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Abstract 

Fermentation is an essential step in beer brewing, often acting as the system bottleneck due to the time 
consuming nature of the process stage (duration >120hrs), where a trade-off exists between attainable 
ethanol concentration and required batch time. To explore this trade-off we employ a multi-objective 
Plant Propagation algorithm (the Strawberry algorithm), for identifying temperature manipulations for 
improved fermentation performance. The methodology employed successfully produces families of 
favourable temperature profiles which exist along the Pareto front. A subset of these output profiles 
can simultaneously reduce batch time and increase product ethanol concentration while satisfying 
constraints on by-products produced in the fermenters, representing significant improvements in 
comparison with current industrial practice. A potential batch time reduction of over 12 hours has 
been highlighted, coupled with a moderate improvement in ethanol content.  

Keywords: Dynamic optimisation; nature-inspired optimisation; multi-objective optimisation; 
stochastic optimisation; solution representation; beer fermentation 
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1. Introduction 

The modelling and optimisation of the beer fermentation process has received considerable interest in 
recent years, due to the requirement for brewers to improve process efficacy under current market 
conditions. The production of beer is well established, but it is also identified that current practice for 
fermenter temperature control can frequently be quite far from optimal (Rodman and Gerogiorgis, 
2016a-b). Numerous authors have performed optimisation studies for fermenter control. Stochastic 
approaches including genetic algorithms (Carrillo-Ureta et al., 2001) and ant colony systems (Xiao et 
al., 2003) have been applied. Additionally, Bosse and Griewank (2014) have used a forward-
backward sweeping method, while Rodman and Gerogiorgis (2017) used orthogonal collocation on 
finite elements to obtain exact solution profiles for optimal performance, investigating the effect of 
by-product constraints on attainable performance. These prior studies have implemented weighted 
sum objective functions to handle the multi-criteria problem. The weights assigned to the various 
process targets to produce a single objective function may be considered arbitrary in many cases, with 
decision-makers (brewers) not necessarily able to quantify a priori the relative importance of 
competing objectives. A number of multi-objective optimisation algorithms have been successfully 
applied to a wide range of engineering problems, where visualisation of the trade-offs can provide 
decision makers with valuable insight (Li et al., 2014; Gujarathi et al., 2015; Zhang et al., 2015; Fraga 
and Amusat, 2016; Che at al., 2017; Maria and Crişan, 2017; Kessler et al., 2017). Systematically 
exploring the trade-off and visualising Pareto optimal temperature manipulations for efficient 
fermentation is desirable to gain insight and assist brewers with the selection of the most preferable 
operation strategy. It could be suggested to vary the weights and thus obtain a Pareto set using a 
weighted-sum approach, however equally spaced weights are unlikely to map to eqi-spaced points on 
the Pareto set, and unsupported points will be omitted, even if they are Pareto optimal. 

We aim to develop a solution representation (control profile to decision vector encoding) 
which permits efficient search of feasible candidate temperature manipulations for effective 
fermentation. Such a representation would allow the bi-criteria trade-off to be mapped using multi-
objective optimisation methods such as NSGA-II (Deb et al., 2002), or for exploration with single-
objective methods, such as the ε-constrained method, which converts constrained optimization 
problems to unconstrained ones using the ε-level comparison, which compares search points based on 
the pair of objective function values and the constraint violation between them (Miettinen, 1999).  

The Strawberry algorithm (Salhi and Fraga, 2011) is a nature-inspired stochastic evolutionary 
optimisation methozd which has been successfully applied to a single-objective dynamic optimisation 
problem in the built environment (Fraga et. al., 2015). Recently, using a new fitness function for 
multi-objective problems, the algorithm has been applied to integrated energy systems design for off-
grid mining operations (Fraga and Amusat, 2016). Given the demonstrated success of the algorithm 
for gaining insight into a bi-criteria objective trade-off, we propose using the Strawberry Algorithm 
evaluate our solution representations and compute Pareto optimal solution sets for the industrial beer 
fermentation process.  

We note that the particular novelty of the present study is the solution representation we 
employ for constrained multi-objective optimisation, enabling the computation of industrially feasible 
solutions for a multitude of initialisation profiles and algorithm settings. Because it is algorithm-
independent, it can be readily implemented in other (e.g. NSGA-II) stochastic optimisation methods. 
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1.1 Beer fermentation 

Fermentation is an essential step in the manufacture of alcoholic beverages, responsible for the 
characteristic taste of the final product in addition to its alcohol content. Upstream processing 
produces a sugar rich intermediate (wort) from a feedstock starch source (most typically malted 
barley). Once cooled to an appropriate initial temperature, the wort enters stainless steel vessels along 
with yeast, allowing fermentation to commence. The primary chemical reaction pathway is the 
conversion of sugars into ethanol and carbon dioxide, which is coupled with biomass (yeast) growth 
and heat generation from the exothermic reaction. Concurrently, a range of species are formed at low 
concentrations by a multitude of side reactions, many of which may negatively impact product flavour 
above threshold concentrations. Fermentation is completed once all consumable sugars have been 
converted by the yeast into alcohol, following which the solution leaves the fermenter for subsequent 
downstream processing prior to sale and consumption. Given the long duration of the process stage, 
often upwards of 120 hrs, the fermentation process often acts as the production bottleneck within the 
overall manufacturing process (Fig. 1).  
 

 

Figure 1. Block flow diagram of the beer production process. 

1.2 Fermentation modelling 

Several mathematical models for the beer fermentation process have been proposed (Gee and 
Ramirez, 1988; de Andres-Toro, 1998, Trelea et al., 2001). Models are reduced order, considering 
only the key species present due to system complexity (200+ species, Vanderhaegen et al., 2006) 
rendering exhaustive modelling extremely cumbersome: in fact to date many of the specific chemical 
interactions in the fermentation process are not understood 

1.2.1 Model selection.  

The kinetic model of beer fermentation by de Andrés-Toro et al. (1998) has been selected for study 
due to its direct applicability to the industrial process: 

 Published parameters are derived from a large array of experiments, resulting in a wide 
temperature range (8–24 ºC) which ensures high fidelity and applicability.  

 The model includes key by-products which degrade beer product quality in terms of taste and 
aroma, ensuring the model is suitable for assessing the performance.  

 Predicted profiles indicate the highest fidelity with experimental and pilot-plant data in 
comparison to other models, due to successful validation. 

The model considers seven state variables (Eqs. 1-7), with trajectories governed by temperature 
dependent production and consumption factors (Eqs. 8-12). The seven state variables represent 
different key chemical species as defined in the nomenclature list. The model structure takes the form 
shown in Fig. 2. Yeast cells transition from latent to active to dead over time, with only active cells 
able to promote fermentation (conversion of sugar to ethanol). Two by-products are considered 
alongside the primary reaction pathway: ethyl acetate (Eq. 7) and diacetyl compounds (Eq. 6). 
Diacetyl (2,3-butanedione) has a pungent butter-like aroma (Izquierdo-Ferrero et al., 1997), while 
ethyl acetate is often used as an indicator of all esters present, and is described as having the odour of 
nail varnish remover (Hanke, S. et al., 2010). A more detailed description of the model can be found 
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in its original publication (de Andrés-Toro, 1998), along with the constants for the Arrhenius 
relationship governing the parameters’ temperature dependence, as computed from industrial scale 
fermentation data.  
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Figure 2. Kinetic model for beer fermentation (de Andres-Toro, 1998). 
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1.3 Process targets and constraints 

When considering what it is desirable to improve in a fermentation process there are two obvious 
contenders: reduced duration and heightened alcohol content (even if this requires later dilution, it is 
still desirable to increase yield). In addition to batch time minimisation and alcohol production 
maximisation, prior authors of optimisation studies have elected to include terms for minimisation of 
both by-products within their respective objective functions (Carrillo-Ureta et al., 2001; Xiao et al., 
2003; Bosse and Griewank 2014). However, as is known that, within certain beer products, the 
concentrations of both ethyl acetate and diacetyl compounds have a negligible effect on flavour below 
certain levels, efforts towards further reduction and concentration minimisation are redundant. 

As such it is deemed more appropriate to consider only time minimisation and ethanol 
maximisation as objectives, treating the final concentrations of both ethyl acetate and diacetyl 
compounds as strict constraints to avoid unnecessary efforts towards further by-product reduction.  

min (f1, f2)       (13) 

where    f1 = 1/[EtOH]t
f
 

f2 = tf 

We define batch time, tf, as the time when the sugar content of the word has been reduced to 
0.5% of its original value (Eq. 14): at this point, all fermentable material has been effectively 
consumed with residual sugars in the product at typical levels. 

tf = t ([S]t = 0.005·[S]t0)      (14) 

Constraint thresholds for a traditional Lager product are given by Eqs. 15-16 (Rodman and 
Gerogiorgis, 2016), restricting the product concentration of ethyl acetate (EA) and diacetyl 
compounds (DY) below levels which would degrade flavour. 

[EA]tf ≤ 2    ppm      (15) 

[DY]tf ≤ 0.1 ppm      (16) 

Given the strong dependence of yeast health on system temperature it is necessary to include 
an additional constraint such that the control profile (temperature) remains within acceptable levels. 
The constraint (Eq. 17) is introduced to ensure that the lower temperature limit excludes scenarios in 
which the system lacks enough energy to promote cell growth while the upper limit ensures bacteria 
which are present above this temperature cannot thrive, while also preventing the temperature from 
reaching a level at which undesirably high by-product concentrations are known to be produced. 

9 °C ≤ T(t) ≤ 16 °C for all t ∈ [t0, tf]     (17) 

Recently a deterministic optimisation strategy was applied to the same industrial fermentation 
problem (Rodman and Gerogiorgis, 2017), however considering a single weighted-sum objective 
function, and not two unique objectives. Orthogonal collocation on finite elements has been used in 
that study, in order to discretise both the state variable and the control (temperature) variable 
trajectories, demonstrating the ability to formulate manipulations with highly desirable performance. 
It is however apparent that output profiles are local solutions, as the output profiles differed when the 
initialising profile was modified. As such, it is of interest to explore the use of a stochastic global 
multi-objective optimisation method for the same problem to investigate if these local maxima may be 
escaped to ultimately produce temperature profiles with improved fermentation performance and 
identify the trade-offs between the two conflicting objectives.   
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2. Stochastic optimisation with a Plant Propagation Algorithm 

2.1 The Strawberry algorithm 

The Strawberry algorithm (Salhi and Fraga, 2011) is a nature inspired stochastic evolutionary 
optimisation method. It emulates the behaviour of strawberry plants, encapsulating the two key 
aspects of effective global optimisation algorithms: solution exploration and intensification. In nature, 
strawberry plants exploit their surroundings through the propagation of runners. In a favourable 
environment, they will generate a greater number of runners, most within their local vicinity. Less 
frequently, the plants which are not as well situated will reproduce through the propagation of fewer 
yet longer runners. This inspires the Strawberry algorithm: each member of the population (an 
individual solution) is evaluated (objective functions computed) and a fitness function is assigned. 
The fitness value influences both the number of runners (exploitation, proportional to fitness) and the 
distance which each runner travels (exploration, inversely proportional to fitness). The population 
evolves over a pre-defined number of generations. The evolutionary process is characterised by only 
two parameters: the maximum number of runners to generate for any given solution and the number 
of solutions to consider for propagation in each generation. 

The Strawberry algorithm has previously been successfully applied to a single objective 
dynamic optimisation problem in the built environment (Fraga et. al., 2015). Recently, using a new 
fitness function for multi-objective problems, the algorithm has been applied to integrated energy 
systems design for off-grid mining operations (Fraga and Amusat, 2016), also a dynamic optimisation 
problem. The algorithm can be summarised as follows: 
 
 
 
Algorithm 1: The strawberry plant propagation algorithm, adapted from Fraga and Amusat, 2016.  

Given: f(x), a vector function; ng, number of generations to perform, np, the propagation size; nr, maximum 
number of runners to propagate. 
Output: z, vector approximation to Pareto front. 

p ← initial random population of size np 
for ng generations do 

prune population p, removing similar solutions 

N ← fitness(p)                                                                                     ▷Use rank based fitness 

p̃ ← φ                                                                                                                     ▷ Empty set 

for i ← 1 . . . np do 

x ← select(p, N)                                                ▷Tournament fitness based selection 

for each runner to generate do             ▷Number proportional to fitness rounded up 

  ← new solution(x, 1 − N)    ▷Distance inversely proportional to fitness 

p̃ ←  ∪ p̃                                                            ▷ Add to new population 

end for 
end for 

p ← p̃ ∪ Nondominated(p)                                                       ▷ New population with elitism 

end for   
z ← Nondominated(p) 

2.2 Application to control vector optimisation 
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In order for control profile formulation to be compatible with such an optimisation strategy, it is 
necessary to define a set of decision variables which directly translate to a specific profile or 
trajectory. The representation of solutions has a direct impact on the effectiveness of any optimization 
method (Fraga et al., 2017).  Specifically, the bounds imposed on each variable should restrict the 
solution form such that only realistically practical cases are considered (omitting unnecessary 
computational load) while ensuring that a large enough search space exists so that a wide range of 
solutions may be considered. In this study we consider two strategies for profile encoding, a piecewise 
linear approach and a piecewise polynomial approach.  

2.2.1 PieceWise Linear profiles (PWL) 

Here we define a profile as consisting of N piecewise linear segments, between N+1 nodes [ti, Ti] (0 ≤ 
i ≤ N). The time domain is first discretised into N equal intervals: 

Δt = tmax/N        (18) 

where tmax is the longest fermentations desirable to be considered, defined using existing industrial 
practice as a basis: 

tmax = 120 hr        (19) 

If a uniform spacing were used, ti would be i·Δt. However, more effective use of the N+1 
points may be possible if nonuniform spacing were allowed. We introduce optimization variables tdev,i 
to represent a deviation from the uniform spacing for each point but the first. Then: 

ti = i· Δt + tdev,i       (20) 

            This deviation approach is preferable to permitting completely free movement of the nodes 
within the time domain. With suitable bounds on the deviations, this approach acts to regulate the 
segment lengths: preventing a large portion of the segments bunching together which would require 
unachievably and undesired rapid manipulations to be performed to the vessel. Additionally it ensures 
that unfavorably long fermentations are not considered: only fermentation times up to tmax + tdev,max can 
be computed. 

Bounds imposed on time point deviation prevent subsequent nodes, ti, from overlapping with the 
prior, ti-1. 

- Δt /2 ≤ tdev,i ≤   Δt /2    (21) 

The bounds on the initial temperature and the temperature component of each profile node are 
given by: 

Tmin ≤ Ti ≤   Tmax       (22) 

with the values for the bounds taken form Eq. 17.  

In summary, the decision variables consist of the initial system temperature, T(t = 0) = T0, and 
N couplets of [tdev,i, Ti]: 

d = [T0, tdev,1, T1, . . . , tdev,N, TN]                                                    (23) 

such that the number of decision variables scales linearly with the discretisation level:  

length (d) = 2N+1       (24) 
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The search domain which may be explored by the stochastic algorithm, D, is fully defined by 
Eqs. 21-23, with the manner in which the decision vector translates to a piecewise linear T(t) control 
profile between N+1 nodes [ti, Ti] (0 ≤ i ≤ N) defined by Eqs. 18-20.  

As an illustrative example of this profile encoding, consider the vector d = [14 -10 16 0 9 0 
10]. The 7 elements correspond to N = 3, from Eq. 24 meaning the profile described by 4 T(t) points 
or 3 linear sections. Three equal time intervals would split the 120 hr horizon into 40 hr sections (Δt = 
40), however the second point in d states a minus 10 hour deviation on the second time coordinate 
(the first is always t = 0 so no deviation applies). This example therefor corresponds to a piecewise 
linear profile between the four points: [(0,14), (30,16), (80, 9), (120, 10)], as shown in Fig. 3:   

 

Figure 3. Example profile encoding for the PWL strategy. 

 
2.2.2 PieceWise Polynomial profiles (PWP) 

To explore the effectiveness of smoother profiles which are not dependant on discretisation level we 
an alternative, piecewise polynomial profile, representation. It has been demonstrated that problems of 
slow convergence and non-smooth impractical control strategies can be overcome by representing 
control profiles with polynomial approximations (Sorek et al., 2017). The authors achieved significant 
computational savings, due to a substantial reduction in the number of control parameters by seeking 
the optimal polynomial coefficients, rather than directly searching for the optimal control values 
within specific time intervals. 
 

Our implementation considers the time domain to consist of three subdomains. In each sub-
domain, the solution representation will define a smooth polynomial. Specifically, we construct T(t) 
profiles from three polynomials: a cubic polynomial for the first and last sections, and a quintic 
polynomial for the intermediate section. Temperature values and first derivatives of the temperature 
are defined to be the same for the respective polynomials at each boundary between sub-domains, and 
the gradients at the very start and the end of the profile are set to 0. With these restrictions, the profile 
is described uniquely by 5 points and 2 derivatives, shown in Fig. 4.  
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Figure 4. PWP Profile structure. 

The decision vector corresponds to these 5 points and 2 derivatives, requiring 11 variables as 
the first point will always occur at t = 0: 

d = [T0, t1, T1, dT1, tf2, T2, dT2, tfm, Tm, T3, tf3]        (25)      

The cubic between t0 and t1 has 4 degrees of freedom so defined by 2 points (t, T) and 2 
gradients (dT). The points (0, T0) and (t1, T1) and gradient dT1 are known directly from Eq. 25, which 
along with dT0 = 0 fully defines the curve. A linear system of equations can be solved to give the 
coefficients of the corresponding polynomial. Similarly, the centre polynomial, here 5th order, is 
defined by 3 points and 2 derivatives: (t1, T1) and dT1 known from the first section, T2 and Tm are 
defined by d (Eq. 25) and the corresponding time of these points are defined by: 

t2 = t1 + (t2max – t1) × tf2      (26) 

tm = t1 + (t2 – t1) × tfm       (27) 

allowing the linear system of equations to be solved to give the 5 coefficients of the middle quintic 
polynomial. The final cubic is defined with 2 points and 2 derivatives: (t2, T2) along with dT2 are 
known from the previous segment, dT3 is set as 0 so only a final point remains to be defined: 

t3 = t2 + (tmax – t2) × tf3      (28)  

giving the profile end point (t3, T3) allowing the coefficients of the final polynomial to be determined. 
Therefore, the full profile, consisting of three section piecewise polynomial profiles, is uniquely 
represented by Eq. 25.  

 

 

3. Results and discussion 

The Strawberry algorithm1 was executed using MATLAB 2016b on Windows 7 64bit running on a i7-
4790 Intel CPU @ 3.60 GHz with 16.0 GB of installed memory.  A variety of discretization levels 
were investigated for PWL profiles, in addition to the maximum number of generations (gen) and the 

                                                            
1 http://www.ucl.ac.uk/~ucecesf/strawberry.html 
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number of solutions with each generation to propagate (referred to as the population size below), to 
investigate how these variables influence solution performance. 

3.1 Solution convergence  

Fig. 5 depicts how the trade-off curve for the two objectives evolves during the evolutionary process. 
As batch time minimisation and ethanol maximisation are the two objectives, the desirable solutions 
will be to the right and the bottom of the plot. Each coloured line joins non-dominated points (where 
no other solution improves on both objectives simultaneously) from the population which corresponds 
by colour to a generation number: this can be considered an approximation to the Pareto trade-off 
front. An elitism rule in place ensures that all non-dominated points pass to subsequent generations: 
favourable solutions are not lost and performance of the corresponding temperature profiles the beer 
fermentation from the front can only improve or remain unchanged in subsequent generations. The 
left panel represents PWL with N = 6 with a population of 100 solutions, while the right panel shows 
the PWP equivalent with the same population size. 

 

Figure 5. Improvement of non-dominated solutions over subsequent generations with population size of 200; 
left (a): PWL with N = 6; right (b): PWP. 

In the left plot (a) it can be observed that the front moves to towards the bottom right (improves) 
significantly between generation 100 and 200 with PWL profiles. Over the following 500 generations 
continual improvement occurs, particularly regarding batch time reduction. The last 300 generations 
show minimal gains in either direction so it can be concluded that convergence has occurred to the 
final red line which we can consider the Pareto front for N = 6. The algorithm was repeated numerous 
times for the same conditions and settings, with convergence to a similar front achieved in under 1000 
generations in all instances. When N was increased to both 12 and 18 it was found necessary to 
increase the number of generations to 2000 in order to achieve convergence. This is a direct result of 
the increased number of decision variables (Eq. 25) which leads to an increase in the size of the search 
space.  

The right plot (b) again shows a significant improvement over the first 200 generations for 
PWP profiles, however here it is found that convergence is consistently observed sooner. No 
discernible improvement is achieved after generation 500, suggesting that the algorithm has 
converged on the most preferable profiles for this particular T(t) profile encoding.  

Fig. 6 compares the final Pareto front approximation after convergence between the two 
strategies. The front after 2000 generations, over the same objective axis as Fig. 5, for increasing 
discretisation level (N) of PWL profiles, along with the front for PWP profiles after 500 generations. 
A high level of similarity between the lines is evident. This is surprising between the three PWL 
cases, given that with three times as many linear profile segments one might expect the considerably 
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increased level of control to permit significant improvements. However, this is not found to be the 
case. The blue line is significantly smoother than the others as a result of the greater number of non-
dominated points in this solution set. It is worth noting that the search for candidate solution profiles 
for industrial fermentation is not concerned with the number of candidates detected, rather the 
suitability and effectiveness of the most promising candidates. As the PWP Pareto front very closely 
follows those from the PWL representation it is demonstrated that neither encoding is particularly 
favourable for attainable fermentation performance across the majority of the domain, as equivalently 
performing solutions are generated in both cases. However, it is observed that the lower left portion of 
front is not reproduced with PWP profiles, highlighting that the piecewise polynomial encoding 
restricts the solution space such that very low batch time (and low ethanol) solutions are not able to be 
produced. This is a results of near instantaneous temperature adjustments not being permitted with 
PWP profiles, the implications of which are considered in more detail in Section 3.3.  

 

Figure 6. Non-dominated front after 2000 generations for various control profile discretisation levels. 

3.2 Final solution populations 

The plots shown in Fig. 7 represent the final populations from unique instances of the Strawberry 
algorithm being executed for the two different encoding strategies. Each hollow blue circular marker 
corresponds to the performance of a solution profile in the current population; those which are non-
dominated are coloured red. The algorithm was executed numerous times using varying population 
sizes, and it has been found that a very similar Pareto approximation is produced with population sizes 
as low as 20 solutions. For both methods the density of the front, thus the number of promising 
candidate solutions discovered, increases with population size at the cost of required CPU time. 
Comparing the two plots in Fig. 7 shows that unlike PWL the PWP encoding is not able to produce 
solutions towards the bottom left of the axis; however given the low ethanol concentration this is 
unlikely to omit realistically desirable scenarios.     
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Figure 7. Final population (population size of 200) of solutions, left (a): PWL with N = 6; right (b): PWP. Solid 
red markers are non-dominated. 

3.3 Corresponding solution profiles 

In addition to the performance of the solutions in terms of objective function values, it is of critical 
importance to examine what the solutions represent in terms of control profiles to assess their 
suitability for industrial application. Fig. 8 represents samples of the profiles which make up the non-
dominated solutions from the final populations for discretisation levels N = 6 and N = 18 for PWL 
profiles, with PWP profiles below. Not all the PWL profiles are of industrial value due to the ability 
to physically replicate them on real plant equipment. Solutions obtained with low N values are more 
suitable industrially. The number of manipulations required is smaller and temperature changes more 
gradual, as can be seen in the figure. Taking this into account, and considering the marginal 
improvement observed when increasing the discretisation level (Fig. 6), it is recommended to only 
pursue N = 6 solutions for the PWL implementation. 

Not all of the solutions produced for high discretisation levels (i.e. N = 18) have undesired 
temperature variations. The third example presented in the middle row of Fig. 8 is a particularly 
promising case where the improved control permitted with higher discretisation acts to smooth the 
profile form, rather than to do the opposite as seen in the second plot from the same row. This 
suggests that merit may exist in refining the definition of the search space, D, by reformulating Eqs. 
17-19 so that by design only favourable and implementable solutions may be considered by restricting 
the ability of the profiles to display a high level of variability in temperature. It must however be 
noted that simply the omission of rapid temperature changes should be avoided, as both a rapid 
increase or decrease at some point of the process is not uncommon and can be desirable to assist with 
the control of by-product production (Eqs. 14-15). 

In contrast, all of the solutions obtained from the PWP method would be considered 
appropriate for implementation, with no restrictive variability possible due to the polynomial T(t) 
encoding. Comparing the solution forms between the two methods it can be seen that that there are 
many similarities. In particular the large temperature drop towards the end of the process appears to 
be an effective trait for controlling the by-product levels. Given the high similarity in attainable 
performance and the significantly improved inherent implementability and profile smoothness, using 
PWP profiles is the most promising strategy for industrial fermentation T(t) profile formulation via 
the Strawberry algorithm.  
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Figure 8. Example non-dominated profiles. 

3.4 Solution profile performance – design heuristics 

Fig. 9 shows specifically how the solution profiles correspond with their performance on the Pareto 
front for the preferable PWP method, which provides considerable insight into the fermentation 
process and as to how the performance is influenced by the temperature manipulation. The profiles 
which produce extremely short batch times (tf < 105 hrs) at the cost of reduced ethanol concentration 
all have a comparable form. An initial high temperature is immediately lowered over the first 40 hours 
(16 °C to 14 °C). The temperature is then raised back to a peak momentarily around 16 °C at the 70 
hour point before being reduced once more. Depending on the vessel size this cooling and heating 
cycle may be attainable on industrial fermentation equipment. In order for the vessel contents to 
achieve homogeneity, the cylindrical and conical portion of the tank must achieve thermal 
equilibrium. As such, for the assumptions in the lumped parameter model to apply there is exists a 
minimum time under which temperature variations cannot be realised, the time for which is a function 
of the vessel size. In contrast, the longer batch time solutions are more likely to be implementable on 
any scale of industrial fermentation vessel, as the lesser temperature variability means that 
homogeneity will more readily be achieved.  
 
 



 

 

Figure 9. Pareto front of non-dominated optimal solutions to the multi-objective problem and corresponding T(t) profiles, for a quasi-A profile initialization..



 

 

In the lower portion of the Pareto set it is demonstrated that magnitude of the batch time range 
is comparable to the ethanol concentration range, i.e. a sacrifice of 5 hours in batch time can enable a 
significant 0.5 g L-1 increase in ethanol production. In contrast, the longer batch time subset of the 
front (tf > 105 hrs) shows a very steep form, meaning that very minimal further gains in ethanol 
concentration are attainable, even upon increasing batch time as high as 130 hrs.  

A gradual transition is observed in the T(t) profile form along the Pareto front. The initial dip 
in temperature becomes less pronounced as batch time is increased, an indication that this is an 
essential component of the temperature profile for extremely rapid beer fermentation. The first half of 
the profile continues to level off moving up the front, suggesting that this is useful for ensuring a very 
high ethanol yield. The presence of the later peak and subsequent cooling remains constant throughout 
the entire front, a feature that is known to assist with efficient fermentation while ensuring that the by-
product constraints (Eq. 15-16) are not violated. Diacetyl compounds are consumed in the later stages 
of the process, with this feature of the temperature manipulation accelerating their consumption to fall 
below the tolerable level rapidly. It has been demonstrated that the tolerable level of diacetyl in the 
product is directly restrictive to the attainable batch time, due to the requirement to wait until a 
sufficient portion has been consumed (Rodman and Gerogiorgis, 2017), hence why this is an essential 
profile component for efficient beer fermentation throughout.   

An important consideration which can be visualised on Fig. 9 is how slight variations in the 
temperature profile can affect the performance of the batch. Of the profiles highlighted in the figure, 
solutions 12 and 13 is an example of two profiles which are very similar in terms of the T(t) profile. 
However, the corresponding performance varies drastically, with the later requiring 5 more hours for 
completion. This stresses the importance of ensuring the temperature is accurately controlled in the 
fermenter, and that system homogeneity is ensured. Additionally, consideration should be given to 
solution robustness, ensuring that the manipulation employed will still perform adequately if slight 
deviations from the profile are encountered.   

It has been demonstrated that the initialising solution profile can influence the output profiles 
when using an exact optimisation method (Rodman and Gerogiorgis, 2017). To investigate whether 
the stochastic method used in this study exhibits a similar deficiency, a range of initializing profiles 
have been used, with the corresponding profile maps shown in Figs. 9-12 for four cases. The 
initializing profiles presented here are approximations of the 4 candidate solutions highlighted 
previously from an exhaustive search (Rodman and Gerogiorgis, 2016), where minor deviations in the 
profiles are a result of the polynomial representation being unable to fully mirror the PWL equivalent.  

From Figs. 9-12 it is shown that the approximate Pareto front of non-dominated points is 
extremely similar between the four cases, highlighting that attainable performance is not restricted or 
significantly influenced by the seed profile. While these four cases are initialised with promising 
candidates, very similar results were found when using either random or isothermal initialisation T(t) 
profiles, suggesting robustness of the stochastic optimisation strategy employed in this paper.  

Although the performance of the non-dominated solutions is essentially identical, there are 
differences observed when comparing the corresponding T(t) profiles. The same overall trends are 
present, such that postulated heuristics for effective fermentation remain valid. The discrepancies in 
the profiles across different initialisations are minimal. For example the late peak in the temperature is 
shown to be less pronounced in the latter three cases, however is still present throughout.  

The variability in the profiles shown across these four figures is no greater than the 
differences observed when re-initialising the algorithm numerous times using the exact same seed 
profile. As such it may be concluded that it is the stochastic nature of the method which is responsible 
for the solution profiles varying slightly across the four cases presented here, rather than the solution 
being sensitive to the ‘initial guess’ or initialising solution.  



 

 

 

Figure 10. Pareto front of non-dominated optimal solutions to the multi-objective problem and corresponding T(t) profiles, for a quasi-B profile initialization 
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Figure 11. Pareto front of non-dominated optimal solutions to the multi-objective problem and corresponding T(t) profiles, for a quasi-C profile initialization 
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Figure 12. Pareto front of non-dominated optimal solutions to the multi-objective problem and corresponding T(t) profiles, for a quasi-D profile initialization 



 

 

3.5 Solution profile performance – evaluation of profile encoding strategies  

Table 1 presents performance metrics (terminal state concentrations and batch time) comparing the 
seed solution used for initialising the Strawberry Algorithm to an example of a non-dominated point 
in the N = 6 final population of the PWL method as well as an example of an attractive PWP solution. 
The two novel T(t) profiles produced in this study are shown in Fig. 13. It can be seen that there is a 
very high level of similarity the two profiles and the corresponding performance metrics, highlighting 
that the two unique profile encodings are able to produce comparable favourable solutions. While the 
upper row of Fig. 13 is from N = 6 the profile shown consists of 5 sections only: in this case the batch 
is complete before the final segment, so the profile is terminated.  

Table 1. Example solution profile performance versus initializing profile. 
Profile [EtOH]tf  (g L-1) tf (hr) [EA]tf (ppm) [DY]tf  (ppm)
Input 59.1 113.5 1.350 0.09 
Example New Solution, PWL (Fig. 13, top) 60.0 100.3 1.995 0.10 
Example New Solution, PWP (Fig. 13, bottom) 60.0 100.0 1.996 0.10 

Fig. 13 also shows the concentration trajectories over time within the batch while following 
each example profile. The similarity of the two profiles produces similar concentration progression 
throughout the respective batch. In both cases the desirable ethanol yield is rapidly achieved by 
permitting the product concentrations of undesirable species to increase towards the upper limits 
imposed by the corresponding constraints, Eqs. 14-15. The batch time saving of over 12 hours is 
noteworthy, suggesting the potential for significant process improvement via a potential plant 
throughput increase. 

 

Figure 13. Example solution profiles and corresponding state trajectories: PWL above and PWP below. 

4. Conclusions  

The Strawberry Plant Propagation Algorithm has been used to explore process improvement potential 
of an industrial beer fermentation process via control vector (temperature profile) optimisation. Two 
different methods for representing temperature control profiles are investigated, considering batch 
time minimisation and ethanol yield maximisation as two simultaneous but conflicting objectives. 
Consistent convergence to the trade-off curve for the two objectives is demonstrated after an adequate 
number of generations have passed, the required number of which scales with number of decision 
variables, which in turn scales linearly with the discretisation level for the piecewise linear 
representation. It is found that a large population size is not necessary for the production of a dense 
approximation to the Pareto front, due to the inclusion of an elitism rule when generating new solution 
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populations (as presented in Algorithm 1). It has been demonstrated that if a piecewise linear profile is 
being used it can be beneficial to use a moderately low discretisation level. The minimal performance 
improvement upon increasing profile complexity is marginal next to the restrictiveness of the highly 
variable (in temperature) nature of profiles often computed. In contrast low discretisation solutions are 
inherently more suitable, given the reduced number of manipulations required and the more gradual 
temperature gradients. A piecewise polynomial encoding has been demonstrated to produce solutions 
with performance very similar to those from the piecewise linear approach. The added benefit is that 
these profiles are inherently appropriate for implementation, with no restrictive variability possible 
due to the improved polynomial T(t) encoding. 

A dense Pareto front of solution profiles is identified describing the optimal trade-off between 
these process targets. Such data can be of value as a performance map when operators weigh up the 
relative importance of these two process targets. A subset of these output profiles can simultaneously 
reduce batch time and increase product ethanol concentration while satisfying constraints on by-
products produced in the fermenters, representing significant improvements versus current industrial 
practice. A potential batch time reduction of over 12 hours has been demonstrated, coupled with a 
moderate improvement in ethanol content. The ability to identify novel temperature manipulations 
(control profiles) for improved performance enables brewers to reduce their batch times and operating 
costs. The effectiveness of a polynomial-based solution representation has thus been successfully 
highlighted for model-based constrained multi-objective optimisation, using for its implementation 
the Strawberry plant propagation algorithm, a tool already showcased for several dynamic process 
operation problems. 
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NOMENCLATURE LIST 

Roman symbols  

d Decision vector (-) 
dT Profile gradient (K h-1) 
DY  Diacetyl (-) 
EA Ethyl Acetate (-) 
EtOH Ethanol (-) 

 Fermentation inhibition factor (g L-1) 

i Time interval (-) 
 Ethanol affinity constant (g L-1) 
	 Sugar affinity constant (g L-1) 
 Biomass affinity constant (g L-1) 

N Number of time intervals (-) 
ng Number of generations (-) 
np Propagation size (-) 
nr Maximum number of runners (-) 
p Current population (-) 
S Sugar (-) 
 Time (h) 
f Batch time (h) 

tdev Deviation from uniform time (h) 
tmax Longest fermentation duration considered (h) 
Δt Time interval length (h) 
T Fermenter temperature (K) 
z Nondominated set (-) 

 Active biomass concentration (g L-1) 
 Dead biomass concentration (g L-1) 
 Latent biomass concentration (g L-1) 
 Ethyl acetate production stoichiometric factor (g L-1) 

 
 
Greek symbols 
 

 Diacetyl consumption rate (g-1 h-1 L) 
 Specific cell death rate (h-1) 
 Diacetyl growth rate (g-1 h-1 L) 

 Ethanol production rate (h-1) 
 Specific cell activation rate (h-1) 

 Sugar consumption rate (h-1) 
 Specific dead cell settling rate (h-1) 

 Specific cell growth rate (h-1) 
 
 
Subscripts and operators  
 
		  Initial condition (-) 
		  Condition in ith time interval (-) 
		  Terminal condition (-) 
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