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Abstract

Objective
To examine cross-sectional effects of cognitive reserve (CR) and brain reserve (BR) on cog-
nition across the spectrum of Alzheimer disease (AD).

Methods

We included 663 AD biomarker—positive participants with dementia (probable AD, n = 462) or
in the predementia stages (preclinical/prodromal AD, n = 201). Education was used as a proxy
of CR and intracranial volume as a proxy of BR. Cognition was assessed across 5 domains
(memory, attention, language, visuospatial, and executive functions). We performed multiple
linear regression models to examine effects of CR and BR on cognitive domain Z scores,
adjusted for cerebral atrophy. Furthermore, we assessed differences in effects according to
disease stage and across degrees of total reserve using a 4-level variable (high CR/high BR, high
CR/low BR, low CR/high BR, and low CR/low BR).

Results

We found positive, independent effects of both CR and BR across multiple cognitive domains.
Stratification for disease stage showed that effects of CR on attention and executive functioning
were greater in predementia than in dementia (f = 0.39 vs f = 0.21 [Welch t = 2.40, p < 0.01]
and B = 0.46 vs = 0.26 [t = 2.83, p < 0.01]). Furthermore, we found a linear trend for better
cognitive performance in all domains in the high CR/high BR group, followed by high CR/low
BR, low CR/high BR, and then low CR/low BR (p for trend <0.05).

Conclusions

CR and BR both independently mitigate cognitive symptoms in AD. The positive effect of CRis
most strongly expressed in the predementia stages and the additive effects of high CR and BR
are most beneficial.
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Glossary

AP = B-amyloid; AD = Alzheimer disease; BR = brain reserve; CR = cognitive reserve; ICV = intracranial volume; MCI = mild
cognitive impairment; MMSE = Mini-Mental State Examination; NIA-AA = National Institute on Aging and Alzheimer’s

Association; SCD = subjective cognitive decline.

Neuropathologic and biomarker studies in patients with Alz-
heimer disease (AD) have revealed remarkable interindividual
differences in the level of cognitive function at a comparable
neuropathologic burden. To account for these clinicopath-
ologic discrepancies, the concept of reserve has been
proposed.*® Reserve describes the capacity to preserve cog-
nitive function in the presence of neuropathology and can be
divided into 2 components: cognitive reserve (CR) and brain
reserve (BR).* CR is thought to act by recruiting alternate
neural networks or utilizing existing networks more efficiently
to cope with neuropathologic changes, and is often estimated
using educational attainment.*® When matched for clinical
disease severity, patients with AD with higher education have
more advanced levels of neuropathology,7’8 indicating that
individuals with greater CR can tolerate greater neuropatho-
logic burden. BR represents a higher quantity of neural
resources acting as a buffer that enables the brain to better
tolerate emerging neuropathology, and is typically operation-
alized by intracranial volume (ICV) in human neuroimaging
studies.” ! ICV increases during development'” but remains
largely stable with neurodegeneration due to chronologic aging
or AD," and has been shown to act as a resilience factor against
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clinical deterioration in the presence of AD pathology.
the present study of AD biomarker—positive (preclinical, pro-
dromal, and dementia) participants, we examine the in-
dependent and additive effects of CR and BR on memory,
attention, visuospatial, language, and executive functions, while
controlling for the degree of neurodegeneration as measured by

cerebral atrophy.
Methods

Participants

In this cross-sectional study, we included 663 participants with
positive AD biomarkers. The sample was selected from the
Amsterdam Dementia Cohort'* and consisted of patients who
visited the memory clinic of the VU University Medical Center
in Amsterdam between January 2008 and December 2015 who
consented to have their data used for research. All participants
underwent standardized dementia screening including medical
history, informant-based history, physical and neurologic
examinations, lumbar puncture, brain MRI, and neuro-
psychological testing. Clinical diagnosis of probable AD or mild
cognitive impairment (MCI) due to AD was established by
consensus in a multidisciplinary team according to National
Institute on Aging and Alzheimer’s Association (NIA-AA)
criteria.'>'® A diagnosis of subjective cognitive decline (SCD)
was established when a patient presented with cognitive com-
plaints in the absence of objective cognitive, neurologic, or
psychiatric impairment.'” Due to positive AD biomarkers and
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according to NIA-AA nomenclature,'® these participants were
classified as preclinical AD. Participants were included based on
(1) diagnosis of probable AD,"* MCI due to AD,' or SCD"’;
(2) positive CSF biomarkers for AD (ie., p-amyloid [Af]4,
<638 ng/L or tau/AP4, fraction >0.5219) or a positive
AB ("*F-flutemetamol, '*F-florbetaben, 18l-"'-ﬂorbetapir, or
[''C] Pittsburgh compound B) PET scan by visual assess-
ment™; (3) availability of a 3T T1-weighted structural MRI
scan; and (4) Mini-Mental State Examination (MMSE) >10.
Exclusion criteria were (1) significant cerebrovascular disease
on MR], (2) a history of substance abuse, (3) major traumatic
brain injury, (4) major psychiatric or neurologic disorders
(other than AD), and (S) meeting core clinical criteria for an
atypical variant of AD (e.g, posterior cortical atrophy; figure 1).

Standard protocol approvals, registrations,
and patient consents

Informed consent was obtained from all participants and the
medical ethics review committee of the VU University Med-
ical Center approved the study.

Figure 1 Flowchart of the sample selection

Participants selected based on

inclusion criteria (N=780):

¢ Diagnosis of subjective cognitive
decline, mild cognitive impairment,
or probable AD dementia

« Amyloid-B positive (CSF or PET)

Excluded (n=79):

o Significant cerebrovascular
disease (10)

e Major substance abuse (6)

o Neurologic disorder other
than AD (18)

e Met core criteria for atypical
variant of AD (45)

Excluded (n=38):
e Insufficient quality MRI scan or
segmentation (38)

\ 4

A 4

Included in final sample (n=663):
¢ In predementia stages (201)
o Subjective cognitive decline (70)
o Mild cognitive impairment (131)
e Probable AD dementia (462)

AD = Alzheimer disease.
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MRI

All participants underwent MRI scans on a 3T MRI
scanner, according to standardized acquisition protocols
including a T1 sequence. Three different scanner types
were used: SignaHDxt 3T (n = 493, GE Healthcare
[Cleveland, OH], voxel size 0.94 x 0.94 x 1 mm, echo time
3 milliseconds, repetition time 7.8 milliseconds, flip angle
12°, field of view 240 mm), Vantage Titan 3T (n = 105,
Toshiba Medical Systems [ Glen Mills, PA], voxel size 1 x 1
x 1 mm, echo time 3.2 milliseconds, repetition time 9.5
milliseconds, flip angle 7°, field of view 256 mm), or In-
genuity TF PET-MRI 3T (n = 65, Philips Medical Systems
[Best, the Netherlands], voxel size 0.87 x 0.87 x 1 mm,
echo time 3 milliseconds, repetition time 7 milliseconds,
flip angle 12°, field of view 250 mm). All statistical models
included scanner type as a covariate.

CR and BR

As a proxy of CR, we used the Verhage system”' to measure
education. This is a standardized index (range 1-7), with
a score of 1 indicating that primary school was not completed,
while a score of 7 corresponds to an academic degree. ICV was
used as a proxy measure of BR and was obtained by segmenting
T1-weighted MRI using Statistical Parametric Mapping 12
software (SPM12; Wellcome Trust Centre for Neuroimaging,
Institute of Neurology at University College, London, UK).
This yields volumetric measures of gray matter, white matter,
and CSF, which were summed to provide ICV.

Neurodegeneration

The concepts of CR and BR posit to explain discrepancies
between observed and expected performance based on the
level of underlying neuropathology. Therefore, operationali-
zations of CR and BR should include a measure of neuropa-
thology.” In the present study, we used whole brain gray
matter volume relative to ICV (reflecting cerebral atrophy) as
a surrogate measure of neuropathology.

Cognition

A standardized neuropsychological test battery was used to
assess performance in S cognitive domains: memory (visual
association test; Rey Auditory Verbal Learning Test imme-
diate and delayed recall), attention (digit span forward; Trail-
Making Test part A; Stroop test form I and II), executive
functioning (frontal assessment battery; Stroop test form III;
digit span backward), language (category fluency [animal
naming]; naming condition of the visual association test), and
visuospatial ability (number location; dot counting; frag-
mented letters).”>** To obtain cognitive domain scores, all
raw test scores were first converted into Z scores using the
mean and SD of equivalent neuropsychological test scores
from an independent reference group of healthy controls (n =
533, age = 59.7 £ 9.8 years, 46% male, MMSE = 28.9 + 1.0) of
AD biomarker—negative participants with SCD. Z scores for
Trail-Making Test and Stroop test were inverted as higher
scores indicate worse performance. Z scores were combined
into cognitive domain scores by averaging scores across tests
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within each domain. Composite scores for each cognitive
domain were only calculated if there were data available on >2
tests within that specific domain; otherwise that domain score
was classified as missing (n for missing domain scores:
memory = 7, attention = 7, executive functioning = 10, lan-
guage = 25, visuospatial ability = 26). In addition, MMSE
scores (available for all participants) were used as an index of
global cognitive functioning.

Statistical analysis

We used multiple linear regression models, adjusted for cerebral
atrophy, age, sex, and scanner type, to examine the effects of
education and ICV on cognition. Cognitive domain Z scores and
MMSE scores were the dependent variables in the models and
cases with missing cognitive domain scores were excluded from
the analyses. First, we assessed the predictive effects of education
and ICV separately (model 1), followed by a model including
both predictors (model 2) to examine their independent effects.
Next, we examined whether the effects of education and ICV on
cognition differed according to disease stage, by performing
regression models in predementia participants (SCD or MCI, n
= 201) and in participants with dementia (probable AD, n =
462). Differences in effects across disease stages were assessed by
Welch ¢ tests,” using the regression slopes (B) and corre-
sponding standard error.’®” To test the assumptions of the
regression analyses, we plotted and checked residuals of all
models. Residuals were normally distributed, heteroscedasticity
was in conformance with test assumptions, and Durbin-Watson
test statistics indicated independence of observations. Further-
more, variance inflation factor values, tolerance values, and
correlations between variables did not indicate multicollinearity
between predictors. Next, we dichotomized the total sample
according to low vs high CR using a median split for education
(Verhage 1-5 = low education, 6-7 = high education) and
according to low vs high BR using a mean split for ICV
(1.12-1.51 = low ICV, 1.52-2.01 = high ICV). Using these
dichotomized groups, we computed a 4-level variable repre-
senting degree of total reserve; low CR and BR (CR—/BR—, n =
220), low CR and high BR (CR-/BR+, n = 180), high CR and
low BR (CR+/BR—, n = 121), high CR and BR (CR+/BR+,n =
142). To assess differences in cognition across these 4 levels, we
fitted general linear models, adjusted for cerebral atrophy, age,
sex, and scanner type, and examined post hoc linear trends
across levels. All statistical analyses were performed in SPSS
version 20 (released 2011, IBM SPSS Statistics for Windows,
Armonk, NY) and statistical significance in all models was set at
a = 0.0S (2-tailed), uncorrected for multiple comparisons.
GraphPad Prism (GraphPad Software, La Jolla, CA) version 6.0
was used for the figures.

Results

Demographic and clinical characteristics of the total sample
and according to disease stage are presented in table 1. There
were no differences according to disease stage in sex
(p=0.17), age (p = 0.41), or ICV (p = 0.18), while education
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was lower in participants with dementia than in predementia
participants (p < 0.05). As expected, participants with de-
mentia had lower cognitive scores (p < 0.05) and reduced
ICV-corrected gray matter volumes (i.e., more cerebral atro-
phy, p < 0.05) compared to predementia participants. Pearson
correlation analysis revealed a modest association between
education and ICV in the total sample (r = 0.17, p < 0.01).
Furthermore, ICV-corrected gray matter volume was
moderately associated with cognition (memory: r = 0.31,
attention: r = 0.36, executive functioning: r = 0.41, language:
r=0.31, visuospatial ability: » = 0.39, and MMSE: r = 0.45, all
p < 0.01), adjusted for age, sex, and scanner type.

Effects of CR and BR on cognition

Multiple regression analyses with adjustment for cerebral at-
rophy, age, sex, and scanner type (model 1) revealed positive
effects of both education and ICV on all cognitive domains
(all p < 0.0S; table 2). When combining education and ICV in
a single model (model 2), all effects survived, except for the
effect of ICV on language (p = 0.11; table 2). These results
indicate that, while controlling for the degree of cerebral at-
rophy, both CR and BR have a positive effect on cognition in
participants with positive AD biomarkers.

Effects of CR and BR on cognition according to
disease stage

Next, we stratified the sample according to disease stage (de-
mentia vs predementia) and performed model 1 and 2 in both
patient groups. Model 1 showed positive effects of education on

attention, executive functioning, and MMSE scores in pre-
dementia participants, and on memory, attention, executive
functioning, visuospatial ability, and MMSE in participants with
dementia (all p < 0.0S). Furthermore, there were positive
effects of ICV on executive functioning and MMSE in pre-
dementia participants (p < 0.05) and on memory, attention,
executive functioning, visuospatial ability, and MMSE in par-
ticipants with dementia (all p < 0.0S; table 2). When combining
education and ICV in one model (model 2), we found that all
effects of education and ICV survived (p < 0.05), with the
exception of the effects on memory in participants with de-
mentia (p = 0.08 for education, p = 0.11 for ICV; table 2) and
the effect of ICV on MMSE in predementia participants (p =
0.07; table 2). The effect sizes of education on attention (p =
0.39, p < 0.01 vs p = 0.21, p < 0.01) and executive functioning
(B=046,p <0.05 vs f = 0.26, p < 0.01) were 46% and 43%
larger in predementia participants than in participants with
dementia (Welch t = 2.40, p < 0.01 and t = 2.83, p < 0.01;
figure 2A). This indicates that high CR is especially benefi-
cial for cognition in early stages of AD. There were no dif-
ferences for the effects of ICV (i.e., BR) according to disease
stage (figure 2B).

Differences in cognitive functioning across
levels of reserve

Subsequently, we constructed a 4-level variable
(i.e, CR—/BR~, CR-/BR+, CR+/BR~, and CR+/BR+) and
fitted general linear models, adjusted for cerebral atrophy, age,
sex, and scanner type, to assess cognitive performance across

Table 1 Demographic and clinical characteristics of the total sample and according to disease stage

Total (n = 663)

Predementia (n = 201) Dementia (n = 462)

Diagnosis SCD (70); MCI (131) Probable AD (462)
Sex, % male 49 53 47
Age, y 66.2 (7.4) 66.6 (7.5) 66.1(7.4)
Education, Verhage, median (range) 5(2-7) 5(2-7)? 5(2-7)
Icv 1.51(0.16) 1.52 (0.16) 1.50 (0.16)
MMSE 22.7 (4.8) 27.0 (2.2)° 20.8 (4.3)
Cerebral atrophyb 0.39 (0.04) 0.41 (0.04)° 0.38 (0.04)
Cognitive function Z scores*®
Memory -3.78 (3.27) -1.39 (1.56)° -4.83(3.36)
Attention -1.87 (2.58) -0.39(0.81)* -2.53(2.81)
Executive functioning -1.84(1.81) -0.50 (0.91)? -2.43(1.80)
Language -1.09 (1.33) -0.29 (0.58)? -1.45 (1.41)
Visuospatial ability -1.69 (2.67) -0.21 (0.87) -2.35(2.93)

Abbreviations: AD = Alzheimer disease; ICV = intracranial volume in dm?; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; SCD =

subjective cognitive decline.

Values are depicted as mean (SD) unless otherwise indicated. Group comparisons were performed using %, Mann-Whitney U, or independent samples t tests,

where appropriate.
2 Predementia > dementia.

® Gray matter volumes relative to ICV; lower values indicate more cerebral atrophy.

€Z scores calculated using the mean and SD of independent reference group.
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Table 2 Effects of education and intracranial volume (ICV) in the total sample and according to disease stage

Education Icv
Domain Model 12 Model 2° Model 12 Model 2¢
Memory 0.124 0.104 0.184 0.164
Attention 0.24¢ 0.22¢ 0.21¢ 0.15¢
Executive function 0.31¢ 0.284 0.264 0.19¢
Language 0.114 0.104 0.114 0.08
Visuospatial ability 0.164 0.144 0.184 0.154
MMSE 0.28¢ 0.254 0.264 0.19¢
Education ICV
Predementia (n = 201) Dementia (n = 462) Predementia (n = 201) Dementia (n = 462)

Domain Model 12 Model 2° Model 12 Model 2° Model 12 Model 2¢ Model 12 Model 2¢
Memory 0.04 0.02 0.10¢ 0.08 0.12 0.12 0.134 0.10
Attention 0.40¢ 0.39¢ 0.23¢ 0.214 0.12 0.06 0.214 0.144
Executive function 0.484 0.464 0.28¢ 0.264 0.264 0.184 0.234 0.154
Language 0.13 0.13 0.06 0.06 -0.01 -0.03 0.08 0.05
Visuospatial ability 0.10 0.08 0.16¢ 0.144 0.15 0.14 0.174 0.134
MMSE 0.344 0.32¢ 0.27¢ 0.25¢ 0.214 0.16 0.234 0.154

Abbreviations: ICV = intracranial volume; MMSE = Mini-Mental State Examination.

Values depicted are partial regression coefficients ({3).
@ Effects adjusted for cerebral atrophy, age, sex, and scanner type.

® Effects adjusted for cerebral atrophy, age, sex, scanner type, and intracranial volume.

¢ Effects adjusted for cerebral atrophy, age, sex, scanner type, and education.
9 Significant effect at p < 0.05.

levels. We observed a linear trend across all cognitive
domains and MMSE with highest estimated marginal means
for CR+/BR+, followed by CR+/BR—, CR-/BR+, and then
CR-/BR- (p for trend <0.0S, figure 3). Sensitivity analysis
(switching the CR—/BR+ and CR+/BR~ groups) confirmed
the linear trend (p < 0.05).

Discussion

The main findings of our study are (1) CR and BR both have
independent positive effects on cognition in participants with
biomarker evidence of AD, adjusted for cerebral atrophy, (2)
the effects of CR on attention and executive functioning were
greater in predementia participants than in participants with
dementia, (3) the effects of CR were generally greater than
those of BR, and (4) there was a linear trend for better cog-
nitive performance in all domains (adjusted for cerebral at-
rophy) in the CR+/BR+ group, followed by CR+/BR-,
CR-/BR+, and then CR-/BR-.

The positive effects of CR and BR (as indicated by education
and ICV) on cognitive functioning in this study are in line
with most literature, suggesting that higher education and
greater ICV positively influence the cognitive trajectory of
patients with AD.”"" We extend on these findings by
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demonstrating that CR and BR differentially mitigate cogni-
tive symptoms in AD, as CR was most beneficial in pre-
dementia stages (there was no disease stage—specific effect for
BR) and the effects of CR were overall stronger than those of
BR. Although CR and BR are related to similar underlying
factors, our results thus indicate that they are at least partially
separate components of a larger concept (i.e., reserve) rather
than interchangeable terms describing a single entity. This is
further highlighted by the small correlation (r = 0.17) be-
tween education and ICV in our sample.

Physiologic mechanisms underlying the protective effect of
CR may include facilitating the development of new cognitive
strategies,” modulation of functional connectivity in hub

28,2
? and

regions such as the posterior cingulate cortex,
strengthened network reliability,30 which are all associated
with higher education. These mechanisms actively support
the brain to cope with neuropathology. The mechanism un-
derlying BR is to increase resilience to neuropathology
through greater quantities of premorbid brain parenchyma. In
the event of neurodegeneration, the necessary structural in-
tegrity to maintain normal cognitive functioning will be
retained for a longer period in individuals with high BR than in
individuals with low BR.*® More detailed examinations into
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Figure 2 Effect sizes of education and intracranial volume
(ICV) on cognition according to disease stage
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(A) Effect size of education. (B) Effect size of ICV. Effect sizes are partial
regression coefficients (B), adjusted for cerebral atrophy, age, sex,
and scanner type. Error bars indicate the standard error. *Significant effect
at p < 0.05. **Difference of effect sizes between groups (Welch t test,
p < 0.05). MMSE = Mini-Mental State Examination.

the effects of BR, for instance focused on microstructural
integrity of the brain (e.g., synaptic density measured with
PET?"), could provide a more comprehensive depiction of the
mechanisms behind the protective effect of BR in AD.

A considerable body of literature has described positive effects
of education and ICV on cognition, but these effects—
especially for ICV—have not been replicated in all studies.*>**
Strengths of the present study, such as the large sample size,
inclusion of AD biomarker—positive participants ranging from
preclinical to dementia stages, availability of 3T MRI, SPM12-
based tissue segmentation,”* and detailed neuropsychological
testing, likely increased sensitivity for detecting effects of
education and ICV compared to some previous studies. Some
limitations of the present study also need to be addressed.
First, there are inherent limitations related to cross-sectional
designs and longitudinal follow-up studies are needed to
confirm whether reserve has a direct effect on the progression
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Figure 3 Standardized cognitive domain and Mini-Mental
State Examination (MMSE) scores (adjusted for
cerebral atrophy) across degrees of total reserve

EMM Zz score

I CR-/BR-
-7+ I CR-/BR+

[ CR+/BR-
[ CR+/BR+
L]

Data are estimated marginal means (EMM) (plus standard error) for cogni-
tive domain Z scores, adjusted for cerebral atrophy, age, sex, and scanner
type. BR = brain reserve; CR = cognitive reserve. *p for trend <0.05. **p for
trend <0.01. #MMSE scores were converted to Z scores for visualization
purposes; we used raw scores in the statistical analyses.

of cognitive decline. Second, the difference in sample size
between the predementia group (n = 201) and dementia
group (n = 462) may have resulted in more significant effects
being observed in the dementia group with similar effect sizes.
However, power analyses revealed that both sample sizes were
sufficient to detect effects and interpretation of results was
focused on (differences in) effect sizes rather than levels of
significance. Possible associations between predictors, espe-
cially between ICV and cerebral atrophy, may have resulted in
multicollinearity in the regression models. However, we
conducted thorough assessment of multicollinearity by ex-
amining tolerance values and variance inflation factors, and
these assessments revealed no indication for significant mul-
ticollinearity in the regression models. Furthermore, the
modest correlations between predictors (r = 0.32 between
ICV and cerebral atrophy in the total sample) fall well below
the assumption that a correlation higher than r = 0.70 indi-
cates multicollinearity.35 Third, our relatively young cohort
(mean age 66.2 + 7.4 years) may be characterized by an
overrepresentation of hippocampal-sparing AD** and relative
paucity of comorbidities. This should be taken into account
when generalizing or replicating our findings to cohorts with
a higher average age. Finally, reserve is a hypothetical con-
struct that is often measured using proxies, which come with
inherent limitations and imperfections. For instance, there
may be geographical differences related to access and level of
education and there exists a range of methods to measure
education, from total years of school to categorical scales such
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as the Verhage scale.”' Also, education is associated with other
socioeconomic characteristics (e.g., occupation, access to
general health care), which in turn may affect CR. Further-
more, ICV serves as an easily obtainable proxy of BR but may
reflect early childhood brain development to a higher extent
than later childhood and adolescent influences.

Our results indicate that CR, as measured by education, has
the greatest potential to delay or slow down cognitive decline
in AD. This highlights the importance of education in early
life. However, our findings regarding the differential effects of
CR between disease stages may also serve tailoring clinical
interventions in late life. We have shown that the effects of
CR are especially beneficial in the earlier phases of the disease,
which indicates that interventions (e.g, physical activity
interventions”’ or cognitive training) would preferentially be
offered early on in the disease course. BR as measured by ICV
is in itself a nonmodifiable factor. However, our results re-
garding the additive effects of CR and BR suggest that inter-
ventions tailored to increasing CR would show maximized
treatment effects in individuals with high BR. These insights
may help to tailor interventions and to reduce the rate of
cognitive decline in neurodegenerative diseases and promote
successful aging.
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Study question

What are the cross-sectional effects of cognitive reserve (CR)
and brain reserve (BR) on cognition across the spectrum of
Alzheimer disease (AD)?

Summary answer

CR and BR both independently and additively mitigate cog-
nitive symptom severities in AD, with the benefits of CR being
strongest in predementia stages.

What is known and what this article adds

CR and BR both mitigate the cognitive symptoms of AD by
helping patients cope with neuropathologic changes. This
study elucidates how CR and BR independently and addi-
tively affect various cognitive domains in different AD stages.

Participants and setting

The study included 462 persons with dementia-stage AD and
201 persons with predementia AD. They were selected from
the Amsterdam Dementia Cohort and had visited the VU
University Medical Center Amsterdam between January 2008
and December 2015.

Design, size, and duration

The study used education levels, as measured with the
Verhage system, as a proxy for CR and intracranial volume
(ICV), as measured with MR, as a proxy for BR. The ratio of
whole-brain gray matter volume to ICV was used as a proxy
for cerebral atrophy.

Primary outcomes

The primary outcomes were scores in 5 cognition domains:
memory, attention, visuospatial, language, and executive
functions.

Main results and the role of chance

Compared to patients in predementia stages, those with de-
mentia had lower education, lower cognitive scores, and greater
cerebral atrophy (p < 0.05 for all). Multiple regression analyses
showed that, controlling for the effects of cerebral atrophy,
greater education and ICV had independent positive effects on
all cognitive domains except for the absence of an effect of ICV
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on language (p < 0.05). General linear models confirmed the
additively beneficial effects of education and ICV on all
domains (p < 0.05 for trend). Analyses by disease stage showed
that the effects of CR were especially beneficial in predementia
cases and were generally larger than the effects of BR, but there
was no benefit for education in patients with dementia.

Bias, confounding, and other reasons

for caution

The cross-sectional design of this study precluded any de-
termination of whether CR and BR directly affect the progression
of cognitive decline. CR and BR were measured via proxies.

Generalizability to other populations
The participants were relatively young (mean age 66.2 + 7.4
years), so there is limited generalization to older patients.
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