval are:

• η is defined as the normalised time — a real number
measured as a multiple of the expected update period
(τ) from the start time of a track (t0).

η =
t− t0
τ

(31)

• Define ζ = δ
τ as the normalised delta-time, a real

number.

η + ζ =
t+ δ − t0

τ
(32)

Note that n = 0, 1, 2, . . . , the update- or batch number, as
originally defined in [1], either stays unchanged or can be
set equal to η. The second method was used during initial
trails.

The correct time can be recovered by denormalising as
follows:

t = η × τ + t0 (33)
t+ δ = (η + ζ)× τ + t0 (34)

δ = ζ × τ (35)

State denormalisation for the Ψ STM is done with Z(t) =
DΨ(τ)Z(η) where:

DΨ(τ) = diag(
[

1 1
τ

. . . 1
τm

]
) (36)

When using the variable time-step EMP and FMP filter
versions, certain normalisations should be performed in or-
der to make them parameter identical, i.e. “hot-pluggable”
with the standard 1-step predictor and current-estimate fil-
ter versions described in [1] and [2]. The two filters are
normalised/scaled respectively as follows:

EMP See Equation 31.

FMP Filter parameter θ needs to be normalised to ensure
that the amount of fading per update time (τ) is simi-
lar to the original FMP. This is done by either calculat-
ing the effective theta (θeff) as follows : θeff = θ

|ζ|
0

or by simply updating with θ0.

As previously discussed, in all cases normalised time
η(t) starts with 0 at the track start time (t0) and is scaled
(normalised) by the constant expected update period τ , i.e.
η(t) = t−t0

δ . (See Equation 31.)

Note that when using normalised time the prediction/ex-
trapolation/estimation formula up to batch time η becomes:
Z∗η = Ψ(ζ)Zη−ζ based on the previous fit done at the
batch time η − ζ with η, ζ ∈ R.

6.2 The use of DON polynomials in variable-step
polynomial filters

A definition for the variable-step filter update, applica-
ble to both the EMP and FMP filters, is given in Equations

388 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

37 and 38 respectively:

t = t+ δ, η = η + ζ . . . (t, η updated)
n = η or, n+ 1 . . . (n and optionally θ updated)

Z∗t = Ψ(δ)Zt−δ . . . (either predict by δ)

Z∗η = Ψ(ζ)Zη−ζ . . . (or predict by ζ)

en = yn − z∗0 t . . . (calculate the error at t/η)

Zt = Z∗t + Γnen, . . . (do the update for EMP, or) (37)

Zt = Z∗t + Γθen, . . . (do the update for FMP.) (38)

In Equation 37, Γn = [Γ(j, i)] for the EMP filter is ob-
tained by simplifying Γi(j) = pj(i, i), with pj defined in
Equation 19. Similarly, Γθ = [Γ(j, i)] is obtained by sim-
plifying Γi(j) = fj(i, θ), with fj defined in Equation 24.

If the above filter is normalised using a typical sampling
interval τ , then the elements of the state estimate vector
obtained from polynomial filters should be denormalised.
This is done by pre-multiplying with a diagonal matrix of
which the ith element is i!/τ i or 1/τ i depending on the
STM choice. For details consult [1].

6.3 Making EMP filters recursive
In order to add one datum at a time the EMP update

weights should further be extended.
Expanding the recursive polynomial EMP filter update

fraction using the recursive discrete Legendre solution (,
i.e. finding Γn = Pij(s, n)|s=n,) is an extremely labori-
ous task. A Matlab function has been written to generate
Γn(j, i). It has been cross-validated with [1] up to the 4th

degree. The Matlab code for this function, rendering re-
fined algebraic expressions for the EMP update weights up
to any degree, can be found in Subsection A.3.

6.4 The resulting variable-step EMP filter
The update workflow for adding an observation, yn, to

the EMP filter is as follows:

η = η + ζ, n = η or n+ 1 . . . (n and η is updated)

Z∗η = Ψ(ζ)Zη−ζ , . . . (predict by ζ)

eη = yn − z∗0η, . . . (calculate the error)

Zη = Z∗η + Γneη, . . . (do the update)

The update weights have been shown to be:

Γn(j, i) = Pij |s=n

In this subsection computational results for the EMP filter
update weights generated, simplified, cross-validated up to
the 4th degree and refined in Matlab are provided. Note
that calculating the Γn(j, i) for higher degrees than 5, if
needed, is just a matter of changing a constant in a for-
loop.

Γ(j, i) for EMP filters up to the 5th-degree are as
follows:

• 0th-degree

z0η = z0η
∗ + αneη, Γ(0, 0) = α =

1

n+ 1

• 1st-degree

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(1, 1) = β =
6

(n+ 2)(2)

Γ(0, 1) = α =
2(2n+ 1)

(n+ 2)(2)

• 2nd-degree

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(2, 2) = γ =
30

(n+ 3)(3)

Γ(1, 2) = β =
18(2n+ 1)

(n+ 3)(3)

Γ(0, 1) = α =
3(3n2 + 3n+ 2)

(n+ 3)(3)

• 3rd-degree

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(3, 3) = δ =
140

(n+ 4)(4)

Γ(2, 3) = γ =
120(2n+ 1)

(n+ 4)(4)

Γ(1, 3) = β =
20(6n2 + 6n+ 5)

(n+ 4)(4)

Γ(0, 3) = α =
8(2n3 + 3n2 + 7n+ 3)

(n+ 4)(4)

• 4th-degree

z4η = z4η
∗ + (4!)εeη

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

AUTOMATIKA 53(2012) 4, 382–397 389

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(4, 4) = ε =
630

(n+ 5)(5)

Γ(3, 4) = δ =
700(2n+ 1)

(n+ 5)(5)

Γ(2, 4) = γ =
1050(n2 + n+ 1)

(n+ 5)(5)

Γ(1, 4) = β =
25(12n3 + 18n2 + 46n+ 20)

(n+ 5)(5)

Γ(0, 4) = α =
5(5n4 + 10n3 + 55n2 + 50n+ 24)

(n+ 5)(5)

• 5th-degree

z5η = z5η
∗ + (5!)ζeη

z4η = z4η
∗ + (4!)εeη

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(5, 5) = ζ =
2772

(n+ 6)(6)

Γ(4, 5) = ε =
3780(2n+ 1)

(n+ 6)(6)

Γ(3, 5) = δ =
1260(6n2 + 6n+ 7)

(n+ 6)(6)

Γ(2, 5) = γ =
420(2n+ 1)(4n2 + 4n+ 15)

(n+ 6)(6)

Γ(1, 5) = β =
126(5n4 + 10n3 + 55n2 + 50n+ 28)

(n+ 6)(6)

Γ(0, 5) = α =
6(2n+ 1)(3n4 + 6n3 + 77n2 + 74n+ 120)

(n+ 6)(6)

6.5 Making FMP filters recursive

FMP update weights have been further extended in or-
der to enable addition of one datum to an existing fit [2].

The expansion of the recursive polynomial FMP fil-
ter update fraction has been achieved by writing a Mat-
lab function. Cross-validation could be carried out against
previously published results [1] up to the 4th degree. The
Matlab code for this function rendering simplified alge-
braic expressions for the FMP update weights, Γθ =
Fij(s, θ)|s=1, up to any degree is provided in Subsec-
tion A.4.

6.6 The resulting variable-step FMP filter
The update workflow for adding an observation, yn, to

the FMP filter is as follows:

θ = θ
|ζ|
0 or θ0 . . . (θ optionally updated with normalised δ-time)

η = η + ζ . . . (η is updated)

Z∗η = Ψ(ζ)Zη−ζ , . . . (predict by ζ)

eη = yn − z∗0η, . . . (calculate the error)

Zη = Z∗η + Γθeη, . . . (do the update)

The update weights have been shown to be:

Γθ(j, i) = Fij |s=0

In this subsection computational results of derivations
for the FMP filter weights generated, simplified, cross-
validated up to the 4th degree and refined in Matlab are
provided. Note, similarly to EMP filters, that higher de-
grees than 5, if needed, is just a matter of changing a con-
stant in a for-loop.

Γ(j, i) for FMP filters up to the 5th-degree are as
follows:

• 0th-degree

z0η = z0η
∗ + αeη, Γ(0, 0) = α = 1− θ

• 1st-degree

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(1, 1) = β = (1− θ)2

Γ(0, 1) = α = 1− θ2

• 2nd-degree

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(2, 2) = γ =
1

2
(1− θ)3

Γ(1, 2) = β =
3

2
(1− θ)2(1 + θ)

Γ(0, 2) = α = 1− θ3

• 3rd-degree

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(3, 3) = δ =
1

6
(1− θ)4

Γ(2, 3) = γ = (1− θ)3(1 + θ)

Γ(1, 3) = β =
1

6
(1− θ)2(11 + 14θ + 11θ2)

Γ(0, 3) = α = 1− θ4

390 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

• 4th-degree

z4η = z4η
∗ + (4!)εeη

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(4, 4) = ε =
1

24
(1− θ)5

Γ(3, 4) = δ =
5

12
(1− θ)4(1 + θ)

Γ(2, 4) = γ =
5

24
(1− θ)3(7 + 10θ + 7θ2)

Γ(1, 4) = β =
5

12
(1− θ)2(5 + 7θ + 7θ2 + 5θ3)

Γ(0, 4) = α = 1− θ5

• 5th-degree

z5η = z5η
∗ + (5!)ζeη

z4η = z4η
∗ + (4!)εeη

z3η = z3η
∗ + (3!)δeη

z2η = z2η
∗ + (2!)γeη

z1η = z1η
∗ + βeη

z0η = z0η
∗ + αeη

Γ(5, 5) = ζ =
1

120
(1− θ)6

Γ(4, 5) = ε =
1

8
(1− θ)5(1 + θ)

Γ(3, 5) = δ =
1

24
(1− θ)4(17 + 26θ + 17θ2)

Γ(2, 5) = γ =
5

8
(1− θ)3(1 + θ)(3 + 2θ + 3θ2)

Γ(1, 5) = β =
1

60
(1− θ)2

(137 + 202θ + 222θ2 + 202θ3 + 137θ4)

Γ(0, 5) = α = 1− θ6

7 SWITCHING DEGREE, TYPE AND ADAPTING
EFFECTIVE LENGTH

In this section pointers are provided for implementing a
noise and degree sensing algorithm. Such an algorithm for
switching degree and adapting the effective length is essen-
tial for achieving near-optimal fits in dynamically chang-
ing conditions. An example of such a scenario would be
traversing a tight corner and thereafter traveling along a
steady slope monotonically climbing. It is often preferable
that such an algorithm should be completely automatic and
should not need any tuning. Therefore a goodness-of-fit
(GOF) measure is introduced as sensing mechanism to it-
eratively decide on length, degree and filter-type.

7.1 GOF based variable History-length
When using only the CRLB-consistent, self-initializing

EMP filter, many methods can be devised to change the

history-length on the fly. Methods include buffering fil-
ters in parallel and recycling the decided history through
the filter upon any new datum’s arrival (called a windowed
EMP). One goodness-of-fit measure for length adjustment
which empirically converges to 1− 1√

N
is:

E2 =

N∑

i=1

[yn −Ψ(ζ)Zη]2 R−1
η

E2 = [Yn −Ψ(ζ)Zη]R−1
η [Yn −Ψ(ζ)Zη]T

where Rη , the covariance matrix, is either known or may
be estimated by means of the following variance estimator
(on window-size N):

Rη = diag

(
N∑

i=2

[yn − yn−1]2

2N − 2

)
(39)

The Matlab code for implementing above RMS noise cal-
culation is provided in the stdd.m function in Subsec-
tion A.5. An alternative method of achieving an on-the-fly
variance without the above memory restriction is a recur-
sive calculation due to Knuth (who cites Welford) [16,17].
This algorithm is available in Python. Note that the Knuth
calculation needs some tuning.

A third, well-known technique for finding a good indi-
cation of the immediate RMS noise present in a signal is to
take the RMS of the residuals of a short fixed-length filter.
E.g. a 10-sample windowed EMP (to the 1st or 2nd degree)
will be suitable.

In this subsection we have briefly discussed an EMP
variable-length extension. The focus of the next section is
on combining the EMP and FMP filters.

7.2 EMP to FMP switching upon equal VRF cross-
over

EMP and FMP filters can be used in combination and
there can be seamless switching from the self-initializing
EMP to an FMP of the same degree when their VRFs are
equal. Note that this will always happen as the FMP has a
constant VRF and the EMP’s VRF shows a hyperbolic de-
cay. In this section we determine the switch points between
EMP and FMP filters for the various degrees using Matlab.

Matlab was used to generate the table for Ns(degree).
Ns is the length n at which the VRFs of the EMP and FMP
is approximately equal.

Table 1 is the direct output of executing the Ns_E2F
function provided in Subsection A.6.

The VRF derivation for the EMP and FMP diagonals is
provided in the Listings in Subsection A.7 and the calcu-
lating of the crossing point was simply a matter of setting
these results equal and making either n or θ the subject.

AUTOMATIKA 53(2012) 4, 382–397 391

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

Table 1. Ns for switching from EMP to FMP
Degree Ns(θ) = Neffective θs(n) = θeffective
0th 2/(1− θ) 1− 2

n

1st 3.2/(1− θ) 1− 3.2
n

2nd 4.3636/(1− θ) 1− 4.3636
n

3rd 5.5054/(1− θ) 1− 5.5054
n

4th 6.6321/(1− θ) 1− 6.6321
n

5th 7.7478/(1− θ) 1− 7.7478
n

Note that two assumptions were made, firstly that n is
big and, secondly that θ ≈ 1 leaving only the (1−θ) terms
for each degree.

The provided VRF functions calculate the diagonals
only.

The off-diagonal VRF matrix elements are calculated as
follows:
SX∗n+1,n = Pn+1,nC

2
nP

T
n+1,n . . . for the 1-step predictor EMP

SX∗n+1,n = F−1,θA(θ)FT−1,θ . . . for the 1-step predictor FMP

SX∗n,n = Pn,nC
2
nP

T
n,n . . . for the current estimator EMP

SX∗n,n = F0,θA(θ)FT0,θ . . . for the current estimator FMP

The Matlab code for creating an example of these, rarely
needed, full VRF matrices is provided in Subsection A.8.

7.3 Quick settling — degree switching
Lower order fits converge faster therefore the quick set-

tling technique described next is relevant [1]. It is recom-
mended to start with a 0th degree self-initializing EMP fil-
ter. When the VRF drops acceptably then switch to 1st de-
gree, etc. The switch-over points depend on the update rate
and noise. These should be empirically refined after a VRF
inspection. Its is recommended that the next higher order
filter is executed in tandem to ensure a stable higher degree
coefficient before switching over to it.

7.4 Outlier rejection
As noted in [1], the outlier rejection criteria for 2nd

degree fits, and for higher degrees, can be approximated
by the 3σv criteria, i.e. on whether |yn − z∗| < 3σv .
Note that the estimation of z∗ is done by using the pre-
diction formula z∗(t + δ) = Ψ(δ)z(t). We found that
|yn − z∗| < σv

(
1 + 2√

N

)
is well suited for an outlier de-

tection threshold, where N is the current memory-length.
Furthermore given that Nyquist holds, σv =

√
Rη gives a

good noise estimate where Rη is defined in Equation 39.

8 TESTING
The Matlab code for an implementation of the EMP and

FMP filters is extremely simple and available from the cor-
responding author or from www.c-develop.co.za.
Testing was done on the following scenarios.

8.1 The polynomial filter in a noisy environment

Here the original and improvised versions of the poly-
nomial filters are compared using known simulated poly-
nomials of different orders. The simulation parameters
were PD = 0.5, in the presence of σ = 100.0 additive
noise, for an update period of τ = 0.25s. The resulting
graphs when approximating a 4th-degree polynomial with
a 4th-order filter model are shown in Fig. 1. The filter pa-
rameter θ was set to 0.95.

(a) Position and position-errors

(b) 4th-degree state vector

Fig. 1. 4th-degree polynomial function

Note, when choosing a constant update rate the variable-
step and original polynomial filters render near identical
state vector estimates. Thus when the derived variable-
step filter was compared to both the original filters the re-
sults were Σ (Zvstep − Zoriginal)2

< 10−10 over the total
track-time of 100s (τ = 1s). During the comparison to
the 1-step predictor a “one batch” prediction was neces-
sary on the variable-step filter, i.e Z∗η+1 = Ψ(1)Zη , before
the mentioned sum-of-square subtraction could be done.

392 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

0 0.5 1 1.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
4th order

input

orig

filtered

degree

pred − 0.1s

0 0.5 1 1.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
4th order errors

input

filtered

pred − 0.1s

(a) Position and position-errors

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

z
0
*

State Vector

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−5

0

5

z
1
*

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−40

−20

0

20

z
2
*

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−5000

0

5000

z
3
*

(b) 3rd-degree state vector

Fig. 2. 3rd-degree polynomial filter on a very noisy image feature, detected area

0 0.5 1 1.5
−1

0

1

2

3

4

5
Velocity

 Est

True

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Velocity Errors

0 0.5 1 1.5
−30

−20

−10

0

10

20
Acceleration

Est

True

0 0.5 1 1.5
−20

−10

0

10

20

30
Acceleration Errors

(a) Velocity, acceleration and their errors

−5000

0

5000

10000

−400

−200

0
0

500

1000

1500

X

FitOrder=2; Nfit=250

Y

Z

−500 −400 −300 −200 −100 0
0

500

1000

1500

i=476; time=32.5478

Z

Y

30 35 40 45
0

500

1000

1500

t

Z

(b) 3rd-degree polynomial filter (in black) compared to the LS(100)(red)

Fig. 3. Max 3rd-degree polynomial compared to Least-Squares with history of 100 in a 3D Missile on Missile encounter

8.2 Results from smoothing very noisy flight data that
verify smoothing and prediction capability

Fig. 2 displays the smoothing achieved on “detected
area in pixels”, an irregularly detected feature, extracted
from noisy flight data. The data-set parameters were as fol-
lows: PD ≈ 0.25, in the presence of non-linearly changing
additive noise σ as a function of range, and, for an irregular
update period of around τ = 0.01s.

8.3 Results from smoothing a flight profile in 3-D

Fig. 3 presents results from smoothing a flight profile in
3-D. This verifies the smoothing and prediction capability
in a Missile on Missile encounter.

9 CONCLUSION

This article extends the fading- and expanding memory
polynomial filters devised in [1, 2].

In addition to all the characteristics of the originally de-
vised polynomial filters, the modified polynomial filters
have the following improved capabilities:

• The time-interval of the modified (variable-step)
polynomial filters do not have to be evenly spaced.

• Missed detections need not be cycled (updated) in the
modified polynomial filters.

• Denormalisation is only required if the modified poly-
nomial filter should be hot-pluggable with the origi-
nal. (See Section 6.1.)

AUTOMATIKA 53(2012) 4, 382–397 393

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

• The state transition matrix differs slightly from the
polynomial filters originally devised in [2]. This
difference is proposed to simplify predictions and
derivatives of predictions. (See Section 4.) The ith or-
der derivation can be calculated with the following
sub-matrix formula: d

iZ(t)
dti = Ψ1:N−i,1 × Z(t)1+i:N

Recursive polynomial filters are simple, elegant and
fast. It is becoming feasible to implement banks of these
filters in firmware with type (either EMP or FMP), θ and
order as the only tunable parameters. These parameters
can all be changed on the fly. Since weights as well as the
VRFs for these filters can now be derived up to any degree,
future research initiatives include the determination of an
algorithm that automatically adjusts the filter parameters
and does order sensing in high dynamic scenarios.

APPENDIX A MATLAB CODE

The presented MATLAB code has been optimized with
respect to the clarity of the procedure being implemented.
The main automated derivations of this article can be veri-
fied by running a main m-file without parameters.

A.1 Generate solution for : Pij = 1
i!
djp
dsj

The pmatrix function (can be executed without input
parameters):

function [dipjs] = pmatrix(i, j, n, s, ss)
% Generates the i^th degree (col) j^th element (row)
% for the legendre solution matrix. Note, n and s
% passed for uniqueness.

display_pretty = 0;
if (nargin < 5)

ss = n+1; % for 1step, ss=n; for current estimator
end

if (nargin < 1)
syms s n;
i = 4;
j = 4;
ss = n;
display_pretty = 1;

end

pij = legendre_polynomial(j, n, s);
if ((i>0) &&(~isa(pij,'double')))

dipj = 1/factorial(i)*diff(pij,'s',i);
else if (i>0)

dipj = 0;
else

dipj = 1/factorial(i)*pij;
end

end
dipjs = subs(dipj,s,ss,0);

if (display_pretty)
display(['']);
display(['------------------------------']);
display(['P Matrix (' num2str(i) ', ' ...

num2str(j) ')']);
display(['------------------------------']);
if(~isa(dipjs,'double'))

pretty(simple(dipjs));
else

display(num2str(dipjs));
end

end

end

Normalized with the legendre_norm, cj(n)2:

function [cjn2] = legendre_norm (j, n, s)

if (nargin<1)
syms n s;
j=4;

end
cjn2 = (n+j+1)/(2*j+1)*M(n+j,j)/M(n,j);

end

function [p] = M(z,v)
ii=0;
p =1;
for(i=1:v)

p=p*(z-ii);
ii = ii+1;

end;
end

A.2 Generate symbolic expressions for: Fij = −1i

i!
djf
dsj

The fmatrix function (can be executed without input
parameters):

function [dipjs] = fmatrix(i, j, The, s , ss)
% Generates the i^th degree (col) j^th element (row)
% for the leguerre solution matrix. Note, The and s
% passed for uniqueness.

display_pretty = 0;
if (nargin < 5)

ss = -1; % for 1step, ss=0; for current estimator
end

if (nargin < 1)
syms The s;
i = 4;
j = 4;
display_pretty = 1;

end

pij = ((-1)^i)*laguerre_polynomial(j, The, s);
if ((i>0) &&(~isa(pij,'double')))

dipj = diff(pij,'s',i);
else if (i>0)

dipj = 0;
else

dipj = pij;
end

end
dipjs = dipj/factorial(i);
dipjs = subs(dipjs,{s},{ss},0);

if (display_pretty)
display(['']);
display(['------------------------------']);
display(['F Matrix (' num2str(i) ', ' ...

num2str(j) ')']);
display(['------------------------------']);
if(~isa(dipjs,'double'))

pretty(simple(dipjs));
else

display(num2str(dipjs));
end

end

end

Normalized with the laguerre_norm, cj(θ)2:

function [cjn2] = laguerre_norm(j, The, s)

if (nargin<1)
syms The s;
j=4;

end

cjn2 = The^j/(1-The);
end

A.3 Filter weights for EMP filters up to any degree

The m-code is provided for the cross-validated
gamma_EMP_polynomial function with only one
user definable input n, the filter degree. This function
renders algebraically refined expressions for EMP update
weights up to any degree.

394 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

The code can be executed without input parameters:

function all_legendre()

% Run in Matlab to generate EMP filter
% weights up to the 5th degree
clear all;
clc;
syms n s;
for (j=0:5)

display([' ']);
display(['---------------------------------------']);
display(['Expanding Memory filter for degree : ' ...

num2str(j)]);
display(['---------------------------------------']);
i = j;
pj = gamma_EMP_polynomial(i,j,n,s);
if(~isa(pj,'double'))

pretty(simple(pj));
else

display(num2str(pj));
end
for (i=j-1:-1:0)

pj = gamma_EMP_polynomial(i,j,n,s);
if(~isa(pj,'double'))

pretty(simple(pj));
else

display(num2str(pj));
end

end
end

end

function [Gamma] = gamma_EMP_polynomial(i, j, n, s)

dipj = 0;
for (jj = j:-1:0)

pij = ((-1)^jj)*legendre_polynomial(jj, n, s);
if (i>0)

if (~isa(pij,'double'))
dipj = dipj+diff(pij,'s',i)/...

legendre_norm(jj, n, s);
end

else
dipj = dipj+pij/legendre_norm(jj, n, s);

end
end

dipj = dipj/factorial(i);
Gamma = subs(dipj,s,n,0);

end

A.4 Filter weights for FMP filters up to any degree
The m-code is provided for the cross-validated
gamma_FMP_polynomial function with only one
user definable input n, the filter degree. The function
renders simplified expressions for FMP update weights up
to any degree.
The code can be executed without input parameters:

function all_laguerre()

% Run in Matlab to generate FMP filter
% weights up to the 5th degree
clear all;
clc;
syms The s;
for (j=0:5)

display([' ']);
display(['---------------------------------------']);
display(['Fading Memory filter for degree : '...

num2str(j)]);
display(['---------------------------------------']);
i = j;
pj = gamma_FMP_polynomial(i,j,The,s);
if(~isa(pj,'double'))

pretty(simple(pj));
else

display(num2str(pj));
end
for (i=j-1:-1:0)

pj = gamma_FMP_polynomial(i,j,The,s);
if(~isa(pj,'double'))

pretty(simple(pj));
else

display(num2str(pj));
end

end
end

end

...
function [Gamma] = gamma_FMP_polynomial(i, j, ...

The, s)
dipj = 0;
for (jj = j:-1:0)

pij = ((-1)^i)*(laguerre_polynomial(jj, The, s))...
*The^(1*jj);

if (i>0)
if (~isa(pij,'double'))

dipj = dipj+diff(pij,'s',i)/...
laguerre_norm(jj, The, s);

end
else

dipj = dipj+pij/laguerre_norm(jj, The, s);
end

end
dipj = dipj/factorial(i);
Gamma = subs(dipj,s,0);

end

A.5
√
Rη , an on-the-fly standard deviation

The stdd.m function, an on-the-fly difference based
RMS noise algorithm with no requirement for prior
knowledge about the underlying truth:

function [sout] = stdd(data_in, dim)

if (nargin<1)
data_in = randn(1000,1)+[1:1000];
dim = 1;

end

sz = size(data_in);
if (max(sz)<=1)

sout = 0;
return;

end

if nargin==1,
% Determine which dimension STDD will use
dim = min(find(size(data_in)~=1));
if isempty(dim), dim = 1; end

sout = std(diff(data_in))./sqrt(2);
else

sout = std(diff(data_in,dim))./sqrt(2);
end

And a windowed version, called stddw.m. This function
calculates the moving window (winsize=20) of root-
mean-square (RMS) noise values and returns a signal of
the original length:

function [sout] = stddw(s_in, winsize, dim)

if (nargin<2)
winsize = 20;

end

ida = 1:length(s_in);
for (ii = ida)

idx = (ida>=ii-floor(winsize/2))&...
(ida<ii-floor(winsize/2)+winsize);

if (nargin<3)
sout(ii) = stdd(s_in(idx));

else
sout(ii) = stdd(s_in(idx),dim);

end
end

A.6 The variance reduction factor diagonals for the
EMP and FMP filters

The Ns_E2F.m function calculates the optimal switch
point between EMP and FMP filters for a given degree.
Note that the function calls the VRF functions provided in
Subsection A.7 in order to obtain the relevant denormalised
symbolic VRF expressions.

AUTOMATIKA 53(2012) 4, 382–397 395

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

The Ns_E2F.m function can be executed without input
parameters:

function Ns_E2F()

syms The s tau n;

for (j = 0:5)
i = 0;
p_Evrf = simple(vrf_EMP_polynomial(i,j,n,s,tau));
p_Fvrf = simple(vrf_FMP_polynomial(i,j,The,s,tau));

% assumption one
p_Evrf = p_Evrf*n;
p_Evrf = limit(p_Evrf,n,Inf)/n;

% assumption two
p_Fvrf = expand((p_Fvrf)/(1-The));
p_Fvrf = simple(p_Fvrf);
p_Fvrf = subs(p_Fvrf,'The',1)*(1-The);

Ns = eval(solve(p_Evrf-p_Fvrf/(1-The),'n'));

display([' Ns(' num2str(j) ') = ' ...
num2str(Ns) '/(1-The)']);

end
end

A.7 The variance reduction factor (VRF) diagonals
for EMP and FMP filters

The function for achieving expressions for the denor-
malised VRF matrix diagonal for EMP filters.

function vrf_diag_emp()

clear all; close all
clc;
syms n s tau;

for (j=0:5)
display([' ']);
display(['---------------------------------------']);
display(['Expanding Memory VRF for degree : ' num2str(j)]);
display(['---------------------------------------']);
pjnumi0 = pseries(n+1,j+1,n);
pjnumij = pseries(n+j+1,j*2+1,n);
for (i=j:-1:0)

pj = vrf_EMP_polynomial(i,j,n,s,tau);

if(~isa(pj,'double'))
if (i>0)

pretty(simple(pj*pjnumij)/pjnumij);
else

pretty(simple(pj*pjnumi0)/pjnumi0);
end

else
display(num2str(pj));

end
end

end

end

function [p] = pseries(in,pn,n)
pi = in; p = pi; pn = pn-1;
while (pn>0)

p = p*(pi-1);
pi = pi-1;
pn = pn-1;

end
end

function [Sm] = vrf_EMP_polynomial(i, j, n, s, tau)

ss = n+1; % for 1step, ss=n; for current estimator
Sm = pmatrix(i, 0, n, s, ss)^2/legendre_norm(0, n, s);
for (k=1:j)

Sm = Sm + pmatrix(i, k, n, s, ss)^2/...
legendre_norm(k, n, s);

end
Sm = (factorial(i)/tau^i)^2*Sm;

end

The function for achieving expressions for the denor-
malised VRF matrix diagonals for FMP filters:

function vrf_diag_fmp()

clear all;
clc;
syms The s tau;

...
for (j=0:5)

display([' ']);
display(['---------------------------------------']);
display(['Fading Memory VRF for degree : ' num2str(j)]);
display(['---------------------------------------']);
for (i=j:-1:0)

pj = vrf_FMP_polynomial(i,j,The,s,tau);
if(~isa(pj,'double'))

pretty(simple(pj));
else

display(num2str(pj));
end

end
end
end

function [Sm] = vrf_FMP_polynomial(i, j, The, s, tau)

ss = 1; % for 1step, ss=0; for current estimator
% calc row i, start at column j=i and stop at j=j (k)
Sm = 0;
for (k=i:j)

Am = 0;
F_1stepik = fmatrix(i,k,The,s,ss);
% calc columm j, start at row j=i, stop at j=j (o)
for (o=i:j)

F_1stepio = fmatrix(i,o,The,s,ss);
Am = Am + F_1stepik*A(k, o, The, s)*...

F_1stepio;
end
Sm = Sm + Am;

end
Sm = (factorial(i)/tau^i)^2*Sm;

end

function [aij] = A(i, j, The, s)
aij = factorial(i+j)/factorial(j)/factorial(i)*(1-The)...

/(1+The)^(i+j+1);
end

A.8 Generating the full VRF matrix (including the
off- diagonals)

The m-code that generates a complete VRF matrix for
the 1-step EMP filter is shown. (Here, the result is still in
normalised form.)

syms n s;
tau = 1;

%% All vrf elements
P = [

pmatrix(0, 0, n, s, n+1) pmatrix(0, 1, n, s, n+1)
pmatrix(1, 0, n, s, n+1) pmatrix(1, 1, n, s, n+1)

];

C2 = [
1/legendre_norm(0, n, s) 0
0 1/legendre_norm(1, n, s)

];

Svrf = P*C2*transpose(P);
pretty(simple(Svrf));

%% Vrf Diagonals only
S_diag = [

vrf_EMP_polynomial(0, 1, n, s, tau)
vrf_EMP_polynomial(1, 1, n, s, tau)

];

eval(S_diag(1)-Svrf(1,1))
eval(S_diag(2)-Svrf(2,2))

REFERENCES

[1] N. Morrison, Tracking Filter Engineering: The Gauss-
Newton and Polynomial Filters. IET, 2012.

[2] N. Morrison, Introduction to Sequential Smoothing and
Prediction. McGraw-Hill, New York, 1969.

[3] H. Cramér, Mathematical Methods of Statistics. Princeton
Univ. Press, 1st ed., 1946.

396 AUTOMATIKA 53(2012) 4, 382–397

Polynomial Filtering P. V. Reyneke, N. Morrison, D. G. Kourie, C. de Ridder

[4] C. R. Rao, “Information and the accuracy attainable in the
estimation of statistical parameters,” Bulletin of Calcutta
Mathematical Society, vol. 37, 1945.

[5] Z. Long, N. Ruixin, and P. Varshney, “A sensor selection ap-
proach for target tracking in sensor networks with quantized
measurements,” ICASSP 2008, March 2008.

[6] P. V. Reyneke, N. Morrison, D. Kourie, and C. de Ridder,
“Smoothing Irregular data using Polynomial Filters,” Pro-
ceedings Elmar-2010, pp. 393–397, 2010.

[7] T. Chihara, An introduction to Orthogonal Polynomials.
Gordon and Breach Science Publishers, New York-London-
Paris, 1978.

[8] P. Gibbs and S. Gragert, “What is the term used for the third
derivative of position?,” tech. rep., Usenet Physics FAQ,
November 1998.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations.
Johns Hopkins University Press, 2nd ed., 1989.

[10] Mathworks, “Matrix exponential function — expm.”
http://www.mathworks.com/access/helpdesk/help/techdoc
/ref/expm.html, 2009.

[11] C. P. Neuman and D. I. Schonbach, “Discrete (Legendre)
orthogonal polynomials - a survey,” International Journal
for Numerical Methods in Engineering, vol. 8, pp. 743–770,
Jun 2005.

[12] A. den Brinker and M. Bastiaans, “Modern Signal Trans-
formations,” tech. rep., Technishe Universiteit Eindhoven,
April 2000.

[13] D. Pollock, A Handbook of Time-Series Analysis, Signal
Processing and Dynamics, pp. 227–291. No. v. 1 in Sig-
nal Processing and its Applications, Academic, 1999.

[14] M. F. Aburdene and J. E. Dorband, “On the Computation of
Discrete Legendre Polynomial Coefficients,” Multidimen-
tionsl Systems and Signal Processing, no. 4, pp. 181–186,
1993.

[15] E. Brookner, Tracking and Kalman Filtering made Easy.
Wiley & Sons, 1st ed., 1998.

[16] D. E. Knuth, The Art of Computer Programming: Seminu-
merical Algorithms, vol. 2, p. 232. Addison-Wesley,
Boston, 3 ed., 1998.

[17] B. P. Welford, “A note on a Method for Calculating Cor-
rected Sums of Squares and Products,” Technometrics,
vol. 4, no. 3, pp. 419–420, 1962.

Pieter V. Reyneke a masters student at the De-
partment of Computer Science, University of
Pretoria (UP), completed a BSc in Electronic En-
gineering at UP in 1991. He is currently practic-
ing as a Algorithm Engineer at Denel Dynamics,
SA.

Norman Morrison lectures and mentors at the
University of Cape Town, and enjoys sharing
his experiences in short courses, workshops and
seminars, all over. He worked at various insti-
tutions internationally including AT&T. He has
worked on discrete filtering techniques including
Polynomial Filtering. His most recent book enti-
tled: “Tracking Filter Engineering” will be pub-
lished by the IET in 2012. Norman is currently
involved in the development of radar tracking al-
gorithms for TWS- and pulse-doppler Radar Sys-

tems. This entails a combination of Gauss-Aitken and iterative non-linear
Gauss-Newton state-estimation filters.

Derrick G. Kourie a professor in the Computer
Science Department, University of Pretoria, com-
pleted a PhD in operations research in 1975 at
Lancaster, UK.

Corné de Ridder is a PhD student at the Uni-
versity of Pretoria (UP), South Africa. Her re-
search interests include the development of pat-
tern matching algorithms to solve computation-
ally difficult biological problems. She is a lec-
turer at the School of Computing, University of
South Africa (UNISA).

AUTHORS’ ADDRESSES
P. V. Reyneke
Fastar Research Group
Dept. Radar and Imaging Systems,
Denel Dynamics, Nellmapius Rd,
Irene, 0157, Centurion, SA
email: pieter.reyneke@deneldynamics.co.za
Norman Morrison, Ph.D.
Department of Electrical Eng.,
University of Cape Town,
7700, Cape Town, SA
email: norman.morrison@uct.ac.za
Prof Derrick G. Kourie, Ph.D.
Dept. of Computer Science,
University of Pretoria,
Roper Str, 0002, Pretoria, SA
email: dkourie@cs.up.ac.za
Corné de Ridder, MSc.
School of Computing,
University of South Africa,
Preller Str 1, 0001, Pretoria, SA
email: driddc@unisa.ac.za

Received: 2012-04-10
Accepted: 2012-09-08

AUTOMATIKA 53(2012) 4, 382–397 397

