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Harmonic phase in polar liquids and spin ice
Steven T. Bramwell1

Many liquid or liquid-like states remain stable down to temperatures well below the inter-

action energy scale, where mean-field theory predicts an ordering transition. In magnetism,

correlated states such as spin ice and the spin liquid have been described as Coulomb phases,

governed by an emergent gauge principle. In the physical chemistry of polar liquids, systems

that evade mean field order have, in contrast, been described by Onsager’s theory of the

reaction field. Here we observe that in the low-temperature limit, Onsager’s theory may be

cast as a prototypical theory of the Coulomb phase. However at finite temperature, it

describes a distinct geometrical state, characterised by harmonic functions. This state,

labelled here the ‘harmonic phase’, is shown to occur experimentally in spin ice, a dipolar

lattice system. It is suggested to be relevant to more general dipolar liquids.
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Polar liquids constitute a major class of condensed matter:
well-known examples include water, acetone and nitro-
benzene. Motivated by experimental observations1, Onsager

noted that the dielectric susceptibility χ = P/ϵ0E of such systems
(where E = electric field, P = polarisation) tends to behave as χ ≈
constant/T, rather than the steeply varying function of tempera-
ture predicted by Debye’s mean field theory2. Thermo-
dynamically this implies that the energy of the system depends
only weakly on the polarisation. To capture this behaviour,
Onsager constructed a deceptively simple model of dipole–dipole
interactions (Fig. 1a): a point dipole is located at the centre of a
spherical cavity of molecular dimensions in a continuous
polarisable medium. Solving the Laplace equation he found that
the reaction field induced on the dipole by its own presence
is always parallel to the dipole moment, so does no work in
aligning it. The thermal average of the dipole moment thus
experiences zero mean field and the system does not order at
finite temperature. However the dipole remains correlated
with the surrounding medium because of the constraint of the
Laplace equation. The result is that, even for a rigid dipole
(assumed in the present paper) the Curie law constant C of the
non-interacting case is multiplied by a weakly temperature-
dependent factor γ = (3χ + 3)/(2χ + 3). Hence the adjusted Curie
law χ = γC/T.

In its fullest form, Onsager’s model allows for the molecule’s
polarisability, as well as its dipole moment. The polarisibility α is
introduced as the usual (Lorenz–Lorentz or Clausius–Mossotti)
function of the ‘internal’ refractive index n and the molecular
volume, (4/3)πa3. For this purpose, the hard-sphere molecular
radius a is considered to be identical to the cavity radius a. The
bulk susceptibility and the bulk dielectric constant (relative per-
mittivity) ϵ = 1 + χ additionally depend2 on the molecular dipole
moment p, as well as the calculated function γ (these are
respectively labelled μ and μ*/μ by Onsager2).

A surprising aspect of Onsager’s theory is that, in response to
applied fields, the molecular dipole moment manifests as γp
rather than the expected p ¼ P

i qiri, where qi, ri are the charges
and their positions within the molecule. Onsager called γp the
‘external moment’ of the molecule. He found that the potential
energy of the molecular dipole in a field E is −γp⋅E rather than the
usual −p⋅E and this translates through to thermodynamic prop-
erties once derivatives with respect to field are taken. The factor γ
in the external moment arises from the modification of an applied
(homogenous) field by the cavity.

As a simple method of relating the thermodynamic quantities
χ, ϵ to the molecular quantities p, α, Onsager’s model has been
widely and successfully applied. In this practical sense it is gen-
erally considered to be superior to Debye’s model. It was further
developed, following Kirkwood3, into more realistic and rigorous
descriptions of real liquid statistical thermodynamics. More
recently, the relationship of Onsager’s, Debye’s and other
approaches to the polar liquid has been clarified in the context of
the hard sphere dipole fluid4. The reaction field concept has also
been applied to magnetic systems, including spin glasses5 and low
dimensional magnets6.

In the following we examine the suppression of mean field
order in the Onsager picture by considering the
Helmholtz–Hodge decomposition of the vector fields involved.
After defining an ideal polar liquid, and developing a ‘filled cavity’
variant of the Onsager theory, correlation and scattering func-
tions are derived. In the low temperature limit, the theory is
found to describe a Coulomb phase7,8, while at finite temperature,
it describes an unexpected state—the harmonic phase. When
applied to spin ice, a magnetic system, this result is found to
eliminate a discrepancy between theory and experiment. An
equivalent linear response approach emphasises how the coex-
istence of the harmonic phase with spin ice’s magnetic ‘mono-
poles’ is a kind of ‘fragmentation’9, while the Onsager cavity is
seen to account for the fundamental inhomogeneity (or dis-
creteness) of condensed matter on the atomic scale.

Results
The ideal polar liquid. We define an ‘ideal polar liquid’ as a
hypothetical system of permanent dipoles that obeys Onsager’s
theory2 over the entire temperature range. Once the polarisability
is suppressed, the cavity radius a becomes a largely superfluous
parameter; it can however be retained to give some sense of the
extent of a real molecule, for example through its ‘form factor’
(see below). The more general question of whether or not this
model is a good starting point by which to describe real polar
liquids is set aside for later discussion.

The ideal polar liquid, thus defined, exhibits a simple
thermodynamic behaviour: in the high temperature limit, its
susceptibility approaches that of the non-interacting system,
characterised by the Curie law, χ = C/T, while in the low
temperature limit, it approaches χ = (3/2)C/T, which may be
shown by solving the implicit equation χT/C = γ(χ).
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Fig. 1 Onsager’s model of a polar liquid. a The model consists of a spherical cavity of molecular dimensions (white) in a continuous polarisable medium
(blue). An orientable dipole (red) located at the centre of the cavity polarises the medium (green) through its dipole field. An applied field (not shown) may
also be present. The nontrivial properties of the model arise from the solution of the Laplace equation in this context and the corresponding statistical
mechanics2. b A blow-up of the cavity to illustrate how the central dipole may be replaced by a uniformly polarised sphere with a variable radius. Surface
charges on the sphere and cavity walls are indicated
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The crossover from γ = 1 at high temperature to γ = 3/2 at low
temperature may be understood in terms of the correlations of
the vector fields of the system. To analyse this, it will be useful to
recall that a vector field may be Helmholtz decomposed into a
divergence-free (solenoidal) part which is the curl of a vector
potential and a curl-free (irrotational) part which is the gradient
of a scalar potential. If there is no divergence or curl within a
certain domain then the scalar or vector potentials are said to be
harmonic in that domain: they obey the Laplace equation and are
uniquely determined by their values at the boundaries of the
domain10. The associated fields are also said to be harmonic.
Occasionally it is useful to describe the vector field as having three
components: divergence-full, rotational and harmonic. This is
often referred to as a Helmholtz–Hodge decomposition11. An
example of an explicit decomposition of this sort in a statistical
mechanical system is given by Faulkner et al.12.

The Helmholtz decomposition of the macroscopic polarisation
field in electrostatics is reflected in the constitutive equation P =
D − ϵ0E. Within a polarisable medium and in the absence of an
applied field, D and −ϵ0E become equal to the solenoidal and
irrotational parts of P, respectively. In magnetostatics the
analogous constitutive equation is M = B/μ0 −H and hence (in
the absence of applied field) B/μ0 and −H are equal to the
solenoidal and irrotational parts of the magnetisation M,
respectively. In a simply-connected domain the field lines of the
harmonic polarisation or magnetisation fields (associated with
either component) start and end at the system boundaries
(Fig. 2).

Filled cavity model. As a description of internal molecular
structure, Onsager’s model is highly idealised: real molecules do
not consist of a dipolar nucleus surrounded by empty space.
There is, however, scope to alter the contents of the cavity
without affecting the important properties of the model.

Following Griffiths13, the point dipole may be represented as a
uniformly polarised sphere of radius a0 ≲ a that is shrunk down in
size such that a0→ 0 (see Fig. 1b). The field external to the sphere
is just that of the point dipole, while the limit a0→ 0 yields a delta
function at the origin that represents the internal field of the
dipole. The average field in the cavity has a finite contribution
from the homogenous reaction field and the homogenous internal
field of the sphere. Both contributions are independent of a0 and
using the results of Onsager2 and Griffiths13 it is straightforward
to show that the average field in the cavity (in zero applied field)

is Eav = −γp/3ϵϵ0v0, where v0 = (4/3)πa3 is the cavity volume. But
exactly the same average field can be generated if the the cavity is
filled with the same material as the medium, uniformly polarised.
Theorem 1 of Griffiths13 may then be used to derive the
corresponding dipole moment p′ of the filled cavity from the
solution of Eav = −p′/3v0ϵϵ0. The unsurprising result is that p′ =
γp, the external moment.

Regarding the cavity as filled in this way preserves the
important results of Onsager’s theory2 such as the external field,
the reaction field and the average cavity field, while removing the
rather complex internal field structure of the cavity plus point
dipole. It gives the correct average field for any distribution of
charge within the spherical cavity and is more convenient for our
purposes below, where we consider Fourier transforms of the
polarisation. The filled cavity, with uniform polarisation, may
easily be incorporated into the Fourier transform, where it
introduces a slow, form-factor like variation with wave vector q.
However, we prefer to suppress this slow variation in order to
reveal the intermolecular correlations. The filled cavity picture
allows this to be done in a mathematically transparent way, by
taking the limit a→ 0. This unambiguously yields the following
expressions for the electric field (e) and displacement field (d) of
the central dipole:

eðrÞ ¼ γ

4πϵ0

3ðp �brÞbr� p
r3

� γp
3ϵ0

δ3ðrÞ;

dðrÞ ¼ γ

4π
3ðp �brÞbr� p

r3
þ 2γp

3
δ3ðrÞ;

ð1Þ

where the hats denote unit vectors. The left hand part of each
function represents the well-known ‘outer’ field of the dipole, at
finite distance from it (r> 0), while the delta functions represent
the fields ‘within’ the dipole (r = 0)13. This special interpretation13
of the symbols e(r) and d(r) must be subsequently born in mind.

Equations (1) are, of course, just the usual equations for the
fields of a point dipole of moment γp, the external moment. This
quantity manifests whenever a response to a field is considered. In
linear response theory the polarisation P is always understood in
this context and hence, when we consider the polarisation below,
it is the fields of Eq. (1) that are used to define the polarisation.
Taking the limit a→ 0 reduces the Onsager cavity to a uniformly
polarised, infinitesimal sphere. There remains a charge density on
the surface of this sphere, that polarises the surrounding medium.

It will be useful to obtain the Fourier transforms of Eq. (1). Let
Φ(r, θ, ϕ) = 1/4πϵ0r, so that the potential is ϕ = −γp ⋅ ∇Φ(r) and
the dipolar field is e = −∇ϕ. The Fourier transform of Φ over the
domain r> 0 is F½ΦðrÞ� ¼ 1=ϵ0q2; where q is the wave vector and
it may be noted that the definition of F adopted here multiplies
the dimensions by a factor of length cubed. Using the Fourier
transformed gradient operator (∇→ iq) and Eq. (1) it follows:

F½e� ¼ �γqðp � qÞ
ϵ0q2

� γp
3ϵ0

; F½d� ¼ � γqðp � qÞ
q2

þ 2γp
3

: ð2Þ

Note that if we were to define the whole e-field as the gradient of
the scalar potential ϕ then it would lack the delta function and
hence factor of γp/3 above. However, this problem is avoided if
the d-field is simultaneously defined as the curl of a vector
potential A = −γp × ϵ0∇Φ, with Fourier transform
F½A� ¼ iq ´ γp=q2. Thus, F½d� ¼ �γq ´ q ´ p=q2 and using the
vector triple product rule, Eq. (2) (right hand term) is recovered,
but with a ‘delta function’ term γp = p′ in place of 2γp/3.
Hence the only practical consequence of defining the fields in
terms of their potentials (rather than by Eq. (1)) is to shift
the ‘delta function’ term entirely into the d-field, which maintains
p′ = d − ϵ0e, as expected.

Fig. 2 Harmonic fields. Illustration of a harmonic polarisation field line (red)
in a simply connected system: the field line starts and ends on the system
boundaries, with no divergence or curl within the volume of the system
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Three-halves factor as a signature of the Coulomb phase. We
now show that the factor of γ = 3/2, reached at low temperature in
the ideal polar liquid, is a universal signature of the Coulomb
phase7,8. This is a low-temperature state that is known from the
study of spin liquids in frustrated magnets14.

In terms of the dipolar fields of Eq. (1), the fields E and D are2:

DðrÞ ¼ dðrÞ; EðrÞ ¼ eðrÞ
1þχ mediumð Þ;

DðrÞ ¼ dð0Þ; EðrÞ ¼ eð0Þ cavityð Þ:
ð3Þ

Hence the polarisation is

PðrÞ ¼ dðrÞ � ϵ0eðrÞ
1þχ ¼ χϵ0eðrÞ

1þχ ðr>0Þ;
Pð0Þ ¼ dð0Þ � ϵ0eð0Þ ¼ γpδ3ð0Þ ðr ¼ 0Þ:

ð4Þ

The appearance of γp in place of p at r = 0 is perhaps
counterintuitive, but as stressed above, it is necessary for both
mathematical and physical consistency. Below it will be shown
how the theory recognises that the ‘true’ dipole moment is p
rather than γp and how all the important results of Onsager’s
theory (for rigid dipoles) may be generated from corresponding
linear response equations.

With the assumption of translational invariance, and after
thermal averaging, the product of the components of p with those
of P(r) of Eq. (4) determines the polarisation correlation function
of the system:

CαβðrÞ ¼ pαPβðrÞ� �
; ð5Þ

where α, β = x, y, z are Cartesian components in the laboratory
frame. However, given that the correlation of the central dipole
with the medium is purely mechanical at all temperatures, and
that the system has spherical symmetry, the above thermal

average is equal to a directional average, denoted below by a bar:

CαβðrÞ ¼ pαPβðrÞ ð6Þ

This function may be Fourier transformed to derive the static
scattering function in reciprocal space. Using Eqs. (2) and (4),
and noting that χγ/(1+ χ) = 3γ − 3, the non-averaged result is

F pαPβðrÞ� � ¼ γpαpβ � ð3γ � 3Þ p
αqβ piqið Þ
ϵ0q2

; ð7Þ

where F denotes a Fourier transform and summation over
related indices is implicit. The angular average of this function
may be resolved by noting that pαpβ ¼ p2=3ð Þδαβ . Hence dividing
by p2/3 and after some rearrangement, we finally derive the
normalised static scattering function for polarisation fluctuations:

SαβðqÞ ¼ 3=p2
� �F CαβðrÞ� � ¼ γ δαβ � qαqβ

q2

� 	
þ ð3� 2γÞ qαqβ

q2

� 	
:

ð8Þ
The result Eq. (8) is observed to obey the total moment sum rule:P

α

P
q
F CααðrÞ½ �P
q

¼ p2; ð9Þ

and hence the theory recognises that the microscopic dipole has
magnitude p, as anticipated.

The terms in square brackets in the right hand expression of
Eq. (8) are, respectively, the transverse and longitudinal
projection operators. They (respectively) select components of
the tensor Sαβ(q) perpendicular and parallel to q, which in turn
arise from the correlation of the central dipole with the solenoidal
and irrotational components of P(r). Recalling that γ varies from
1 at high temperature to 3/2 at low temperature, we find that in
the high temperature limit, Sαβ(q)→ δαβ, while in the low-
temperature limit Sαβ(q)→ (3/2)[δαβ − qαqβ/q2] and the correla-
tions become purely transverse to a given q. However, according
to Eq. (8), the trace of the tensor Sαβ(q) is independent of
temperature: TrSαβ(q) = 3. This factor 3 relates to the three
Cartesian components (x, y, z) of Pq, which are statistically
independent for small fluctuations. Thus in both the high and low
temperature limits, the polarisation is freely fluctuating with free

energy F ¼ ϵ�1
0

R
P2
q




 


=2χd3q, but at low temperature it is subject

to the additional topological constraint q ⋅ Pq = 0. This means that
only two of the three independent Cartesian components are
thermally active; hence to maintain the trace of the tensor, its
components need to be multiplied by the factor 3/2.

It also follows that at low temperature the central dipole
induces a field that is purely solenoidal over the whole domain
of the system (both inside and outside the cavity): P(r) =D(r)
= ∇ ×A′, with ∇ ⋅ P = 0. If this is the only constraint on the system
then γ = 3/2 is the only value of γ consistent with free fluctuations.

These properties demonstrate that the low temperature state of
the ideal polar liquid is a Coulomb phase8, that its polarisation is
an emergent gauge field and that γ = χT/C = 3/2 is the universal
signature of its free fluctuations. In physical terms it is hardly
surprising that an ideal polar liquid excludes bound charge
density (−∇ ⋅ P) to form a Coulomb phase, but what is notable is
that this is clearly described in Onsager’s minimal model.

Definition of the harmonic phase. Excitations out of the
Coulomb phase are expected to be monopoles of bound charge
density8 but these are not described by the Onsager model.
Instead, the fields in the medium, Eq. (3), arise from potentials

Fig. 3 Geometrical difference between Coulomb and harmonic phases.
Representation surface of the correlation function tensor Sαβ(q) with
respect to the wave vector q (red). In the Coulomb phase it is an infinitely
thin disc with radius 3/2, but in the harmonic phase it becomes an oblate
spheroid, that evolves from the disc in the low-temperature limit towards a
unit sphere at high temperature (disc and example spheroid shown overlaid
together)
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that satisfy the Laplace equation and hence are harmonic func-
tions. The polarisation in the medium is therefore a harmonic
field and Sαβ(q) reflects this. At low temperature the central
dipole p induces a solenoidal polarisation, as already discussed.
As the temperature increases the induced polarisation becomes in
part irrotational, but within the medium it remains harmonic.
The solenoidal and irrotational polarisation fields give rise to
distinct components in the correlation function tensor: the sole-
noidal component gives rise to transverse (to q) correlations
while the irrotational component gives rise to longitudinal (to q)
correlations. At finite temperature, the correlation function is a
sum of the transverse and longitudinal components, weighted by
the factors γ(T) and 3 − 2γ(T) respectively (see Eq. (8)).

We term such a monopole-free, curl-free state the ‘harmonic
phase’ to emphasise its distinction from the Coulomb phase. The
harmonic phase is geometrically different to the Coulomb phase,
as illustrated in Fig. 3. In the Coulomb phase the tensor Sαβ(q)
has one zero and two degenerate eigenvalues and it may be
represented by an infinitely thin disc of radius 3/2 with its axis
parallel to q. In the harmonic phase the zero eigenvalue becomes
finite and Sαβ(q) is represented by an oblate spheroid, with
ellipticity tending to unity at high temperature. This difference
allows the correlation function to evolve continuously, without
breaking any symmetry, from that of the Coulomb phase at low
temperature, to that of the ideal paramagnet at high temperature.

It should be noted that the designation ‘harmonic phase’ only
has a strict meaning with respect to a given set of boundary
conditions. In the Onsager model, the microscopic cavity acts as
an ‘inner boundary’ of the medium. The polarisation field lines
produced by the central dipole begin and end on both inner and
outer boundaries (see Fig. 4) and are determined by the potentials
there. The sources of the irrotational field components are bound
charges induced by the central dipole on the surface of the
Onsager cavity (Fig. 1b). As discussed further below, in an
equivalent representation that eliminates the Onsager cavity, only
the solenoidal fields remain harmonic in the whole domain of the
medium, the irrotational fields being generated by a volume
charge density within that domain.

Linear response description of the harmonic phase. Linear
response theory relates Sαβ(q) to the polarisation induced by a

weak applied field E. This field is notionally removed at time t = 0
and the dynamical correlation functions Sαβ(q, t→ 0+) becomes

equal to SαβðqÞ ¼ χαβðqÞT=C ¼ ðT=CÞPα
q=ϵ0E

β
q. In this repre-

sentation it is convenient to treat a continuous system with
periodic boundaries.

The harmonic phase may be described by the following linear
response equation:

PðrÞ ¼ χ

Z
ϵ0E r′ð Þδ r� r′ð Þd3r′þ ϵ0eEðrÞ

� 	
: ð10Þ

supplemented by the total moment sum rule, Eq. (9). HereeE = −∇ψ is the internally-generated E-field:

eEðrÞ ¼ � 1
4πϵ0

∇
Z

ρ r′ð Þ
r� r′j j d

3r′; ð11Þ

and ρ(r) = ϵ0∇ ⋅ eEðrÞ = −∇ ⋅ P(r) is the bound charge density. Thus
(as shown explicitly below in the analogous magnetic case),
solution of Eq. (10) gives Eq. (8); then enforcing Eq. (9) implies
γ ≡ χT/C = (3χ + 3)/(2χ + 3) and hence the temperature depen-
dence of γ and χ.

However, in this description, only the solenoidal fields remain
harmonic, with field lines that connect through the periodic
boundaries to form continuous loops (the equivalent in a simply
connected system would be field lines like those of Fig. 2). The
irrotational fields, in contrast, arise from the volume source
density ρ(r), which substitutes for the surface charge in the cavity
model (see Fig. 1). The Onsager cavity thus captures an essential
small-scale inhomogeneity. In a truly homogenous system, the
fields arising from an element of polarisation at r would not
induce elements of volume charge density at r′.

A peculiar aspect of this representation may be noted: it
unnecessary to specify the actual charge distribution ρ(r) but it is
important that the charge density is unscreened. From this
perspective, the role of the Onsager cavity is to provide an
unscreened charge distribution. The effect of screening is
considered further below.

Experimental evidence of the harmonic phase in spin ice. The
question arises, does the harmonic phase describe a real experi-
mental state? This question is answered with reference to spin ice,
the paradigm frustrated ferromagnet15–20 and a model Coulomb
phase system21–23. The above ideas may be applied to spin ice by
substituting electric properties for magnetic ones ({P, D, ϵ0 E}→
{μ0M, B, μ0H}) and treating the lattice system as a liquid (see
below). The largely dipolar interactions of spin ice are con-
ventionally modelled by the near neighbour model16, which
truncates the dipolar interaction at near neighbour, or by the the
more realistic dipolar spin ice model18,19, which includes the full
interaction. At low temperature spin ice tends to a Coulomb
phase with solenoidal magnetisation;23 at finite temperatures, the
existence of magnetic monopole excitations is well
established22,24–28.

Before testing for the existence of a harmonic phase in spin ice
there is one issue to clarify. The near neighbour model itself
creates pseudo-dipolar correlations and a Coulomb phase, but in
the approach to absolute zero, the magnetic susceptibility
behaves21,29–31 as χ = 2C/T, rather than the universal χ = (3/2)C/
T. According to the above argument, this can only mean that
there is an another constraint on the system, in addition to ∇ ⋅M
= 0. To identify this constraint, we note that spin ice is formed of
spin-tetrahedra at the microscopic level, in which the strongest
correlations occur. Beyond this, treating spin ice as a liquid is
fairly natural: it has cubic space symmetry which means that bulk
linear response properties have spherical symmetry, like

Fig. 4 The Onsager cavity acts as an inner boundary of the system. The
harmonic phase is defined by polarisation or magnetisation field lines (red)
that terminate on either the inner (green) or outer system boundaries but
not within the system volume (blue)
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Onsager’s model. However it seems reasonable to place in the
spherical cavity a single tetrahedron of spins, which will be
treated as the dipole in Onsager’s model, its multipolar fields
being neglected (a reasonable approximation22). This is in the
spirit of Kirkwood’s refinement3 of Onsager’s model. Note that,
although the spins are Ising-like, their energies are those of rigid,
orientable dipoles, so the Onsager method still applies. As shown
in the Methods, the susceptibility of a single spin ice tetrahedron
(in vacuo) may be written:

χT
C

¼ 4
3þ e�2=t � e4=t þ e�6=t

ð12Þ

where t = T/J and J is the effective exchange coupling. Plugging
this in to Onsager’s implicit equation χT/C = γ(χ) and solving
gives the same high and low temperature limits as the (essentially
exact) calculation for near neighbour spin ice i.e. χT/C→ 1, 2
respectively. The factor 2 is thus seen to arise as a product of the
factor 4/3 from Eq. (12) (as t→ 0) and the universal factor 3/2 for
the Coulomb phase, as identified above: that is, it seems that the
recursive calculation30 (that yields the factor 2) substitutes for the
Onsager correction. The tetrahedron model thus illustrates how
the universal (3/2) amplitude of the Coulomb phase is affected by
the extra constraint of local correlations.

Having clarified this, we return to the programme of testing the
validity of the harmonic phase. Our polar liquid model of spin ice
infers the magnetic correlation function of the form Eq. (8)
multiplied by a tetrahedron ‘form factor’ (henceforth neglected).
This is nearly the same as that calculated analytically for spin
ice32,33. The lattice nature of spin ice means that the static
polarised neutron scattering function manifests as ‘pinch points’
near each Brillouin zone centre, which are indeed contained in
Eq. (8). In an ideal polar liquid the absence of a reciprocal lattice
means that the experimental scattering would be less striking,
even though the scattering function is mathematically that of the
‘pinch point’.

There is, however, a difference in the structure factor for the
harmonic phase and that predicted by the analytic calcula-
tions32,33 for the monopole gas. This occurs in the longitudinal
term of Eq. (8). The difference may be seen by writing the two
longitudinal (L) expressions side by side:

SLharmonicðqÞ ¼
χT=C
ð1þ χÞ ; SLmonopoleðqÞ ¼

χT=C

ð1þ χÞ þ ξ2q2
: ð13Þ

Here ξ is the diffusion length for monopoles, which obeys
ξ2 ∝ 1/n where n is the monopole density33. Except at zero q, the
two expressions are mathematically different and represent
different correlations: those of harmonic and divergence-full
fields respectively. The monopole expression was derived in a low
temperature approximation33, leaving open the possibility that
the harmonic expression is relevant at more general temperatures.

To test for the harmonic phase in spin ice, we compare Eq. (13)
with SL measured by polarised neutron scattering23. A small
Lorentzian peak has been interpreted as the monopole term (Eq.
(13), right), but this sits on top of a ‘flat’ and temperature-
dependent component that was noted to correlate with the
thermal excitation of monopoles23. We find this flat component
to be consistent with the prediction for the harmonic phase (Eq.
(13), left) while the low-temperature monopole calculation (Eq.
(13), right) predicts no flat component. Figure 5 illustrates the
consistency of experiment and theory that confirms the harmonic
phase. It seems reasonable to identify it with the temperature-
dependent monopole vacuum, for which the Coulomb phase is its
low temperature limit (see Fig. 3). The flat component indeed
correlates with thermal excitation of monopole states23 but

indicates a much more highly correlated state than previously
envisaged (see Fig. 3).

Correction for magnetic monopoles. The linear response
description of the harmonic phase developed above may be
refined to include the effect of thermally-generated bound charge.
While this could apply to any dipolar system, it is particularly
simple to formulate the correction for spin ice, because the bound
charge in spin ice is discretised into a gas of effective magnetic
monopoles22.

Adapting Eq. (10) and its associated notation to the magnetic
case (such that eH = −∇ψ, ρ = −∇ ⋅M) we first write the Poisson
equation for the internal field potential,

�∇ � ∇ψðrÞ ¼ ρðrÞ: ð14Þ

and then introduce thermally generated monopoles to screen the
fixed charge density. The internal field potential contributes a free
energy Wi = μ0Qiψ to each magnetic monopole of charge Qi =±Q
or ±2Q (here Q is the monopole charge and single- and double
charge monopoles are allowed22). Hence the problem to be solved
reduces to solving the Poisson-Boltzmann equation with a fixed
source density:

�∇ � ∇ψ ¼ ρþ
X
i

Qinie
�μ0Qiψ=kT ð15Þ

where ni(T) is the thermally averaged monopole density. In the
Debye-Hückel (linear) approximation this becomes

�∇ � ∇ψ ¼ ρ� κ2ψ ; ð16Þ

0.1 1 10 100

0

1

T/K

S
L 

(q
) Flat component

Fig. 5 Experimental indication of the harmonic phase in spin ice. Inset: line
shape of the longitudinal scattering function of Ho2Ti2O7, indicating the flat
component beneath a Lorentzian peak. Main figure: points are experimental
neutron scattering data for the ‘flat’ component of the longitudinal
correlation function SL(q) of Ho2Ti2O7 measured at Q= (0.5, 0.5, 2) vs.
temperature, as reported by Fennell et al.23, Fig. 4D. The three curves
shown on the figure (which are almost coincident) correspond to SL(q)
calculated for the harmonic phase according to the left hand expression of
Eq. (13), using the following estimates of the susceptibility χ: (i: red full
curve—see Methods) the single tetrahedron-Onsager calculation presented
here; (ii: blue short dash curve), theoretical susceptibility for near
neighbour spin ice;30 (iii: orange long dash curve) an analytic
approximation to the experimental susceptibility31. The experimental
neutron data, which is not measured in absolute units, has been scaled, but
is consistent with the harmonic phase theory. Experimental random errors
are smaller than the points, but systematic errors may be of order 10%—

without a much deeper analysis of the experimental systematic errors, it is
impossible to assess the significance of the observed small discrepancies
between theory and experiment. What is certain, however, is that the
harmonic phase theory (the curves) capture the experimental scattering
much more accurately than the low-temperature monopole calculation33

(lower green line), which predicts zero intensity
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where overall charge neutrality has been asserted and κðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i μ0Q

2
i niðTÞ=kT

p
is the reciprocal Debye length.

Operating through with ∇ and using the definitions of ψ and ρ,
we find

∇∇ � eH ¼ �∇∇ �Mþ κ2 eH; ð17Þ

or in terms of Fourier components:

�qαqβ ~Hα
q ¼ qαqβMα

q þ κ2 ~Hβ
q : ð18Þ

Finally, using the Fourier transform of the magnetic version of
Eq. (10), the above equation may be solved for the wave vector
dependent susceptibility and hence the static scattering function:

SαβðqÞ ¼ γðκ2 þ δαβqαqβÞ
κ2δαβ þ qαqβð1þ χÞ : ð19Þ

The longitudinal scattering function is then found to be a
modified form of Eq. (13) (left):

SLðqÞ ¼ χT=C
1þ χϵ�1

q
; ð20Þ

where ϵq = 1 + κ2/q2 is the Debye–Hückel dielectric constant. In
the absence of monopoles ϵ�1

q ! 1 and the harmonic phase
result, Eq. (13) is recovered.

A plot of the longitudinal scattering function, Eq. (20), as a
function of temperature and wavevector is given in Fig. 6a. This
looks very like the corresponding experimental data of Fennell
et al.23, Fig. 2D. Indeed, with the identification κ = 1/ξ, Eq. (20)
can easily be separated into a sum of the harmonic phase term
(Eq. (13) left) and the Lorentzian monopole term (Eq. (13) right),
but with the monopole term multiplied by χ/(1 + χ). In the low
temperature limit, the result of monopole theory33 is recovered,
with corrections of order 1/χ. A close comparison of experiment
and theory is not attempted here as detailed systematic
experimental corrections would need to be considered which
take us far from the main point of this paper. We may conclude,
however, that Eq. (20) captures the basic form of the experimental
data in a way that existent monopole calculations do not, and that
both experiment and theory justify the harmonic phase as a
distinct component of the correlation function.

In the derivation of Eq. (19) we have essentially altered the
longitudinal fields, without correcting the transverse fields to obey
the total moment sum rule. Hence in contrast to Eq. (8), Eq. (19)
does not obey the total moment sum rule. The transverse
correlation function ST(q) of Eq. (19) remains the same as that of
the harmonic phase, Eq. (8), as illustrated in Fig. 6b (cyan long
dash line). The total moment sum rule may be restored in an ad-
hoc way by requiring that 2ST(q) + SL(q) = 3, which yields the
green short dash curve of Fig. 6b. This introduces a ‘dip’ in the
transverse scattering function as q→ 0, as observed in experi-
ment23. Based on this, we tentatively propose that the experi-
mental ‘dip’ is largely a consequence of the sum-rule requirement.

Discussion
Our findings for spin ice are consistent with previous work on
th`e approximation to dipolar spin ice from which monopoles
are derived—the ‘dumbbell model’22—as interpreted by Brooks-
Bartlett et al.9 There the magnetisation is Helmholtz-decomposed
into the gradient of a scalar potential plus the curl of a
vector potential, which are shown to be partly independent
(‘magnetic moment fragmentation’). The present results reflect
the equivalent Helmholtz-Hodge decomposition which
additionally separates the harmonic field as a separate entity.
The harmonic phase represents this component—which, in terms

of relative weight, is a significant component of the correlation
function at all temperatures. A similar Helmholtz–Hodge
decomposition of the electric fields has recently been
formulated for the two-dimensional Coulomb gas at the
Berezinskii–Kosterlitz–Thouless transition12.

The present results for the magnetic susceptibility—the
‘collective Curie law’—are consistent with those of Jaubert and
colleagues30, which associate the law with ‘topological sector
fluctuations’ of the harmonic field component in the Coulomb
phase. In microscopic terms the law arises from the reversal of
dipole strings that traverse the entire sample30 (which in practice
is facilitated by a small density of monopoles). The universal (3/2)
amplitude found here arises when such harmonic fluctuations are
the only source of susceptibility. Quantum fluctuations, and the
formation of closed loops in the bulk of the medium34 would
modify the susceptibility amplitude and cause deviations from the
collective Curie law. It is interesting to note that the modification
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Fig. 6 Harmonic phase corrected for monopole screening. a Predicted
longitudinal correlation function in spin ice (Eq. (20)) along [h, h, 2] at
temperatures of (top to bottom on right hand side) 50, 20, 10, 5, 3.75, 2.5
and 1.7 K. The calculation requires an input of the Debye length and
susceptibility as a function of temperature. The Debye length was
calculated iteratively by Debye–Hückel theory for single and double charge
magnetic monopoles49 with excess chemical potentials appropriate to the
spin ice Ho2Ti2O7 (νsingle= 5.7 K, νdouble= 4νsingle;22 the bare Debye length
was augmented by the distance of closest monopole approach as the
standard extension of Debye–Hückel theory). The susceptibility used was
an analytic approximation to the experimental data of Ho2Ti2O7

31, as in
Fig. 5. This plot may be compared with that of Fennell et al.23, Fig. 2D. The
scattering separates into a flat component (the harmonic phase) and a
central Lorentzian component arising from magnetic monopoles. b
Corresponding longitudinal (blue full line) vs. transverse (cyan long dash)
scattering functions from Eq. (19) at 1.7 K. The green short dash curve
represents the transverse scattering function corrected to obey the total
moment sum rule. This may be compared to the result of Fennell et al.23,
Fig. 2B, C
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of the Curie law by dipole loop formation has recently been
discussed in the context of the hard sphere magnetic polar fluid35.

The main testable predictions of the present work are the
scattering functions of Eqs. (8), (19) and (20). The experimental
signatures of the harmonic phase are the ‘flat’ longitudinal and
transverse scattering functions of Eq. (8), along with their char-
acteristic temperature dependences. In experiment, the flatness of
the correlation functions might be mistaken for an absence of
correlation but in fact the harmonic phase is highly correlated, as
reflected in the nontrivial property of the correlation function
tensor (Fig. 3).

The scattering function of Eq. (20), Fig. 6, describes a further
component of the longitudinal correlation function arising from
thermally generated bound charge. Even though this has been
derived for the particular case of spin ice, it should be expected to
apply more generally, differences between systems being repre-
sented by differing behaviour of the reciprocal Debye length, κ.
Eq. (20) shows that as the harmonic fields propagate into the
medium they are increasingly screened by thermally generated
bound charge. This may be appreciated by writing the internal
field in the form:

eHðrÞ ¼ � μ0
4π

∇
Z

ρ r′ð Þ
r� r′j jϵ r� r′ð Þ d

3r′ ¼ � μ0
4π

∇
Z

ρ r′ð Þ
r� r′j j e

�κ r�r′j jd3r′;

ð21Þ

where ϵ is the dielectric function in direct space (the Fourier
transform of ϵq). At large distances, or q→ 0, the effects of the
small-scale inhomogeneity, or Onsager cavity, are completely
screened away and the longitudinal wavevector dependent sus-
ceptibility (χ(q) = CSL(q)/T) becomes equal to the bulk suscept-
ibility (modulo demagnetising or depolarisation effects). However
the cavity remains crucial for determining the temperature-
dependence of the susceptibility, as discussed above.

It would be interesting to test real polar liquids or numerical
simulations thereof, to assess the relevance to those systems of the
correlation functions calculated here. Of course real polar
liquids36 are much more complex than implied by our ‘ideal polar
liquid’ or even the more general Onsager model2, that accounts
for molecular polarisability. Indeed, the Onsager model is
recognised to generally ‘overcorrect’ mean field theory37 and a
soft sphere dipolar fluid may exhibit orientational order even in
the absence of crystallisation38,39. Nevertheless, Onsager’s model
remains an important point of reference in the theory of polar
liquids40,41. Our analysis of spin ice certainly implies that the
harmonic phase is relevant to water ice, and hence, quite possibly,
to water itself. We can speculate that local geometric frustration,
as occurs in spin ice and water ice will generally aid the formation
of the harmonic phase. Hence one could also consider its for-
mation in some ice-rule ferroelectrics42, pseudo-dipolar systems
like antiferromagnetic spin liquids43 and ‘artificial spin ice’
micro-magnetic arrays (where field-theory44 and reciprocal space
correlations45,46 are of topical interest). Where such systems form
Coulomb phases at low temperature, the nature of the phase
transition out of the Coulomb phase to the ultimate ordered state
becomes of particular interest47,48. By connecting Coulomb phase
theory to polar liquid theory, the concept of the harmonic phase
potentially broadens the class of condensed matter to which such
studies are relevant.

Methods
Derivation of the mean square moment of a single spin tetrahedron. In the
following, the magnetic moment per site is set to unity (μ = 1). The tetrahedron has
three classes of spin configuration depending on how many spins point ‘in’ or
‘out’20. There are six 2:2 configurations, eight 3:1 configurations and two 4:0
configurations. If we consider the spin projection μz on z = [100], then a 2:2
configuration has squared dipole moment

P
μð Þ2=4 ¼ ð1=4Þ 4=

ffiffiffi
3

p� �2¼ 4=3 per

spin, a 3:1 configuration has (1/4)22 = 1 per spin and a 4:0 configuration has zero
moment. Take the zero of energy at the level of the 3:1 configurations in which case
2:2 has energy −2J and 4:0 has energy 6J. The average squared tetrahedron moment
is

μ2z
� � ¼ χT=C ¼ ð4=3Þ6e2βJ þ 8

6e2βJ þ 8þ 2e�6βJ
¼ 4 ´

1þ e2βJ

4þ 3e2βJ þ e�6βJ
; ð22Þ

which rearranges to Eq. (12).

Calculation of the tetrahedron susceptibility by the Onsager method. The
curves in Fig. 5 are calculated from the Eq. (13) using three different estimates of χ.
The red curve is found by first solving the implicit equation:

χT
C

¼ ð3χ þ 3Þ
ð2χ þ 3Þ ´

4

3þ e�
2J
T � e�

4J
T þ e�

6J
T

� 
 ð23Þ

The solution is χ = A + B where

A ¼ 12Ce6x þ 3Te2x � 3Te4x � 9Te6x � 3T
4T �e2x þ e4x þ 3e6x þ 1ð Þ ; ð24Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 T �e2x þ e4x þ 3e6x þ 1ð Þ � 4Ce6xð Þ2þ96CTe6x �e2x þ e4x þ 3e6x þ 1ð Þ

q
4T �e2x þ e4x þ 3e6x þ 1ð Þ ;

ð25Þ

and x = J/T. The susceptibility χ is then calculated using C = 4 K, J = 1.8 K for
Ho2Ti2O7

20,31.

Data availability. The data sets generated and analysed in this study are available
from the corresponding author on reasonable request.
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