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Abstract

Continuous-time multi-state survival models can be used to describe health-

related processes over time. In the presence of interval-censored times for

transitions between the living states, the likelihood is constructed using transi-

tion probabilities. Models can be specified using parametric or semi-parametric

shapes for the hazards. Semi-parametric hazards can be fitted using P -splines

and penalised maximum likelihood estimation. This paper presents a method

to estimate flexible multi-state models which allows for parametric and semi-

parametric hazard specifications. The estimation is based on a scoring algo-

rithm. The method is illustrated with data from the English Longitudinal Study

of Ageing.

Keywords: Cognitive function, Multi-state models, Gompertz distribution,

Weilbull distribution, P-splines, Scoring

1. Introduction

Multi-state models are routinely used in research where change of status

over time is of interest. In epidemiology and medical statistics, the models are

used to describe health-related processes over time, where status is defined by

a disease or a condition. In social statistics and in demography, the models are
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used to study processes such as region of residence, work history, or marital

status. A multi-state model which includes a dead state is called a multi-state

survival model.

The specification of a multi-state survival model depends partly on the study

design which generated the longitudinal data that are under investigation. An

important distinction is whether or not exact times are observed for transitions

between the states. This paper considers study designs where death times are

known exactly (or right censored) and where transition times between the living

states are interval censored. Many applications in epidemiology and medical

statistics have this property as it is often hard to measure the exact time of onset

of a disease or condition. Examples are dementia, cognitive decline, disability

in old age, and infectious diseases.

A multi-state survival model describes change in a discrete longitudinal out-

come variable and attrition due to death. If a longitudinal outcome variable can

be adequately described by a set of states, then a multi-state survival model is

an alternative to so-called joint models. An example of the latter is the shared-

parameter joint model which consists of combining a survival model for the

event time with a mixed-effects model for the longitudinal outcome [1].

This paper defines continuous-time multi-state survival models by specifying

transition-specific hazard models. Time-dependency of the process is defined by

using parametric and semi-parametric formulations in the specification of the

baseline hazard functions. The semi-parametric specification is made with P -

splines [2], which are B-splines with penalties on the difference of adjacents

splines [2]. Using B-splines is a general method for smoothing [2, 3].

Because the definition of the functional form of the hazard can be transi-

tion specific, model specification can cover a wide range of multi-state survival

processes. The methodology presented in this research is for multi-state mod-

els with at least one transition hazard specified with P -splines. Estimation is

carried out with penalised maximum likelihood, where the maximisation is un-

dertaken by using a Fisher scoring algorithm. This algorithm is an extension of

the work by Jennrich and Bright [4] and Kalbfleisch and Lawless [5].
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The models are formulated in a Markov process framework. Time-dependency

is approached by using a piecewise-constant approximation and defining a series

of time-homogeneous processes. For each of these homogeneous processes, the

solution to the Kolmogorov forward equations (a first-order differential equa-

tion) is computed using eigenvalue decomposition. The method can be applied

to multi-state models with any number of states and specification of hazard

transitions can vary across transitions.

Semi-parametric multi-state models for interval-censored data have been dis-

cussed in the literature. Titman [6] uses a numerical approximation to calcu-

late the transition probabilities. The advantage is that there is no need to

define a grid for a piecewise-constant approximation, but it is computation-

ally more demanding than using eigenvalue decomposition—especially in the

case of continuous-scale covariates. Also, even though B-splines are used to

model transitions intensities, the log-likelihood is maximised without penalisa-

tion. Joly and Commenges [7] use a penalised approach for a progressive three-

state model. Estimation is performed with an algorithm which uses derivatives

of the penalised log-likelihood. The smoothing parameters of the model are

selected using a grid search with cross-validation. Joly et al. [8] use the same

approach for an illness-death model. The method used in both papers requires

explicit expressions for the transition probabilities. Calculating these formulas

can be intractable for more complex models, such as models with more than

four states and recovery [9].

Sennhenn-Reulen and Kneib [10] developed an estimation procedure for

multi-state models based on a structured lasso penalisation. The aim of their

research is to identify covariate effects coefficient equal to zero. Baseline transi-

tion intensities are specified with piecewise-constant models or unspecified and

equal across all transitions. Their method is not defined for interval-censored

data. Therefore, their work is different from ours in scope and methodology.

To illustrate the statistical modelling and the penalised maximum likelihood

estimation, longitudinal data on survival and change of cognitive function in

older population is analysed. The data stem from the English Longitudinal
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Figure 1: Five-state model for longitudinal data in ELSA on number of words remembered in
a recall

Study of Ageing (ELSA, www.elsa-project.ac.uk) and the longitudinal re-

sponse variable is the number of words remembered in a recall from a list of

ten. Of interest is the effect of age and gender on cognitive change over time

when controlling for education. Four states are defined by the number of words

an individual can remember, see Figure 1. The dead state is the fifth state. The

transition times between the living states are interval-censored, but death times

are known. We acknowledge that these data are also in Van den Hout [11]. This

paper extends their analysis by using P -splines for hazard specification.

2. Models

For a continuous-time Markov chain Y (t) on finite state space S, time-

homogeneous transition probabilities are given by

prs(t) = P
(
Y (t+ u) = s|Y (u) = r

)
,

for r, s ∈ S, u ≥ 0 and t ≥ 0. This Markov chain is time-homogeneous because

the probability of being in state s at time t + u given the current state r at

time u, depends only on the elapsed time t. Transition matrix P(t) contains

these probabilities such that the rows sum up to 1. The Chapman-Kolmogorov
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equation is P(u + t) = P(u)P(t). The transition intensities (or hazards) are

given by

qrs = lim
∆↓0

P
(
Y (t+ ∆) = s|Y (t) = r

)
∆

,

for r 6= s. The matrix with off-diagonal entries qrs and diagonal entries qrr =

−
∑
s6=r qrs is the generator matrix Q. Given Q, the solution for P(t) subject to

P(0) = I is P(t) = exp(tQ), see, e.g., Norris [12]. In general, the computation

of the exponential of a square matrix is not straightforward, see Moler and Van

Loan [13] for a discussion of methods and efficiency.

A time-dependent hazard regression model for transition intensities combines

baseline hazards with log-linear regression and is given by

qrs(t) = qrs.0(t) exp
(
β>rsx

)
, (1)

where x is a covariate vector without an intercept. Transition-specific time

dependency can be introduced via baseline hazards. Parametric examples are

Weibull: qrs.0(t) = βrs.0τrst
τrs−1 βrs.0, τrs > 0 (2)

Gompertz: qrs.0(t) = βrs.0 exp(ξrst) βrs.0 > 0 . (3)

Semi-parametric models can be defined in a similar way. An example is using

P -splines to allow for flexible modelling of the time-dependency. Applications

to multi-state models can be found in Kneib and Hennerfeind [14]. The semi-

parametric formulation with P -splines of the baseline hazard is

qrs.0(t) = exp

(
K∑
k=1

αrs.kBk(t)

)
,

where—in this case—the choice of the number of knots K is the same for all

transition, but the αs are not. The number of knots essentially depends on the

data. Usually, we can set the number of knots to be equal to ten or so. In the

analysis that follows, we consider K=10 as large enough. Flexible multi-state
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models can be defined by P -splines or a combinations of the hazard specifications

above.

3. Penalised maximum likelihood estimation

3.1. Likelihood function

Given a multi-state survival model, maximum likelihood inference can be

used to analyse longitudinal data. In the presence of interval censoring, the

likelihood function is constructed using transition probabilities. Let the state

space be S = {1, 2, .., D}, with D the dead state.

Consider a series of states Y1, ..., Yn observed at times t1, ..., tn, respectively.

The inference is conditional on the first observed state. For Y2, ..., Yn, the dis-

tribution is

P (Yn = yn, ..., Y2 = y2|Y1 = y1,θ, t,X) , (4)

where θ is the vector with the model parameters, t = (t1, ..., tn)>, and the n×p

matrix X contains the values of the p covariates at each of the n time points.

A conditional first-order Markov assumption is used to define the distribution

(4) of Y2, ..., Yn as

n∏
j=2

P (Yj = yj |Yj−1 = yj−1,θ, tj−1,xj−1) ,

where xj−1 is the (j − 1)th row in X.

Next consider an individual i with observed values y1, ..., yn−1 ∈ S\D, and

a last observation yn which is either a value in S or a code for right-censoring.

The likelihood contribution for this individual is Li =
∏n
j=2 Lij , where

Lij =

 P (Yj = yj |Yj−1 = yj−1,θ, tj−1,xj−1) for j = 2, ..., n− 1

C(yn|yn−1) for j = n .
(5)

If a living state at tn is observed, then C(yn|yn−1) = P (Yn = yn|Yn−1 = yn−1),

6



where part of the conditioning is ignored in the notation. If the state is right

censored at tn, then C(yn|yn−1) =
∑D−1
s=1 P (Yn = s|Yn−1 = yn−1). If the state

at tn is D, then known time of death is taken into account by defining

C(yn|yn−1) =

D−1∑
s=1

P (Yn = s|Yn−1 = yn−1) qsD(tn−1). (6)

Given N individuals, the log-likelihood function is given by

`(θ) =

N∑
i=1

logLi =

N∑
i=1

ni∑
j=2

logLij , (7)

where ni is the number of observation times for individual i.

Above definition of the likelihood function can also be found in Jackson

[9]. Including time-dependency as defined by the models in Section 2, does not

affect the basic structure of the likelihood function. Similar expressions of the

likelihood function can be found in Kalbfleisch and Lawless [5], Kay [15], and

Gentleman et al. [16].

3.2. Penalised log-likelihood function

For the semi-parametric multi-state model, at least one baseline hazard func-

tion is specified with P -splines. If a transition is defined by P -splines, we spec-

ify a large set of equidistant knots. To control the smoothness of the estimated

curve, a penalty based on finite differences of the coefficient of adjacent P -splines

is imposed to the log-likelihood function. Without loss of generality, suppose

there are K knots for each smoothed hazard. Let β, α and ξ represent the

vector of parameters associated to the parametric, semi-parametric and covari-

ates components of a multi-state model, respectively. Let θ> = (β>,α>, ξ>)

be the full set of parameters and l(θ) be the log-likelihood of a semi-parametric
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multi-state model. The penalised log-likelihood function is

`p(θ) = `(θ)− 1

2

s∑
j=1

λjα
>
j D>j Djαj

= `(θ)− 1

2
θ>J(λ)θ, (8)

where αj = (αj1, . . . , αjK)>, λ is the vector of smoothing parameters, D is the

matrix representation of the difference operator ∆ of adjacent P -splines [2] and

J(λ) is the penalty matrix. J(λ) is a block diagonal matrix with blocks λjD
>D

for penalising P -splines parameters and zeros elsewhere [17].

3.3. Piecewise-constant hazards

Let P(t, t+ ∆) denote the transition matrix for any time interval (t, t+ ∆].

Time-dependency in hazard model (1), implies that P(t1, t1+∆) 6= P(t2, t2+∆)

for t1 6= t2.

Time-dependency of the hazard can be taken into account by using a piecewise-

constant approximation. Given consecutive times t1, t2, . . . tn, define the tran-

sition matrix for (t1, tn] by

P(t1, tn) = P(t1, t2)× · · · ×P(tn−1, tn),

where the matrices at the right-hand side are derived using generator matrices

Q(t1),Q(t2), . . . ,Q(tn−1), respectively.

In longitudinal data for continuous-time models, follow-up times often vary

across individuals. If that is the case, the individual-specific follow-up times

can be used to define the piecewise-constant approximation for the individ-

ual likelihood contributions. This implies that a transition probability such

P (Yj = yj |Yj−1 = yj−1) is derived by using Q(tj−1) to compute P(tj−1, tj).

Instead of letting the data determine the grid for the piecewise-constant

approximation, it is also possible to impose a grid, which is the same for all

individual likelihood contributions [18]. In this case, time intervals in the data

are embedded in the grid. For example, say the grid is defined by u1, ..., uM . For
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an observed time interval (t1, t2], determine j1 and j2 such that uj1 < t1 ≤ uj1+1

and uj2 < t2 ≤ uj2+1. The transition matrix for (t1, t2] is then defined by

P(t1, t2) = P (t1, uj1+1) P (uj1+1, uj1+2)× · · · ×P (uj2 , t2) ,

using generator matrices Q(uj1),Q(uj1+1), . . . ,Q(uj2), respectively. For this

approach covariate values are needed at all grid points u1, ..., uM . For a covariate

with a stochastic time-dependency, these values may not be available in the data.

3.4. Scoring algorithm

Given a piecewise-constant approximation to the time-dependency in the

hazard model (1), a scoring algorithm can be used to maximise the logarithm

of the likelihood function (8). A scoring algorithm solves maximum likelihood

equations numerically by iteratively estimating a root of the first-order deriva-

tive of the log-likelihood function. The first-order derivative of the log-likelihood

function is called the score function.

As in Section 3.1, let θ = (θ1, ..., θq) be the vector with model parameters.

The crucial step is to derive ∂P(t1, t2)/∂θk for a given time interval (t1, t2]. The

important aspects of the scoring algorithm are

(i) Because of the piecewise-constant approximation, the basic formulas for

the time-homogeneous case in Kalbfleisch and Lawless [5] apply to the

constituent intervals with constant hazards in the likelihood function.

(ii) By using an eigenvalue decomposition of a generator matrix Q(t), only

the derivatives ∂Q(t)/∂θk are needed [4].

(iii) For the Weibull and the Gompertz hazard models, and for a model with

P -splines, derivatives ∂Q(t)/∂θk are straightforward to derive.

(iv) The likelihood contributions for exact death times and right-censoring are

made up of transition probabilities and transition hazards and can be dealt

with by using (i) – (iii).
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To specify the scoring algorithm, the derivative of a transition matrix is

presented first. Given piecewise-constant intensities, the likelihood contribu-

tion for an observed time interval (t1, t2] is defined using a constant genera-

tor matrix Q = Q(t1). For the eigenvalues of Q given by b = (b1, ..., bD),

define B = diag(b). Given matrix A with the eigenvectors as columns, the

eigenvalue decomposition is Q = ABA−1. The transition probability matrix

P(t) = P(t1, t2) for elapsed time t = t2 − t1 is given by

P(t) = A diag
(
eb1t, ..., ebDt

)
A−1.

As described in Kalbfleisch and Lawless [5], the derivative of P(t) can be

obtained as
∂

∂θk
P(t) = AVkA

−1,

where Vk is the D ×D matrix with (l,m) entry
g

(k)
lm [exp(blt)− exp(bmt)] /(bl − bm) l 6= m

g
(k)
ll t exp(blt) l = m,

where g
(k)
lm is the (l,m) entry in G(k) = A∂Q/∂θkA

−1.

For the parametric and semi-parametric time-dependent hazard models in

Section 2, matrix ∂Q(t1)/∂θk is straightforward to derive.

The scoring algorithm can now be defined as follows. Let the q × 1 vector

S(θ) denote the score function. The kth entry of S(θ) is given by

N∑
i=1

ni∑
j=2

∂

∂θk
logLij .

The expected observed information matrix is called the Fisher information and

is given by I(θ) = IE
[
S(θ)S(θ)>

]
, which can be estimated by defining the q×q
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matrix M(θ) with (k, l) entry

N∑
i=1

ni∑
j=2

∂

∂θk
logLij

∂

∂θl
logLij .

The penalised score Sp(θ) and estimated penalised Fisher information matrix

Mp(θ) are given by

Sp(θ) = S(θ)− J(λ)θ,

Mp(θ) = M(θ) + J(λ).

Given starting values θ(0), the scoring algorithm is given for v = 1, 2, 3 . . .

by

θ(v+1) = θ(v) + Mp

(
θ(v)

)−1
Sp
(
θ(v)

)
.

Let Ip(θ) represents the penalised Fisher information matrix. The asymp-

totic covariance matrix of the penalised maximum likelihood estimate θ̂ is equal

to Ip(θ)−1. Hence, after convergence, the covariance matrix of the penalised

maximum likelihood estimate θ̂ is estimated by Mp(θ̂)−1 [19].

4. Estimation of smoothing parameter

Estimating optimal value for the smoothing parameters λ is crucial for fitting

models with splines [20]. A common method for choosing smoothing parameters

is the Akaike Information Criterion (AIC). The AIC definition is equivalent to

AIC(λ) = −2`p + 2df.

The degrees of freedom df is a measure of model complexity. For parametric

models, the degrees of freedom are equal to the number of independent param-

eters in the model. For semi-parametric models with P -splines, these can be
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defined as

df(λ) = tr[M(M + J(λ))−1],

where M is the (estimated) Fisher information matrix and J is the penalty func-

tion [17]. A similar definition to the degrees of freedom is given in Commenges

et al. [21]. Small values of λ lead to wiggly functions, while large values lead

to more conservative estimated functions that tend to a straight line.

5. Prediction

Once a multi-state model is fitted using a parametric and semi-parametric

hazard model, estimated model parameters can be used for prediction. Typi-

cally this concerns computing transition matrices as a function of the penalised

maximum likelihood estimate. The covariance of a function of model parameters

can be estimated by Monte Carlo simulation or by using the multivariate delta

method, see also Titman [6]. Because transition probabilities are restricted

to [0, 1], using simulation is recommended as the default method. The delta

method does not take the restriction into account and this can have a sub-

stantial knock-on effect on long-term prediction. This paper focuses on the

simulation method.

Let V̂θ denote the estimated covariance matrix of the penalised maximum

likelihood estimate, θ̂, defined as Mp(θ̂)−1 in Section 3.4. Notice that V̂θ

takes into account the choice of the smoothing parameters, λ̂. Of interest is

the estimation of P(t1, t2) for arbitrary t1 and t2 > t1. In the case of a time-

dependent model, let the grid for the piecewise-constant approximation be de-

fined by uj+1 = uj + h for j = 1, ...,M such that u1 = t1 and uM = t2. Given

this grid, matrix P(t1, t2) is estimated by P(u1, u2)× · · · ×P(uM−1, uM ).

For Monte Carlo simulation, parameter vectors θ(b) are drawn fromN(θ̂, V̂θ),

for b = 1, ..., B, and for each sampled θ(b), P(t1, t2) is calculated. Summary

statistics such as mean and covariance can be derived easily from the B reali-

sations of P(t1, t2).

12



Sampling from a K-variate normal distribution N(µ,Σ) is possible by using

the Cholesky decomposition Σ = LL>. First K draws are taken independently

from the standard normal and collected in the K × 1 vector z. A multivariate

draw from N(µ,Σ) is then given by µ + Lz.

6. Application

6.1. English Longitudinal Study of Ageing (ELSA)

To illustrate the methodology, longitudinal data are analysed from the En-

glish Longitudinal Study of Ageing (ELSA). The ELSA baseline (1998-2001) is

a representative sample of the English population aged 50 and older. Data from

ELSA can be obtained via the Economic and Social Data Service (www.esds.ac.uk).

There are 11932 individuals in the ELSA baseline. In the analysis that follows,

baseline means entry in the study.

Of interest for the current analysis is the change of cognitive function in older

population. For the current analysis, a random sample of size N = 1000 is taken

from ELSA. Of these 1000 individuals, 205 died during the follow-up with age at

death available. Because ELSA data are publicly available, measures have been

taken by the data provider to prevent identification of the individuals. One of

those measures is the censoring of ages above 90 years. In the sampling of the

subset of N = 1000, individuals who were 90 years or older at baseline were

ignored. The sample has 544 women and 456 men.

Highest educational qualification is dichotomised for the current analysis

according to years of formal education: fewer than ten versus ten or more.

There are 558 individuals with fewer than ten years of education.

6.2. A five-state model for remembering words

This application focuses on the number of words remembered in a delayed

recall from a list of ten. The score on this test is equal to the number of words

remembered, i.e., score ∈ {0, 1, 2, · · · , 10}. The top graph in Figure 2 provides

information on the number of words remembered at baseline. Most people
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Figure 2: Number of words remembered at the ELSA baseline (top graph), and follow-up
trajectories for a random subset of 30 individuals (bottom graph)

remember 4 or 5 words, and the data show that remembering 9 or 10 words

is exceptional. The bottom graph in Figure 2 depicts the change of number

of words remembered over time for a random subset of 30 individuals. The 30

trajectories illustrate that the delayed recall is a noisy process. Nevertheless,

already in these trajectories there is some evidence of a decline in cognitive

function as people get older. The statistical modelling in this section aims

to explore the effect of age and gender on cognitive change over time when

controlling for education.

Four living states are defined by the number of words an individual can

remember: state 1, 2, 3, and 4, for the number of words {7, 8, 9, 10}, {6, 5}

{4, 3, 2}, and {1, 0}, respectively. An additional state 5 is defined as the dead
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Table 1: State table for the ELSA data: number of times each pair of states was observed at
successive observation times. The four living states are defined by number of words remem-
bered

To
From 10-7 words 6-5 words 4-2 words 1-0 words Dead
10-7 words 164 150 49 12 8
6-5 words 156 440 303 48 40
4-2 words 52 336 616 151 85
1-0 words 11 35 114 149 72

state, see also Figure 1. Because time of death is known, rather than being

interval censored, the likelihood contribution of individuals observed in state

r < 5 at time t and dead at time t∗ > t are given as in Equation (6) with D = 5.

The interval-censored multi-state process is summarised by the frequencies

in Table 1. Note that the sum of the transitions into the dead state is equal to

the number of deaths in the sample, i.e., 205. Table 1 also shows that the process

is mainly progressive in the sense that the main trend over time is towards the

higher states.

In what follows, model estimation is undertaken by using the scoring al-

gorithm. Let θ> = (θ1, ..., θq) be the vector with model parameters, where q

depends on the chosen model. The convergence criterion for the algorithm is to

stop at iteration v + 1 when
∑q
k=1 |θ

(v)
k − θ

(v+1)
k | < 10−6.

Model selection is bottom-up starting with the time-homogeneous exponen-

tial hazard model given by

qrs(t) = exp
(
βrs.0

)
, (9)

for the transitions r → s depicted in Figure 1. This intercept-only model with 10

parameters has AIC = 8109.5. Convergence of the scoring algorithm was reached

after 14 iterations, using starting values βrs.0 = −3 for all the parameters.

As described in Section 3.3, time-dependent models are estimated by using

a piecewise-constant approximation to the hazards. For the ELSA data, the

mean length of follow-up times is 2.178 years with standard deviation of 0.855

and the median is 2 years. Assuming that change of cognitive function can

15



be assessed in interval of 2 years, we use the data to define the grid for the

piecewise-constant approximation rather than imposing a fixed grid to calculate

the likelihood contributions. For the process at hand, age is the most suitable

time scale. Age in the ELSA data is transformed by subtracting 49 years. This

results in 1 being the minimal age in the sample.

The first extension is a Gompertz models given by

qrs(t) = exp
(
βrs.0 + ξrst

)
, (10)

where the effect of time is allowed to be different for all transitions. This model

has 20 parameters and AIC = 7784.2.

Even though the sample size is not small, Table 1 shows that mortality

information is limited because only about 20% of the individuals end up in the

dead state during follow-up. A more parsimonious model Gompertz model is

given by

qrs(t) = exp
(
βrs.0 + ξrst

)
, (11)

where ξ21 = ξ32 = ξ43 = ξB and ξ15 = ξ25 = ξ35 = ξ45 = ξD. That is, the

effect of time is the same for all backwards transitions and for transitions into

the dead state. This model has 15 parameters, and needs 16 scoring iterations

when using starting values βrs.0 = −3 and ξrs = 0 for all the relevant r, s-

combinations. The model has AIC = 7780.5. In what follows, model (9) is

extended by adding parameters with parameter equality constraints.

Subsequently, covariate information is added for the transitions of interest,

i.e., those transitions that represent a decline in cognitive function. For this,

model (11) is extended to

qrs(t) = exp
(
βrs.0 + ξrst+ βrs.1sex+ βrs.2education

)
, (12)

where sex is 0/1 for women/men, and education is 0/1 for fewer than ten

years/ten years of more of education. For the transitions into the dead state,
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Table 2: Comparison between models for the ELSA data with N = 1000, where -2LL stands
for -2 times the (penalised) loglikelihood function evaluated at its maximum. The variable t
denotes age transformed by subtracting 49 years

Model Baseline hazards #Parameters -2LL AIC
Intercept-only Exponential 10 8089.5 8109.5
t Gompertz no constraints 20 7744.2 7784.2
t Gompertz 15 7750.5 7780.5
t, sex, education Gompertz 22 7636.3 7680.3
t, sex, education Gompertz for living 22 7644.7 7688.7

and Weibull for death
t, sex, education Weibull 22 7685.5 7729.5
t, sex, education Weibull for living 22 7675.7 7719.7

and Gompertz for death
t, sex, education P -splines I 38 7626.0 7678.2

for 2→ 3 and 3→ 4
t, sex, education P -splines II for 3→ 4 30 7630.9 7678.2

the constraints on the coefficients for sex are β15.1 = β25.1 = β35.1 = β45.1, and

for education are βr5.2 = 0 for r = 1, 2, 3, 4. This model has 22 parameters,

needs 16 iterations, and has AIC = 7680.3.

It is worthwhile to investigate alternative time-dependent models. First,

in model (12), the Gompertz baseline models for the transitions into the dead

state are replaced by Weibull models. Starting values for the transitions into the

dead state are βr5.0 = −10, τ15 = exp(0.5), and for the remaining parameters

the values are as given above. This yields AIC = 7688.7 after 20 iterations.

Next, all baseline hazards definitions in model (12) are replaced by Weibull

models, which results in AIC = 7729.5 after 28 iterations. Alternatively, model

(12) is defined with Gompertz baseline models for the transitions into the dead

state and Weibull models for progression through the living states. This yields

AIC = 7719.7 after 25 iterations.

Semi-parametric models with P -splines can be used to model non-linear

functional forms and to check shapes specified by parametric models. Figure 2

shows that a lot more individuals are classified in states 2 and 3, relative to state

1. Because the focus of our investigation is the decline of cognitive function,

which is mostly associated with individuals in states 3 and 4, we replace the
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Gompertz hazard for transition 2→ 3 and 3→ 4 in model (12) by

q23(t) = exp

(
K∑
k=1

α23.kBk(t) + β23.1sex+ β23.2education

)

q34(t) = exp

(
K∑
k=1

α34.kBk(t) + β34.1sex+ β34.2education

)
.

(13)

For this model, the number of P -splines bases for both hazard functions is

K = 10 and the vector of smoothing parameters is λ> = (λ1, λ2). The initial

grid is given by all pairs of combinations of log10 λ1 = {−3,−2,−1, 0, 1, 2, 3}

and log10 λ2 = {−3,−2,−1, 0, 1, 2, 3}. A possible graphical representation of

the AIC results is to plot its values when one smoothing parameter is fixed.

Figure 4(c) illustrates the resulting AIC for different values of λ2 with fixed

λ1 = 10−3. The value which minimises the AIC is λ2 = 10. It happens for all

values of λ1. The search for the optimal values of λ1 is less straightforward as

λ1 →∞. Figure 4(a) shows the AIC for several values of λ1 with fixed λ2 = 10.

The AIC decreases quickly for small values of λ2; however, it gets constant for

large values. This result indicates that the functional form of the hazard for

transitions 2 → 3 is log-linear. Because both AIC and parameter estimates do

not change much for sufficiently large values of λ1, it is possible to set λ1 = 107.

In this case, the best model (P -splines I) according to the AIC is obtained with

smoothing parameter λ̂
>

= (107, 10). This model has 30 parameters and 26.1

degrees of freedom.

The fitted hazards for transition 2→ 3 for the Gompertz (12) and P -splines

I (13), for men with ten or more years of education are illustrated in Figure 4(b).

The functional forms of both models are very similar for this transition; however,

the functional forms for transition 3 → 4 are quite different, as indicated in

Figure 4(d). Model (13) has AIC = 7678.2 indicating that it performs better

than the Gompertz model with AIC = 7680.3. The fitted hazards in Figures

4(b) and (d) shows that an increase of age is associated with higher risk of

moving from state 2 to state 3 and from state 3 to state 4.
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The functional form of hazard for transition 2 → 3 in model (13) indicates

that a Gompertz specification can be reasonable for this transition. Therefore,

in model (12), only the hazard for transition 3→ 4 is specified with P -splines:

q34(t) = exp

(
K∑
k=1

α34.kBk(t) + β34.1sex+ β34.2education

)
. (14)

The number of P -splines bases is K = 10 and the grid search is made on

the values log10 λ = {−3,−1, 0, 1, 3}. The resulting AIC values are illustrated

in Figure 4(e). The minimum AIC with value 7678.2 is obtained at λ = 10.

That is the same AIC value as for model (13); however, the degrees of freedom

is slightly smaller df = 23.65. As model (14) (P -splines II) is easier to estimate

if compared to model (13), it is considered the best model among all illustrated

in this paper. Table 2 summarises the comparison of the investigated models.

Figure 4(f) illustrates the fitted hazard for transition 3 → 4 in model (14) for

men with ten or more years of education. As expected, there is an increase of

risk of progression to a decline of cognitive function over the years.

Model validation is hampered by the interval censoring of the transitions

between the living states. But given that death times are available, it make

sense to compare survival as estimated by the model with Kaplan-Meier curves

[16]. Of course, this will only check part of the fitted model. Figure 3 depicts

baseline-specific survival as estimated by the model and as described by the

Kaplan-Meier curves. Individual survival curves (in grey) are shifted to the years

since baseline so that we can compare them and their mean to the Kaplan-Meier

curve. This is necessary because individuals have different ages at baseline. For

survival given baseline state 3, there is some discrepancy between model-based

mean survival and the Kaplan-Meier curve, but overall the fit is reasonably

good. Although this is not a proper goodness-of-fit test, the comparison shows

that the model is able to capture the attrition due to death during the follow-up.

Table 3 shows the estimates for the parametric component in the P -splines II
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Figure 3: Comparison of model-based survival from states 1, 2, 3, and 4 with Kaplan-Meier
curves. Model-based survival: grey lines for individuals, smooth black line for the mean
of the individual survival curves. Kaplan-Meier in black lines with 95% confidence bands.
Frequencies for baseline state along vertical axes

Table 3: Results for sex, education and time for the five-state P -splines II model for the ELSA
data. Estimated standard errors in parentheses. The variable t denotes age transformed by
subtracting 49 years

sex education t
β12.1 0.552 (0.138) β12.2 -0.281 (0.146) ξ12 0.030 (0.010)
β23.1 0.178 (0.101) β23.2 -0.836 (0.103) ξB -0.031 (0.006)
β34.1 0.141 (0.145) β34.2 -0.445 (0.160) ξD 0.042 (0.009)
βD 0.477 (0.151)

model. Most of the point estimates are according to expectation. For example,

the effect of getting older is associated with decline of cognitive function, i.e.,

ξ̂12 > 0, and with a decreasing hazard of remembering more words, i.e., ξ̂B < 0.

For transitions 1 → 2, 2 → 3, and 3 → 4 more years of education is associated

with a lower risk of moving. The effect of being a male patient is associated

with higher risks of going into the dead state, β̂D = 0.477. This correspond to

hazard ratio of exp(β̂D) = 1.611, which represents 61% increase in the hazard

into the dead state.
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Figure 4: AIC results and fitted hazard transitions for men with ten or more year of education.
In (a) and (c), the AIC results for fixed λ2 = 10 and fixed λ1 = 10−3, respectively. In (b) and
(d), the estimated hazards for 2 → 3 and 3 → 4, respectively. Solid line for P -splines I and
dotted line for Gompertz. In (e) and (f), the AIC results for model P -splines II and fitted
hazard for 3 → 4, respectively . Time denotes age transformed by subtracting 49 years

6.3. Predicting cognitive function

Although parameters for the transition intensities help to understand the

estimated model, interpretation is more straightforward when transition prob-

abilities are considered. Firstly, consider a short time interval for which we

assume that the intensities are constant. For men aged 60 with ten or more

years of education, the two-year transition probabilities are estimated at

P̂

t1 = 11, t2 = 13
∣∣∣ sex = 1,

education = 1

 =


0.330 0.488 0.154 0.010 0.018

0.171 0.531 0.253 0.023 0.022

0.083 0.391 0.429 0.066 0.031

0.034 0.219 0.410 0.291 0.046

0 0 0 0 1

 , (15)
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where t denotes age transformed by subtracting 49 years. The diagonal entries

in this matrix dominate. But there are some large off-diagonal entries as well.

For example, if a man aged 60 is in state 3, then he has a 39% chance of being

in state 2 two years later. This high chance is an illustration of the noisiness of

the process under investigation: it is quite likely that a 60 year old man moves

between states 2 and 3 within the next two years.

Next we illustrate the estimation of standard errors and 95% confidence

intervals for transition probabilities. Using simulation with B = 1000, the

estimated standard errors of matrix (15) is


0.038 0.029 0.016 0.004 0.011

0.013 0.021 0.019 0.009 0.006

0.007 0.019 0.024 0.024 0.006

0.004 0.019 0.024 0.037 0.012

 .

The 95% confidence intervals for the first row are given by

(0.263, 0.408), (0.425, 0.540), (0.120, 0.185), (0.004, 0.021), and (0.011, 0.049).

Next, ten-year transition probabilities are estimated for men aged 60 with

ten or more years of education. The grid is defined by h = 1/2 years. The

estimation is shown in Figure 5.

Figure 5 concurs with the expectations. For example, given the progressive

trend of the process, it is to be expected that probability of being in state 3

decreases over time, as moving to states 4, and 5 becomes more likely due to

increased age.

7. Discussion

Specification and estimation of continuous-time multi-state survival models

are presented and shown to be a flexible framework for statistical modelling

of time-dependency processes. By defining transition-specific parametric and
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Figure 5: For the P -splines II model, estimated ten-year transition probabilities for men aged
60 with ten or more years of education, and in state 3 at baseline. Solid line for transition
probabilities (with B = 1000) and dashed lines for 95% confidence bands

semi-parametric hazard models, a wide range of multi-state processes can be in-

vestigated. Penalised maximum likelihood estimation is undertaken by a scoring

algorithm using a piecewise-constant approximation to time-dependent hazards.

The Akaike information criterion is used to select the optimal value for the

smoothing parameters.

The Markov process formulation to semi-parametric multi-state models ex-

tends the method described in Joly and Commenges [7] and Joly et al. [8].

This is an important methodology to medical studies as backwards transitions

occur naturally in many applications [22, 23]. Furthermore, using the piecewise-

constant approximation is an alternative to the method introduced by Titman

[6] which handles the time-dependency by using numerical solutions to the non-

linear differential equations which are defined directly by the time-dependency

of the Markov process. As stated by Titman, computation using the non-linear

differential equations can become prohibitively slow when adding continuous

covariates. This is not a problem when using the piecewise-constant approx-
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imation and the scoring algorithm. To address the problem with continuous

covariates, the ODE approach uses an approximation to the full likelihood.

Hence, for some situations both methods are subject to approximation errors.

The piecewise-constant approximation can be determined by the observation

times in the data. Alternatively, a fixed grid can be used that is imposed for all

likelihood contributions. This method is computationally more extensive as it

requires a greater number of eigenvalues decompositions to calculate transition

probabilities for intervals defined by the grid. Those two methods to define a

piecewise-constant approximation will differ depending on the study design and

volatility of the process of interest. Van den Hout [11] showed in an application

that both method lead to similar results.

A semi-Markov assumption could be more reasonable; however, fitting semi-

Markov models with interval-censored data is complicated, given the number of

living states and back and forth transitions. Nonetheless, Figure 3 shows that

the fit is reasonably good.

The scoring algorithm is implemented in R in such a way that it is easy to

vary transition-specific choices for parametric and semi-parametric shapes. An

example of such a model is explored in the application, where P -splines are

used for transitions 2→ 3 and 3→ 4, and Gompertz hazards are defined for the

other transitions. The eigenvalue decomposition in the algorithm is computed

with the function eigen in R, which uses the LAPACK routine [24]. P -spline

bases are computed using the code in the appendix in Eilers and Marx [2].

There are some overlap between the method presented in this paper and the

msm package [9]. The last is an excellent platform to analyse time-homogeneous

multi-state processes with interval-censored transition times. It is possible to

fit some time-dependent models with msm, such as the Gompertz and splines

models. However, this package cannot fit models with penalised splines nor with

some commonly used parametric specifications such as the Weibull model.

If prediction of a time-dependent process beyond the time range in the data is

of interest, hazard models with P -splines can be used to validate the parametric

choices which underlie the prediction. This was illustrated in the application
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with the ELSA data in which age range is from 50 to 90 years. If risk factors are

the main focus of the research, P -splines can be used to capture non-parametric

shapes of time-dependency.

The choice of the type of spline is not essential. P -splines were used in

this paper, but any other spline function with a first-order derivative can be

handled within the current framework. The same holds for parametric shapes

other than the Gompertz and the Weibull. The specification and estimation of

continuous-time survival model is very general and does not pose restrictions

on the number of states, scale of covariates, or number of transitions.
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