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Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical
outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-
based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep
learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and
quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep
convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image
segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a
simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors’
knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating
promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced
classification methods for CAI systems.
1. Introduction: Computer-assisted surgical (CAS) systems
augment the surgeon’s capabilities through information fusion
and presentation during a procedure with the potential for
increasing surgical precision, optimising ergonomics and surgical
actions, and enhancing patient safety [1]. In CAS, surgical work-
flow understanding and procedural segmentation into operational
phases is a potential step towards reducing surgical errors and
improving patient outcomes through the standardisation of
processes and techniques much like surgical checklists [2]. The
development of cognitive CAS systems that automatically analyse
surgical workflow would assist surgeons and medical practitioners,
offering solutions to essential tasks in the operating room like phase
recognition, surgical assessment, operation monitoring and opti-
mised scheduling [1, 3]. Furthermore, surgical workflow analysis
could be beneficial for automated surgical video indexing and oper-
ational key step extraction for creating an educational content, a task
that is currently manual and time consuming, for disseminating
surgical technique or management of specific adverse events.

Automated phase recognition has been studied for a number of
years, predominantly through using information about the motion
of the surgeon’s hands or the instruments in the case of minimally
invasive surgery [4, 5]. Such studies indicate that information about
the presence of instruments at different procedural time points is
valuable for phase recognition. This is reasonable given that differ-
ent instruments are used to achieve specific procedural tasks. Other
studies suggest using surgical triplets (information of the utilised
tool, the anatomical structure, and the surgical action) [6] or
visual features [7–9] but these features were either manually anno-
tated or hand-crafted, which is not robust and does not generalise
well across different surgical indications. More recently with the
emergence of deep learning techniques interesting studies are emer-
ging that bypass the need for manual feature tailoring or for explicit
instrument segmentation [10]. Though exciting because manual
design is avoided, these methods require large amounts of data
for training, their performance can be improved with additional
developments and it is likely that explicit information about instru-
ment placement and kinematics will be assistive.
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Extracting information about the presence and motion of instru-
ments during surgery can be achieved through different sensing mo-
dalities. When robotic systems are using encoders, the kinematic
chain automatically provides this data and it can be used directly
for analysis [11]. In the majority of surgical procedures, however,
these instruments do not have motion sensors and in this case
when a surgical camera is used (e.g. a laparoscope or a microscope)
vision-based approaches are an attractive solution [12]. For vision-
based techniques, deep convolutional neural networks (CNN) have
established themselves as the new state-of-the-art approach for
computer vision problems in image classification [13] and semantic
segmentation [14]. A drawback of deep CNNs is the requirement of
large training datasets when training from the scratch, however, this
can be somewhat mitigated through transfer learning either by using
a CNN pre-trained on large datasets, like ImageNet [15], as an
off-the-shelf feature extractor, or by fine-tuning a pre-trained
network on smaller task-specific datasets [16]. This concept has re-
cently been adopted for tool presence detection and joint surgical
phase recognition [17], where a CNN is used as a feature extractor
[13], appended by a fully connected classification layer for the task
of tool presence detection. Yet the transfer learning aspect of the
adaptation of features to the surgical context is still a significant
and not fully understood challenge. Additionally, for fully robust
systems, the training dataset must encapsulate a very wide range
of variable conditions that may occur in practice.

In this Letter, we focus on exploring whether surgical simulation
can be used to generate data that is useful for training deep CNN by
covering a sufficient domain to facilitate models to be applied to a
real surgical video. The contribution of this Letter is to compare the
application of two different models for automated tool segmentation
in a video both trained on synthetic data and tested on real data as
shown in Fig. 1. The first model is the fully convolutional network
adaptation (FCN-VGG) [14] trained to perform supervised
semantic segmentation in 14 classes that represent the 13 different
tools present in our datasets and an extra class for the background of
the environment. The second model is the pix2pix for unsupervised
domain adaptation which we apply attempting to translate simulated
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Fig. 1 Example synthetic (top row) and real (bottom row) datasets used in this work; (a–c) three exemplar tools used in cataract surgery
a1, b1, c1 Images generated through a commercial simulation environment
a2, b2, c2 Segmentation masks delineating instruments from the operating site
a3, b3, c3 Real cataract surgery images (https://cataracts.grand-challenge.org/)
images directly into semantic instrument segmentations [18]. In
both cases, we train the models on a simulated dataset acquired
from a commercially available surgical simulator and attempt to
adapt the model domain such that it can be used on real cataract
images (2017 MICCAI CATARACTS challenge, https://cataracts.
grand-challenge.org/). Our goal is to use the simulator’s unlimited
capability to generate data with variability in camera pose, lighting
or instrument motion, to train machine learning models and then
directly apply them to detect tools in real cataract videos. Our
results show that there is potential for developing this idea, with
the pix2pix technique demonstrating that detecting real instruments
using models trained on synthetic data is feasible albeit further
advances are needed to correctly perform classification into instru-
ment classes.
2. Materials and methods: Using a surgical simulator ‘Touch
Surgery’, we rendered synthetic cataract data using varying render-
ing parameters (i.e. lighting conditions and viewing angles), as
shown in Fig. 1. The simulation environment (including the surgi-
cal tools) is credible as it is created and verified by animators and
medical officers together [19]. The simulated cataract operation
includes three surgical phases: (i) patient preparation, (ii) phaco-
emulsification, and (iii) insertion of the intraocular lens. For each
phase, we chose 15, 10 and 5 different combinations of rendering
parameters that resulted in a total of 17,118 rendering views. For
each camera pose, we generated a 960× 540 RGB image along
with a tool segmentation depicting each tool with a different
colour. These pairs of simulations–segmentations were used to
train our machine learning models for tool detection. The generated
dataset was divided into 60, 20 and 20% for a training, validation
and testing set of 10,376, 3541 and 3201 frames, respectively.
To test the generalisation of our models we used a real cataract

dataset gathered from the CATARACTS challenge training
dataset. The real dataset consists of 25 training videos of
1920× 1080 resolution frames annotated with only tool presence
information but without the fully segmented instrument. Tools
present within the simulated and real datasets slightly differ in
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number (21 in real and 24 in simulated) and type. For example,
Bonn forceps that are found in the real set do not exist in the
simulations and, therefore, had to be discarded from training. We
gathered a real set with 14 common classes for a total number of
2681 frames. The 13 tool classes co-existing in both datasets are:
(i) hydrodissection cannula, (ii) rycroft cannula, (iii) cotton,
(iv) capsulorhexis cystotome, (v) capsulorhexis forceps, (vi) irriga-
tion/aspiration handpiece, (vii) phacoemulsifier handpiece,
(viii) vitrectomy handpiece, (ix) implant injector, (x) primary inci-
sion knife, (xi) secondary incision knife, (xii) micromanipulator
and (xiii) vannas scissors. An additional class is used for the
background, when no tool is present.

2.1. FCN-VGG: The FCN-VGG architecture extends the original
VGG for semantic segmentation by substituting the fully connected
output layer of the network with a convolutional layer, which allows
faster training while preventing over-fitting [14, 20]. We fine-tuned
the single-stream (up-sampling stride of 32) FCN-VGG following
the original methodology [14]. The network consists of 16 trainable
convolution layers with rectified linear unit (ReLU) activations,
some followed by max-pooling layers. The kernels of the con-
volution and pooling layers are consistently sized at 3× 3 and
2× 2, respectively, throughout the whole network.

FCN-VGG is applied like a filter on an input image x and pro-
duces an output y of the same dimensions. The kernels of the con-
volution layers of the network are applied in a moving way across
the image preserving the spatial information of the input. The final
layer up-samples the output of the network to the input size.
The predictions of FCN-VGG are calculated using the softmax
function on a pixel level and the loss that is being minimised is
the softmax loss

LFCN VGG = − 1

N

∑

n,i,j,c

g(c)n,i,j log [f(w
(c)
n,i,j)], (1)

where N is the batch size, g(c)n,i,j [ {0, 1} and w(c)
n,i,j are the ground

truth and network’s prediction, respectively, of class c for pixel
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(i, j) in the nth image and f(·) is the softmax function

f(w(c)
n,i,j) =

ew
(c)
n,i,j

∑C
c=1 e

w(c)
n,i,j

, (2)

where C is the number of different classes.
The layers of the network were initialised with weights pre-

trained on the PASCAL VOC-11 [21] dataset, except for the last
convolution layer which is task-specific and had to be trained
from the scratch. This is the layer that performed the 14 class seg-
mentation of cataract instruments. The weights of this layer were
initialised from a Gaussian distribution with a mean of 0 and a
standard deviation of 0.01 and the biases were initialised to zero.
The network was fine-tuned on the simulated dataset using stochas-
tic gradient descent with base learning rates of 10−5 and 10−10 and
the learning rate of the final layer was multiplied by a factor of 10 in
order to accelerate the learning process of this layer. For training
and testing FCN-VGG, we used an implementation in the Caffe
deep learning framework and the publicly available model of
FCN-VGG in Caffe Model Zoo [22].

2.2. Pix2pix: An alternative model that performs image domain
transfer through the use of a conditional generative adversarial
network (cGAN), which performs unsupervised domain adaptation
using two networks, one generator and one discriminator, trained in
an adversarial way. The generator maps an input noise vector z to an
output image y: G:z � y. In cGANs, the generator conditions on
both a noise vector z and an image x and produces an output
image y: G:{x, z} � y. The input image comes from the source
domain and the output image comes from the target domain’s dis-
tribution. The pix2pix (P2P) algorithm learns a mapping between
the source and the target domain in order to perform image transfer
between the two domains [18]. The discriminator in generative
adversarial networks (GANs) is commonly a classifier and is
trained to infer whether an image comes from the output of the
generator (synthetic) or from the target domain (real). Similarly,
in cGANs the discriminator is conditioned on an image from the
source domain, x, and an image u from either the target domain
or the output of the generator G(x, z), and classifies it as real or
synthetic:D:{x, u} � {0, 1}. The discriminator is trained to recog-
nise synthetic images whereas the generator is trained to render
images from the distribution of the target domain and make them
unrecognisable for the discriminator to detect synthetic data. In
this context, the generator and discriminator are trained adversa-
rially. By the end of the training, the generator is expected to be
capable of producing images realistic enough so that the discrimin-
ator has a 50% (random) chance of correct classification.

In this Letter, we use the P2P model for image transfer mapping
between two domains with the architecture as presented in the
original paper [18]. This is a cGAN model with a generator of
an U-Net encoder–decoder architecture and skip connections
between different layers of the encoder and the decoder. Both the
generator and the discriminator consist of a sequence of convolu-
tion, batch normalisation and ReLU layer combinations. The loss
function that the cGAN is trying to minimise in P2P is

LcGAN = E[ logD(x, y)]+ E[ log (1− D(x, G(x, z)))], (3)

where x and y are images from the source and target domain,
respectively, z is a random noise vector, D(x, y) [ [0, 1] is the
output of the discriminator and G(x, z) is the output of the gen-
erator. The generator tries to minimise this equation, whereas the
discriminator tries to maximise it. Being a style transfer model,
P2P is constrained to produce an output that is close enough to
the input in terms of labelling. This is also necessary in order to pre-
serve the annotation of the input to the output image. This constraint
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is forced through the use of an additional regularizing loss L1

LL1 = E[‖y− G(x, z)‖1] (4)

so that the overall objective function to be optimised becomes

Ltotal = LcGAN + bLL1, (5)

where b ≥ 0 is a weight for the trade-off between the cGAN and the
regularisation loss.

Contrary to most GANs, in P2P, a patch-based discriminator
is used to classify N × N patches of the image and aggregate a
final decision. The discriminator is a fully convolutional network
(FCN) and can be applied on arbitrarily sized images, while at
the same time training becomes faster and over-fitting is prevented
by keeping the number of parameters low. We used a patch size of
70× 70, and the discriminator consists of a sequence of four con-
volution, batch normalisation and ReLU layer combinations and a
one-dimensional convolution output to aggregate the decision.
This layer is passed into a Sigmoid function that produces a prob-
ability of the input being real (from the target domain). In our
experiments we consider the domain of the simulated cataract
images as the source domain and the domain of the semantic seg-
mentations as the target domain. The cGAN was trained to learn
a mapping between a simulated image and a segmentation, thus per-
forming tool detection. After training, the generator was applied
to images from the real dataset in order to perform tool detection
by transfer learning.

Despite the generator and the discriminator of P2P being FCNs,
we chose to use the default 256× 256 image size, and therefore,
we resized our simulated and real data before training. All layers
were trained from the scratch and weights were initialised from a
Gaussian distribution with a mean of 0 and a standard deviation
of 0.02. Our implementation is based on the open source code,
made publicly available by the authors [18], written in Tensorflow.

3. Experimental results: FCN-VGG was trained on the full
training set of ∼10k images (10,376 images) towards semantic
segmentation using stochastic gradient descent with a batch of 16
and a base learning rate of 10−10. We also resized the dataset and
trained on 256× 256 frames, according to the application of
image translation between semantic segmentation and photos
of [18]. We called these models FCN-VGG-10K-Large and
FCN-VGG-10K-Small, respectively. Finally, we sub-sampled the
resized dataset to form a smaller set of 400, 100 and 100 training,
validation and testing images, according to the same image transla-
tion application of [18]. For this experiment, we trained using a base
learning rate of 10−5. We called this model FCN-VGG-400.
FCN-VGG-10K-Large and FCN-VGG-10K-Small were trained
for around 2000 iterations each, whereas FCN-VGG-400 was
trained for 20,000 since we did not use a batch and the convergence
was slower.

P2P was trained solely on 256× 256 data, on the sub-sampled
and the full dataset; we called these models P2P-400 and
P2P-10K, respectively. We used the Adam optimiser with the
same parameters as [18], i.e. batch size of 1, learning rate of
0.0002 and L1 loss weight of b = 100. P2P-400 was trained for
200 epochs that is 80,000 iterations, whereas P2P-10K for 50
epochs that is 500,000 iterations. An overview of our models can
be seen in Table 1.

All training and testing were performed on an Nvidia Tesla K80
GPU with 8 GB of memory.

We used the simulated test set to test the task of tool detection
on the simulated images. The segmentations predicted by our
models are shown in Fig. 2. We can observe that generally the
FCN–VGG models classify correctly the retrieved pixels
(i.e. assign correct tool labels) creating rougher segmentations,
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 216–222
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Table 1 Summary of all deep learning models trained on the simulated
datasets with various sizes and resolutions

Model Resolution Training set size

FCN-VGG-400 256× 256 400
FCN-VGG-10K-Small 256× 256 10,376
FCN-VGG-10K-Large 960× 540 10,376
P2P-400 256× 256 400
P2P-10K 256× 256 10,376
whereas P2P misclassifies a few tools but produces finer seg-
mentations for the detected tools. For example, in the fourth row
of Fig. 2, both P2P models predict very good segmentations
whereas only FCN-VGG-10K-Large out of all FCN-VGG
models is close. In the third row, FCN-VGG-10K-Large assigns
the correct classes to the retrieved pixels, successfully detecting the
tool, but produces a rough outline, whereas P2P-400 creates a finer
outline but picks the wrong label (red instead of purple). For the
same input, P2P-10K outperforms both FCN-VGG-10K-Large
Fig. 2 Experimental results presenting all the outputs of the two learning models
simulation testing dataset. The simulated images are shown in the first column an

Table 2 Evaluation metrics for the performance of all deep learning models on th

Model Pixel accuracy M

FCN-VGG-400 0.936 0.
FCN-VGG-10K-Small 0.959 0.
FCN-VGG-10K-Large 0.977 0.
P2P-400 0.981 0.
P2P-10K 0.982 0.
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and P2P-400. Overall, FCN-VGG-10K-Large produces the best
qualitative results among the FCN-VGG models and P2P-10K is
the best style transfer model. Ultimately, it seems that P2P-10K is
our best model.

For the quantitative evaluation of the performance of our models
on the simulated test set we calculated the metrics used in [14] for
semantic segmentation, namely pixel accuracy, mean class accur-
acy, mean intersection over union (mean IU) and frequency
weighted IU (fwIU). The results of the evaluation are shown
in Table 2. We notice that the FCN-VGG models achieved better
mean accuracy and mean IU, whereas P2P achieved better
pixel accuracy and fwIU. Among FCN-VGG and P2P models,
FCN-VGG-10K-Large and P2P-10K are highlighted as the best
ones, verifying the qualitative results. We notice that P2P-10K
achieved a lower mean class accuracy and mean IU than
FCN-VGG-10K-Large. This was caused by the fact that whereas
P2P detected many tools reliably (e.g. rows 1, 3, 4 and 5 in
Fig. 2), there are classes it missed. This can be shown in the
second row of Fig. 2, where the majority of the orange tool was
detected as the background while the parts of it that were detected
as a tool were assigned the wrong class. Hence, the class accuracy
for different parameters (training dataset size and resolution) applied on a
d the ground truth segmentation images in the second column

e simulated test set

ean accuracy Mean IU fwIU

334+ 0.319 0.254+ 0.297 0.883
372+ 0.355 0.354+ 0.342 0.922
639+ 0.322 0.526+ 0.333 0.958
395+ 0.426 0.196+ 0.336 0.969
503+ 0.363 0.260+ 0.350 0.974
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and IU for this case were close to zero. This was the case for all con-
secutive frames of the same tool, reducing the mean class accuracy
and mean IU. On the other hand, FCN-VGG-10K-Large created
rougher segmentations across all tools but had a lower chance
of misclassification. This is why P2P-10K has a better fwIU
(IU averaged by the real distribution of the classes, ignoring zero
IUs) than FCN-VGG-10K-Large.

We have to note that while FCN-VGG performed pixel-level
classification by predicting tool labels, P2P performed image
translation by generating pixel RGB values. Therefore, we had
to apply a threshold to the segmentations of P2P in order to
get the final pixel labelling. Although this procedure did not sig-
nificantly affect the final outcome, it induced some noise in the pre-
diction which could have an effect in decreasing the metrics
for P2P.

After training our models on the simulated dataset, we compared
their performance for tool detection in real cataract data. We
passed the real frames to all five models and generated the seg-
mentations. Example predictions can be seen in Fig. 3. We
observe that, despite being trained purely on simulated data, P2P
was able to perform successful detection for some tools. For
example, P2P-10K was able to segment correctly the retractors in
column three (the lower part of the corresponding segmentation
image). In the other columns, both P2P models distinguished the
major parts of the tools from the background, despite assigning
the wrong class. Specifically, in column three both models have
created a fine segmentation of the tool in the upper left corner
(also zoomed on the right). On the other hand, despite FCN-VGG
having high performance on the simulated set, it was not able to
generalise on the real set and it only produced a few detection
(e.g. fourth column).

Using the binary tool presence annotation that was available in
the real cataract dataset we measured the mean precision and
mean recall of P2P-400 and P2P-10K on the real set. P2P-400
achieved 8 and 21% and P2P-10K achieved 7 and 28% mean pre-
cision and recall, respectively. The results of applying transfer
learning on real data are encouraging because P2P was able to
Fig. 3 Experimental results presenting all the outputs of the two learning models fo
real dataset. The real images are shown in the first row, while zoomed image resu
segmentations of the images in the second row
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distinguish tools from the background and in many cases it
created fine segmentations.

From the evaluation of our models it is highlighted that
FCN-VGG performs better when trained on higher resolution
images (FCN-VGG-10K-Large). When lowering the image reso-
lution the objects can be distorted and lose important information.
This poses an extra challenge detecting objects with CNNs.
However, we can see that despite P2P being trained on lower
resolution, it had a comparable performance on the simulated
dataset and outperformed FCN-VGG on transfer learning.
Therefore, we conclude that the domain differences between the
simulation and reality pose a larger challenge in transfer learning
than the resolution of the training images. Of course, using a
larger training set could potentially increase the performance
of P2P and is an experiment that we will be exploring in our
future work.

An additional challenge that is highlighted in the mean accuracy
and mean IU in our experiments is class imbalance. Indeed, within
our training set some of the classes have more instances than
others. For example, a capsulorhexis cystotome has >2000 instances
whereas a primary incision knife has <300 instances. To balance
the training classes we decided on a global threshold of 1134
instances per class and under-sampled the dataset. We discarded
classes with fewer instances and randomly sampled the remaining
ones based on the inverse of class frequency. Hence we constructed
a new training simulated set of seven classes (six tools and one
background class) for a total of 5851 training frames. Similarly we
gathered a new validation and test set of 1955 and 1845 frames,
respectively. We trained FCN-VGG and P2P on the new balanced
dataset on high and low resolution (960× 540 and 256× 256),
respectively, and called these models FCN-VGG-Large-balanced
and P2P-balanced. From the evaluation of both models on the
simulated domain we noticed an increase in performance highlighted
in the new mean accuracy and mean IU shown in Table 3. We
observe that both FCN-VGG-Large-balanced and P2P-balanced
have a significant improvement in the class-oriented metrics
(mean accuracy and mean IU), respectively, hence we conclude
r different parameters (training dataset number and resolution) applied on a
lts are presented on the right. We have manually labelled the ground-truth
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Table 3 Evaluation metrics for the comparison between the balanced and imbalanced models on the simulated domain

Model Pixel accuracy Mean accuracy Mean IU fwIU

FCN-VGG-10K-Large 0.977 0.639+ 0.322 0.526+ 0.333 0.958
P2P-10K 0.982 0.503+ 0.363 0.260+ 0.350 0.974
FCN-VGG-10K-Large-balanced 0.972 0.709+ 0.276 0.531+ 0.330 0.950
P2P-balanced 0.985 0.527+ 0.452 0.432+ 0.400 0.974
that balancing the classes had a positive effect on the performance
of our models. In addition, similar to the first experiments,
FCN-VGG achieves higher class-oriented metrics, suggesting it is
able to retrieve more classes successfully than P2P. Finally, we
evaluated the balanced models on the real set. P2P-balanced
exhibited performance similar to P2P-400 and P2P-10K achieving
a precision and recall of 7 and 13%, respectively. FCN-
VGG-Large-balanced, on the other hand, exhibited an increased
performance comparing all other FCN-VGG models and can be
compared with P2P. Both the precision and recall of FCN-
VGG-Large-balanced are 11%.
We should note that although the new training set is balanced,

lowering the number of classes from 14 to 7 leads to a slightly
different experiment and we cannot directly compare with the
original one. Another way to address class imbalance would be
to use a loss function that calculates the weighted sum of the
losses of each individual class based on the class frequency [23].
Alternatively, we could apply stratification techniques to make
sure all classes are parsed when training the model [24].
Although these methods were not explored in the Letter we will
be exploring their application to address class imbalance in future
works.

4. Discussion and conclusions: In this Letter, we focused
on showing that a simulated surgical video can potentially be
used as an input to training deep learning architectures for
vision-based surgical instrument detection and segmentation. To
the best of our knowledge, this is the first attempt to perform
object detection by unsupervised domain adaptation and, also
the first attempt to generalise on real surgical data while training
on purely synthetic. We tested two popular deep learning
methodologies using CNNs with transfer learning to adapt
simulation trained models to real data, and using GANs to
perform style transfer as a means for solving the labelling
problem. Our results for CNN transfer learning indicate that
additional efforts are needed to properly adapt the model from the
input to the output domain. Surprisingly, our results with the
GAN approach are promising and instruments are detected well.
Despite promising detection, the classification of different tools
requires further work and improvement. It is also worth
mentioning that our approach is feasible for segmenting/
classifying anatomical structures. Since our training dataset is
being generated by a simulator, we can potentially generate
anatomical structures along with the corresponding labels.
However, the size of this dataset is necessary to be significantly
larger due to the fact that anatomical structures have much more
variation in appearance. We should also notice that the
CATARACTS grand challenge is still on-going and therefore the
results of this work still cannot be compared with results from
other participants. We believe this preliminary study shows a
promising direction for further exploration of employing deep
learning methods for CAS systems without being impeded by the
lack of large labelled datasets which are typically the cornerstone
of deep learning in computer vision.
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