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Abstract: The well-known result stating that any non-convex quadratic problem over the non-negative
orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of
completely positive matrices (Burer, 2009) is generalizes by replacing the non-negative orthant with
arbitrary closed convex and pointed cone. This set-semidefinite representation result implies new
semidefinite lower bounds for quadratic problems over the Bishop-Phelps cones, based on the Euclidian
norm.
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1. INTRODUCTION

In [2, 10, 14, 15] several hard problems from combinatorial optimization have been reformulated
as linear programs over the cone of copositive or completely positive matrices. In [3] these results
are generalized as follows: the optimal value of the nonconvex quadratic problem

inf 2TQr+clx
s t. afl =b;,
r=0

is under some mild assumptions equal to the optimal value of the following program:

inf (QX)+clx

8. t. ai;r = b, (a-l-a-;‘-!', X) = b?
s LT
. 1 =z
Xj" =IJ‘?‘_?ELTY = |:T X:|EC;;+1
This is a linear optimization problem over the cone of completely positive matrices (we call

such problem a copositive programming problem)

In this paper we generalize this result further. We prove that we can replace in the Burer's
result the nonnegativity constraint x € R’} by the more general constraint » € K for some arbitrary
nonempty closed convex cone K € R™. This is the main contribution of this paper.

In the second part of the paper we present how to use this result to obtain tractable relaxations
for optimization problems over Bishop-Phelps cones. We shall mention that at the very last stage of
preparation of this paper we realized that a very similar generalization was obtained independently
by Burer [4]. However, there remains a substantial difference between the papers since we focus in
the sequel on the Bishop-Phelps cone while the rest of [4] is a review of the existing results.

The nonnegativity constraint = € R can be interpreted by assuming that the space E" is
partially ordered by the natural (or componentwise) ordering. Any partial ordering <, i.e. any
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reflexive and transitive binary relation which is compatible with the linear structure of the space,
can be represented by a convex cone defined by {x € R™: o > 0}. On the other hand, any convex
cone K C R" defines a partial ordering in R" by o =g yifandonly if y —x € K, le. 2 e K
corresponds to & =g 0 w.r.t. the partial ordering given by the cone K. Hence x € K is just a more
general nonnegativity constraint inducing a wider class of optimization problems as e.g. second
order cone programming.

One of the motivating problems for our research comes from vector optimization problems,
i.e. from optimization problems with a vector valued objective function f: E™ — RB". Assuming
the space B" to be ordered by some pointed convex cone K, a point & € B™ is called a minimal
solution of inf-¢f(z) with S a nonempty subset of R™ if (f(z) — K)n f(S) = {f(Z)}. Recall
that a cone K is called pointed if K N (—K) = {0}. Such minimal solutions can be determined hy
scalarization techniques which may result in an optimization problem with a cone constraint. For
instance using the scalarization result introduced in [12] for two parameters a,r € B" yields the
problem
inf ¢
such that
ir—fx)—y=a,
ye K,
te R,
re s

If f is a linear ohjective funetion and S is defined by linear equations and binary constraints, then
the technique presented in this paper yields a reformulation of this problem as a linear problem
over a special cone eliminating the binary constraints.

The remaining of this paper is structured as follows: in Section 2 we recall some basic definitions
and results for the cone of set-semidefinite matrices and we give the basic idea of our main result,
which is then given in Section 3. Finally, in Section 4, we discuss nonconvex quadratic optimization
problems over Bishop-Phelps cones in Euclidean spaces and give relaxations of the reformulated
problems as semidefinite programs.

2. DEFINITIONS AND PRELIMINARIES

In [3] the reformulation of the nonconvex quadratic optimization problem is done over the cone
of completely positive matrices

n
Cﬁi = {AES”:A=ana}—, a; ERY, j= 1,...,m} .

i=1

which is the dual cone of the cone of copositive matrices defined by
Cry = {AESﬂ:mTAmzo for all -IEJRT;} . (1)

Here, 8™ denotes the space of real symmetric n x n matrices equipped with the inner product
defined by (A, B) := trace(AB) for all A, B € 8§". Recall that the dual cone of a cone ' in a
topological linear space X is in general defined by

Cr={r"eX":2%z)z0forallz e C}.

with X* denoting the topological dual space, i.e. the space of all continuous linear maps from X
to E.
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Replacing " in (1) by an arbitrary nonempty set K C R" (later we assume K to be a
nonempty closed convex cone) we get the cone

Cr = {AES”:.TTAEEDforall.TEK}

which is called K -semidefinite (or set-semidefinite) cone. In opposition to [5, 6] we define here the
K -semidefinite cone in the subspace of symmetric matrices instead of in the whole space of linear
maps mapping from the finite dimensional Euclidean space B™ to E™. The K-semidefinite cone is
a convex cone and hence defines itself a partial ordering in the space of symmetric matrices.

Under the assumptions here, i.e. K € E", the dual cone of the K-semidefinite cone was given
in [16] and in [8, Lemma 7.5):
Lemma 2.1. (a) Let K CR" be a nonempty given set, then
Cy =cl cone {zz' :z e K}.
(b) Let K CR"™ be a nonempty closed conver cone, then
Ci =conv{zz' : e K}

and Cf; is closed.

Here cone({}) for some set {} denotes the convex cone generated by the set {}, conv({l) is the
convex hull and ¢l(2) is the closure of the set 2. In the following we additionally assume the set
K C E" to be a nonempty closed convex cone. We start by summing up some basic properties,
compare [7, 5].

Propositio 2.2. Let K1, Ko, K CR" be closed convex nontrivial cones in B,
(i) C_;(l +C;(9 € (Ckg, N CKE}* = (GKI'-KE}*
(ii) Kj C Ko z’m;:l*ies C;';(Q C *:3;(1 and C}‘ﬁ c C}}Q.
(iif) (Cky UCKy) = Ck, NCk,
(iv) For the interior of the cone C' it holds

nt(Cx)={Ae8":z Az >0 forallz € K\ {0}} £ @

and thus the dual cone C is pointed.

Since K is a cone in B, we can use the Carathéodory theorem and represent the dual cone by

(n(n+1)/2)+1
Ck = )T oo V=1, —_
T Z (@) ca' e K, Vi=1...,———+1
i=1
For shortness of the representation we omit the upper limit p := (n(n+1)/2) +1 in the sum above
and write instead in the following C}- = {3, 2%(z")" : 2" € K }. The following lemma is the base
for our main result and states that the minimal value of a linear function over this dual cone is

always attained in a matrix which can be written as zz' for some r € K.

Lemma 2.3. Let a matriz Q € 8" and a nonempty set S C B" be given. If the matriz Y is a
minimal solution of

inf (@, Y)
such that (P")
Y € conv{zx': z € S},

then there exists some T € S such that 3" is also o minimal solution of (P'), i.e.

@.zz") = (Q.Y),
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and T is also a minimal solution of

inf (Q.Y)
such that
Y = ;I'.TT. (PC“)

re S

Hence, the optimization problems (P') and (Pe) are equivalent regarding the minimal value.

Proof. Let ¥ be a minimal solution of (P’). Then there exists some k € N, some z' € § and
N=0fori=1,....kwithY,i=1and¥ = ¥, \z'(z')". Let j € {1,....k} such that
(29) Q27 = min;{(2*) " Qx'}, then

(Q.7) = Z]\f(ri}TQIi > (Z )ﬁi) (27)' Q2! = (/) Qa7 = (Q,27(27) ).

AsY is minimal for (P') and 2/(27)" is also feasible for (P') we get (Q.Y) = (Q.27(27)"). Of
course, ' is then also a minimal solution of (Fg). [ |

3. SET-SEMIDEFINITE REFORMULATION OF QUADRATIC PROCGRAMS

In this section we examine the equivalence between a quadratic optimization problem with
linear constraints, a cone constraint and binary variables, and the relaxed problem over the dual
cone of set-semidefinite matrices. Let @ € 8" be a symmetric matrix, 4 e R™*™, b e B™, ¢ € B,
K C B" a nonempty closed and convex cone and B C {1,...,n} an index set. We study the
following quadratic optimization problem

inf r' Qe+ 2¢'x
such that
Ar=0, (QP)
xrj € {0.1} for all j € B,
re K.

We can reformulate (QP) by introducing

yz(;).(;)Tesnﬂ 2

to obtain

such that
vy — (1) (1) (QPY)
- (2)(2)
Ar = b,
Tj = sz.'f forall j e B,
r € K.

A natural linearization and lifting of the problem (QP’) into the dual cone of Cg, . generated
by dyadic products of the type (2):

.
C’ﬁ_xf(={2(§§)($§) toi € Ry, vief(}

1
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vields the following linear problem:

o - {(2 ) )

such that
1 2!
Y = (:r X )"
Y E Cl*t_ K:
Ar = b, ’ (QPc)
Ty = Xj'j for all j € B,
bt
Diag(AXAT) = bob:= :
by
rek X e8m

The main difference to the problems considered in [3] is that here we replace the inequalities
r € B by the constraint x € K for an arbitrary closed convex cone K.

We denote the feasible set of the problem (QF), which will be assumed to be nonempty, by
Feas(P), and the feasible set of (QPr) by Feas(C').

Let L:= {2 € K: Az = b}. Then we follow the line of [3] and assume in the following:
Assumption 3.1. If z € L then x; € [0,1] for all je B.

Remark 3.2, Assumption 3.1 is not very restrictive. Suppose that it does not hold for some
r;, j € B, eg. x; € L does not imply x; € [0,1]. Then we can add two more equations
rj+yj = 1. rj —2; = 0 and two sign constraints: y;, 2; = 0. Hence using

L'={(z,y.25) e K xB2: Az =b, x5+ y; =1, 75 —2; = 0}
the assumption holds for z; and K’ := K x R? is still a closed convex cone.

We denote the feasible set of the problem (QP), which will be assumed to be nonempty, by
Feas(P), and the feasible set of ((QP) by Feas(C).

Let L:= {z € K: Az =b}. Then we follow the line of [3] and assume in the following:
Assumption 3.1. If x € L then z; € [0,1] for all je B.

Remark 3.2. Assumption 3.1 is not very restrictive. Suppose that it does not hold for some
rj, j € B, eg. x; € L does not imply x; € [0, 1]. Then we can add two more equations
rj + ¥ =1, rj —z; = 0 and two sign constraints: y;, 2; = 0. Hence using

L'={(z,y5,2)) e K xR: Az =b, z; +y; =1, x5 —2; = 0}

the assumption holds for z; and K" := K x Ri is still a closed convex cone.

If the set B is empty this assumption is dispensable. Additionally we define
L, = {deK: Ad =10},

(1) (1) 0]

Feas™(C) = {( . :;; ) (2, X) € Feas(C')}T

Feas™(P) = canv{( ! ) ( ! )T re Feas(P}}.

L%
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Lemma 3.3. Let K CR" be a nonempty closed conver cone and lef Assumption 3.1 be satisfied.
Then
Feas®™ (P) C Feas™(C) and Feas™(P)+ L% C Feas™(C).

Proof. The first part of the assertion is obvious. For the second part, following the ideas given in
the proof of Prop. 2.1 in [3], we consider the convex cone

.
LT : = _S_- i;( ) €Ch, g Ar=0, Diag{AXAT) =0, x;=X;; forall je B}
00" . . .
= 0 X ) €Cq, «k+ Diag(AXAT) =0, X;;=0 fc:ralleB}

for which it holds Feast(C) + L(C), C Feas™(C). Noting that by Assumption 3.1 d € Ly
implies d; = 0 for all j € B, it can easily be seen that L, C L(C),, and thus Feas™ (P) + L}, C
Feas™ (C). |

Lemma 3.4. Let K CR" be a nonempty closed conver cone and let Assumption 3.1 be satisfied.
Then
Feas™ (C') = Feas™ (P) + L.

Proof. Also this proof follows the ideas given in the proof of Prop. 2.1 in [3]. By Lemma 3.3, it
remains to show Feast(C') C Feas™(P) + LY. Let ¥ € Feas™(C'). Then because of ¥ € CR, xk

there exists some k € Wand o; e By, v' € K fori=1....,k with

T .
v — 0y 0 _ crg ot
- Z 'Ui ‘L‘f' - Z ai*yi *Uif_!?"T
T i

and (g, 0! ) #0foralli=1,...,k AsY satisfies the constraints in (QP(), it holds that

Za? =1, (3)

Zmﬁjvi=b}- for all j=1....,m, (4)
i
with a’ the j-th row of the matrix A, and due to Diag(AXAT) = bob also
k
Y (@)’ =b] forall j=1,....m (5)
i=1

Then (3), (5) and (4) vield

(E a;-‘}) . (aﬁ'v")g = b? = (E a,-ajt!t)
i=1 i=1

i i=l1

and we get
nj-vi=rjr:rf fori=1,....k
for some 7; € R and with (4) and (3) we conclude 7; = b;, j=1,....m, ie.
v =bo; fori=1,...,k j=1,....m (6)
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Additionally for j € B it holds
k

k
Z v} = Z(u;‘.)‘l. (7)
i=1

i=1

We define to I := {1,...,k} the index sets IT :={iel:0; £ 0} and I" .= {i € [: o, = 0} =
I\ I'". Then we have

ra(L) () S e

iclt ief?

-

::\'lr"I =12
with 3¢ a? =1, see (3). Next we show Y1 € Feast(P) and V5 € L.
Let i € I'". For showing %-1:" € Feas(P) we use that v' € K, K is a cone and Ql = 0 and thus

uii-ui e K. With (6) we have a’ (Qliu‘:) =b; for j = 1,...,m. It remains to show

L
—ut e {0,1} for j € B.
aiLJE{’}DrjE

Let j € B. Based on the Assumption 3.1 Lvi € [0,1]. From (7) and by setting 2! := v}/a; € [0.1]
we get the equation

v (i)’
n.} - -
Sat (Lo (L) ) =% o (- -0
et (a7} ¥ iE!_‘*—y—"\_\,_-’
- >0 =0

el iramliee o 2 _ s i i
which implies 2} — (25)* =0, L.e. 2 = vi/a; € {0,1}.

Thus we have Y1 € Feas™(P). Using (6) and a; = 0 for i € I” we conclude that Yo e L. =

Hence for K € E™ a nonempty closed convex cone we have

Feas™ (P) C Feas™(C') = Feas™(P) + L.

We define for the objective functions of the problems (QF) and (QP¢)

vp(r) = r'Qr+2c'r,
T
ve(Y) = <(2 f?)}f>
‘-_-V:—.P‘
=G

Instead of (x, X') a feasible element or a minimal solution of (QP) we use the sometimes shorter

notation that ¥ with
1 27
v=(o %)

is a feasible element or a minimal solution of ((QP ). Thus we identify the problem

inf  (Q.Y)
veFeas™ ()

with the problem (QP ().
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Corollary 3.5. Let K C E"™ be a nonempty closed convex cone and let Assumption 3.1 be satisfied.
Then the following holds

OPTp > OPT. (9)

Proof. Let T € Feas(P). From Lemma 3.3 we conclude that the matrix ¥ = (l,fT]T{l,TTJ is

feasible for (QPn) and vp(Z) = ve(Y'), hence for every feasible point of (QP) we have a feasible
matrix of (QP() with the same objective value. Since we are looking for minimum value, the
assertion follows. [ ]

Theorem 3.6. Let K CTR" be a nonempty closed conver cone and let Assumption 3.1 be satisfied.
The the following is true:
OPTp =0OPT¢

Proof. The proof follows the ideas of the proof of Lemma 2.3. Due to Corollary 3.5 we need to
prove only OPTp = OPT-.

Suppose that Y & Feas™(C). Lemma 3.4 implies that ¥ = Y7 + Y2 with Y7 € Feas*(P) and
Y2 € L} . By definition we can write

: 1 1"
fepa () (+)
with 2* € Feas(P) fori € I and }_;; \; = 1, where [ is some finite index set. Similarly we have

-5(3)(2)

with d* € Lo, and J another finite index set.
Set
£ e argmin{(1,2°)Q(1,2") riel}.

(an) - (o} )_( ‘)

Then

I
——

<2
e
b b=
S
T,
[T
S
—

To finish the proof we need to consider {6 ¥a):

- If {(). Ya) < O then there exists d € Lo such that d7Qd < 0 and for any feasible z € Feas(P)
there exists © > 0 such that (z + 7d) T Q(z + 7d) = 2" Qz + 2r2TQb + 72d " Qd < 0 for
every T > 7. Since x + rd € Feas(P) for every T > 0 sending 7 to infinity implies that
DPE!': 'p = —oo, hence b}' Cﬂrolla;r}f 3.5 we have OPTp = OPT» = —nc.

- I {Q.Y3) = 0. then (Q.Y) = (Q.Y1) = £ Q7+ 2¢ 5. Hence we found for this particular ¥
a feasible point (Z) for ((QP) with smaller objective value.

Since Y was chosen arbitrary, the theorem is proven. [ |
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Lemma 3.7. Let K C B" be a nonempty closed conver cone, let Assumption 5.1 be satisfied and
let Feas(P) be bounded, then Feas™ (P) = Feas(C).

Proof. If Feas(P) is bounded then L. = @ and the assertion follows by Lemma 3.4. [

4. OpTIMIZATION OVER THE BisHopr-PHELPS CoONE

In 1962, Bishop and Phelps [1] introduced a class of ordering cones which have a rich math-
ematical structure and which have proven to be useful for instance in functional analysis and
vector optimization. Well known cones as the nonnegative orthant or the Lorentz cone are special
Bishop-Phelps cones.

Definition 4.1. For an arbitrary continuous linear functional ¢: ¥ — R on the normed space
(Y. |- ||) the cone

Ko :={yeY: |yl < o)}
is called Bishop-Phelps cone.
Note that the definition of Bishop-Phelps cone (BP cone) introduced in [1] is slightly different
from the above one: Bishop and Phelps required that ||¢| = 1 and t]|y|| < ¢(y) for some scalar
€ (0,1). Nowadays, several authors, see for instance [9], do not use the constant ¢ and the
assumption ||¢| = 1 and the Definition 4.1 follows this line.

We first collect some properties of BP cones [9]. Recall that a base By of a nontrivial convex
cone K is a nonempty convex subset such that each element » € K {0} is uniquely representable
as ¢ = Ab for some A > 0 and some b € By, The norm |- || on Y induces also a norm on the

topological dual space Y'* by

Iyl - Sup|y” :’|’|’}| for all y* € Y*.

Propositio 4.2. Let (Y, |- ||) be @ normed space and let ¢ € Y* be given.

(i) K¢ is a closed, pointed and conver cone.
(ii) If |@|| = 1 then Ky is nontrivial and

int(Ky) ={ye¥: |ly]| < ¢ly)}.

6]l < 1 then K, = {0}.

(iii) If ||| = 1 then Bg :={y € Ky: ¢(y) = 1} is a closed and bounded base for the cone Kg.

(iv) The dual cone is Kg* = cl{fAz e Y*: A > 0, 2 € B(o,1)} C Y* with B(¢,1) == {y* €
Yooyt — ol =1}

(iv) = € K, if and only if the matrir

oo ((#@) ]
Miz): (umn ¢>(z;)

According to [13] every nontrivial convex cone in R" is representable as a BP cone if and only
if it is closed and pointed. But note that in B" one might need different equivalent norms to present
different nontrivial convex closed pointed cones as BP cones.

is positive semidefinite
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4.1. BP cones with Euclidean norm. Let us consider the case where Y = B™ with the Euclidean

norm || - |l2. Then ¢ € B™. We have
Ki={zeR" |za<o o} ={reR iz (¢¢' — Nz =0, ¢ x>0} (10)

Example 4.3. {a) The Lorentz cone (or second order cone or ice-cream cone - see e.g. [11] for
definitions and applications of second order cone programming)

K ={yel®R": |[(n,....0n-1}l2 = yn}

is representable as a BP cone using the Euclidean norm and choosing ¢ = v2e,, with e,
denoting the nth unit vector [9, Lemma 2.4(a)]. i.e.

K. ={y k" |yl2 = v2e,y}.

{b) In the Euclidean space B2 Figure 1 illustrates the relation between ¢ = (1. 002) € B2, to be
more concrete between 1/¢y and 1/¢s, and the represented BP cone Ki ={yeR?: ||y|s =
¢y}

Next we illustrate how a representation as a BP cone (using the Euclidean norm) of an
arbitrary closed convex pointed cone in B2 can be constructed. Let a € B? and b € B2
denote the intersection points of the houndary of the cone and the unit hall w.r.t. the

Ficure 1. BP cone Ki of Example 4.3(b) as well as the unit ball w.r.t. the Euclidean
norm and (in dashed line) the line connecting the points (1/@¢,0) and (0,1/¢9).

Euclidean norm. Assume a; # by and ay # by. Then the line connecting a and b is given
by all points (1, z9) with
_az—bz arby — aaby
ro = r1 4+ .
a; — by a; — Iy

This line intersects the coordinate axes in the points
by — agb — agh
abi—aiby 0\ nd D,ﬂlbz azby
ag — by ap — by

_aa—h =
T aahy — aibs and ¢ = a1hs — asly
the linear functional ¢ describes by Kg ={y e RB%: |ly|s < ¢"y} the given cone.

Setting

We can say more on the relation between BP cones with Euclidean norm and the second order
Cones.
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Lemma 4.4. Let K © B® be the second order cone and Kg C B" a BP cone with respect to
the Buclidian norm and the linear operator ¢ € R™, |6y > 1. There erists a nonsingular linear
transformation T: B™ — B™ such that Ki =T(K).

Proof. Note that K and Kg are determined by quadratic forms

n—1
2 2 T T
r) = ri—x, = ¢ (I —2E.,,)r = = Arr, 11)
fu(z) le ( ) L (11,
=Ar
2 T,.T T LT T
) = T — T r=ux (I- jx = ¢ Apx, 12
frlz) = ) 60 (I—¢6" p (12

i=1

:=A¢
le. K ={z e R": e Az = 0,z = 0} and KEJ) ={reR™: ITA¢$ < [I,qﬁ_:t" = 0}.

The rank of the matrix Ay, is n and its eigenvalues are 1 (with order n— 1) and —1 (with order
1). Similarly we find out that Ag has eigenvalues 1 (with order n — 1) and 1 — ||¢||3 < 1 (with
order 1) to the eigenvector ¢.

As A, is a symmetric matrix we ca find a spectral decomposition of A4 by A, = VAVT, where
A = Diag(1....,1,1—||¢|j3) and V contains an orthonormal basis of eigenvectors of A,. i.e. the last

column of V' is (1/]¢]la)¢. By setting A == Diag(1,...,1,—1) and V := V Diag(1,...,1,/[¢[3 - 1)
we get Ay = VAV with VTV = Diag(1,...,1,|¢|3 - 1) =: Ds. Then

=1 _ m=1ysT
v-l=p;ivT. (13)

The last column of V is (/][6| — 1/[|¢]l2)¢. Let us take T := V=" It is a nonsingular matrix,
defining a linear transformation T: B™ — R". It follows

: T r=11 1777 4 - : | [;}2
(@'1)" =T70=V""6=D;'v o= 07"\ (lolf - Dlefe, =\ at e

By substitution # = Tu and noting that Ay = A it follows
Ki = {reR™ .'L“_A@I <0, ¢ ¢ 0}
= {TueR":u'TTA,Tu<0, ¢'Tuz0}
= T({ueR": u Apu<0, epuz 0})
= T(KL)

The following example shows that the assumption ||¢]2 > 1 is essential.

Example 4.5. Consider the BP cone Kg C B for ¢ = [_D,[I,I}T. Then Kg, ={y € By =
y2 = 0, yg > 0} has an empty interior, but the Lorentz cone has a nonempty interior. So. there
exists no nonsingular linear transformation T: B* — R® with Ki = T(Kp). But there exists a
transformation map t: B — B®, tly) = {D,D,y}T for all y € B with Kg = t(Kp) for the Lorentz
cone Kp ={yeR:y=0}in R
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We will keep considering the BP cone Ki even though we could stick to the second order cone.
The reason is that after the transformation described in Lemma 4.4 the structure of the problem
gets less transparent.

Following the procedure from the previous section, we can show that the optimization problem:
inf 2" Qx + 2"z
such that
Az =b, (Pgp)
r; € 40,1} forall je B,
= K%

has according to Theorem 3.6, under the assumptions mentioned there, the same optimal value as

‘1nf<(g g)v>

such that
. 1z
v (2% )
. Cap)
Y € mel{g_r (Cop,
Ar = b,

rj = Xj; forall je B,

Diag(AXAT) = bob,
reR, X 5™

;
a; v ; ;
RyxkS = {Z (T) : (I) 22 < 67a', o > ﬂ} . (14)

i

Note that

Lemma 4.6. Letz ¢ B", X € 8", ¢ € B" and
1 2T
Y_(r " )

trace(X) < (00!, X), x € Ki and Y is positive semidefinite.

IfY e Cﬁ+xK§, then

Proof. Note that if ¥ € Gﬁ_xKﬁ then using (14) it follows X = Ei_‘ri(_‘ri}T and o = Y. a;x", where
o 2= 0, ||J:i |2 = ¢zt for all i. For Y £ CE K2 e conclude
+* B
trace(X) = trace (T,2'(s")7) = X, [*[3
< T TedTe = T,(p07, 2i(2)T) = (997, X) .
Because K% is a cone, r' € Ki implies oz’ € Ki and as Ki is also convex, we get z =3 . ot €

2
K3 |

The following example shows that the inequality sign in trace(X) < {¢¢ ", X) in the above
lemma cannot be replaced by an equality sign in general.
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Example 4.7. Consider

v=( i )-(4) ()

with X = ¢¢" and assume ||¢]2 = 1 (otherwise KE_ = {0}). Because of ||¢|2 < ||2||3 = ¢"¢ it
holds ¥ & CL 2 and trace(X) = trace(dd ") = [|8]13 but (¢, X) = [|o]4.
s

The following corollary follows immediately from Corollary 3.5 and the relaxation given in
Lemma 4.6:

Corollary 4.8. Let Assumption 5.1 be satisfied. The optimal value of (Pgp) is bounded from below
by the optimal value of the following semidefinite program:

W ((2%) )

such that
v = 1z tive definite
= T X. posiive semidefinile,
(I—¢¢" X} = 0, (SDP2,,)
lzll: = ¢Ta,
Az = b,
r; = X forallje B,
Diag(AXAT) bob,

rel, X £8m,
Note that the constraint |22 < ¢ r is a semidefinite programming (SDP) constraint (see e.g.
[11. Subsec. 1.4] for details).

4.2. Semidefinite relaxation for the Lorentz cone. Using the representation of the Lorentz
cone K given in Example 4.3(a) we get especially for this cone the following relaxation, which was
already given in [4, Prop. 7).

Corollary 4.9. Let z ¢ B", X = 8" and

. 1 x'
"—(T X).

n—1
Z X <X e K and Y is positive semidefinite.
i=1

If}; = Cﬁ+x;{1‘ thEﬂ

5. CoONCLUSIONS

In the paper we presented the extension of the results stating that any non-convex quadratic
problem over the nonnegative orthant with some additional linear and binary constraints can be
rewritten as linear problem over the cone of completely positive matrices (Burer, 2009}, Our result
covers all non-convex quadratic problems over a closed convex cone with some additional linear and
binary constraints. In the second part we show the implication of this extended result to quadratic
optimization over the Bishop-Phelps (BP) cones, especially to the BP cone with the Euclidean
norm, and present a natural semidefinite relaxation.
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