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Real-time decoding of spatial attention in higher-order visual areas 51 
 52 
Abstract 53 
 54 
Brain-computer-interfaces (BCI) provide a means of using human brain activations to 55 
control devices for communication. Until now this has only been demonstrated in 56 
primary motor and sensory brain regions, using surgical implants or non-invasive 57 
neuroimaging techniques. Here, we provide proof-of-principle for the use of higher-58 
order brain regions involved in complex cognitive processes such as attention. Using 59 
realtime fMRI, we implemented an online ‘winner-takes-all approach’ with quadrant-60 
specific parameter estimates, to achieve single-block classification of brain 61 
activations. These were linked to the covert allocation of attention to real-world 62 
images presented at 4-quadrant locations. Accuracies in three target regions were 63 
significantly above chance, with individual decoding accuracies reaching upto 70%. 64 
By utilising higher order mental processes, ‘cognitive BCIs’ access varied and 65 
therefore more versatile information, potentially providing a platform for 66 
communication in patients who are unable to speak or move due to brain injury. 67 
 68 
Word count: 140 69 
  70 
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Real-time decoding of spatial attention in higher-order visual areas 71 
 72 

Introduction 73 
 74 
Brain-computer interfaces (BCIs) attempt to link measures of brain-related 75 
physiological activity with control of a device for communication or movement.  A 76 
standard approach is to target brain activations produced in primary sensory or motor 77 
cortex (Jackson and Zimmermann, 2012), mapping the function of the target brain 78 
region with BCI output in a one-to-one fashion e.g. using motor cortical activations to 79 
control a hand prosthesis, or using retinotopic representations in primary visual 80 
cortex to direct a cursor on a screen (Andersson et al., 2013a; Birbaumer et al., 81 
2008; Golub et al., 2016; Lebedev and Nicolelis, 2006; Miranda et al., 2015; Murphy 82 
et al., 2015). Cognitive BCIs seek to advance this premise by engaging higher-order 83 
brain regions, which control or combine basic afferent sensory information to produce 84 
behaviourally meaningful actions, or target regions which are involved in overarching 85 
processes such as attention (Richard Andersen, Eun Jung Hwang and Eun Jung 86 
Hwang, 2011; Tankus et al., 2014; Vansteensel et al., 2010; Wullimann et al., 2004). 87 
Visual attention is closely linked to visual awareness, acting to identify the location 88 
and semantic value of visual information. For cognitive BCIs linking higher-order 89 
mental processes with environmental interaction, attention provides an accessible 90 
cognitive process (Astrand et al., 2016, 2014; Daliri, 2014; Tremblay et al., 2015). We 91 
used realtime fMRI (rt-fMRI) to test whether brain activations in higher-order visual 92 
cortex could be accurately classified in real-time (see also Data-in-Brief articles 1 & 93 
2). Specifically, we examined brain activations that occur in relation to the control of 94 
covert shifts of spatial attention to stimuli representing real-world objects. In addition 95 
to utilising information linked to the control of attentional-shifts to spatial location and 96 
object category, we also added information related to the timing of the presentation of 97 
stimuli, by using m-sequences in each of the quadrants. We purposefully combined 98 
these different sources of information to enrich the BOLD signal produced by covert 99 
shifts of attention. By explicitly doing this, we sought to optimise classification 100 
accuracy, in line with our objective of providing proof-of-principle for a cognitive BCI. 101 
 102 
Rt-fMRI enables concurrent analysis and online visualisation of fMRI data, a process 103 
normally performed offline (Cox et al., 1995). Once a particular cognitive process has 104 
been linked with a defined brain activation, neural activations can be converted into 105 
bits of information which serve as information transfer units for the BCI (Tehovnik et 106 
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al., 2013). From here, there is no requirement for an explicit behavioural output, as 107 
the imaging data acts as a communication surrogate.  An early example of this 108 
approach used brain activations produced by motor imagery, mental calculation and 109 
inner speech, to control letter selection on a virtual keyboard (Sorger et al., 2012). A 110 
more intuitive and attractive approach might be to identify brain activation produced 111 
by cognitive command signals, which specify a particular plan or action (Esterman et 112 
al., 2009).  113 
 114 
We were specifically interested in identifying top-down signals, produced in higher-115 
order visual cortex in relation to the control of attention. Top-down control is 116 
classically linked with spatial attention. It is enacted upon visual cortex by enhancing 117 
populations of neurones associated with retinotopically-represented regions of space 118 
in the outside world (Carrasco, 2011; Noudoost et al., 2010). Control of the allocation 119 
of visuospatial attention may additionally incorporate the biological importance of the 120 
stimulus being attended to (Vossel et al., 2014), with neural responses in brain 121 
regions lower down the visual hierarchy being modulated by contextual influences 122 
(Gilbert and Li, 2013; Gilbert and Sigman, 2007a). We examined 3 brain regions; 123 
parietal lobe, lateral occipital cortex (LOC), and fusiform face area (FFA), all of which 124 
have been suggested to contain salience maps (Gottlieb, 2007; Zenon et al., 2010), 125 
and have roles in integrating position and category-specific information (Carlson et 126 
al., 2011). LOC and FFA have been traditionally recognised as being object-selective 127 
cortex. They have also been shown to demonstrate retinotopy (Cichy et al., 2011a; 128 
Halgren et al., 1999; Kim and Biederman, 2011; Kim and Kastner, 2013; Saygin and 129 
Sereno, 2008a), as well as modulation by attention (Reddy et al., 2007; Yi et al., 130 
2006). Parietal cortex has been suggested to have a more explicit role in top-down 131 
control, including mediating shifts of attention, control of salience maps, and object 132 
discrimination (Bressler et al., 2008; Chiu et al., 2012; Esterman et al., 2009; 133 
Gmeindl et al., 2016; Koenigs et al., 2009; Yantis et al., 2002). These regions may 134 
therefore act as sites of top-down modulation, or serve as ‘binding’ points for multiple 135 
sources of information, including object and spatial information. As a result, the 136 
neural activity produced in these regions may offer a high signal-to-noise ratio 137 
(Gattass et al., 2005; Sclar et al., 1990; Serences and Yantis, 2007) for the 138 
successful implementation of a BCI decoding command signals modulating higher 139 
order visual information linked to the allocation of visual attention (Andersson et al., 140 
2011, 2009; Astrand et al., 2014; Bahramisharif et al., 2010).  141 
 142 
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We hypothesised that signals linked to the covert allocation of spatial attention could 143 
be amplified by the inclusion of information related to the stimulus being attended to 144 
(i.e. object and feature-based information), and the timing of its presentation. To 145 
further increase BCI efficiency, we introduced quadrant-specific alterations of the 146 
temporal presentation of the stimuli. M-sequences, or maximum shift L-level register 147 
sequences, are pseudorandom sequences of integers which can be used to optimise 148 
stimulus presentation (Buračas and Boynton, 2002). They ensure that signals related 149 
to stimulus events presented close together in time can be optimally separated. We 150 
implemented this in order to further separate brain activations produced by attention 151 
to stimulus streams in a specific quadrant. Brain activations were separately 152 
extracted from bilateral FFA, LOC and parietal cortex. Quadrant-based parameter 153 
estimates were used in a winner-takes-all approach, to evaluate on a single-block 154 
basis, which location was being attended to. This work provides proof-of-principle for 155 
a real-time fMRI ‘attention-based’ BCI using higher order brain regions. 156 
  157 
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Methods 158 
 159 

Participants 160 
 161 
Eight healthy adult volunteers (24–32 years of age; mean age = 28 years, 4 females) 162 
with normal or corrected-to-normal visual acuity were recruited to participate in the 163 
experiment. Each participant provided written informed consent and the study was 164 
approved by the local ethics committee. 165 
 166 

Stimuli 167 
 168 
The visual stimuli consisted of four categories: faces, houses, body parts, and 169 
food/drink. Faces and house stimuli were obtained from an in-house repository. 170 
Stimuli for body parts and food items were created using stock images. There were 171 
16 unique exemplars per category per quadrant. Each stimulus subtended 2 degrees 172 
of visual angle in diameter, and was presented at an eccentricity of 6 degrees from 173 
the centre of the screen. All images were rendered to ensure identical greyscale 174 
values, and mean luminance using a custom designed MATLAB (Mathworks, Natick, 175 
USA) script.  176 
 177 

fMRI scanning 178 
 179 
Experiments were performed on a 3T Allegra head-only scanner, using a standard 180 
transmit–receive head coil. Functional data were acquired with a single-shot gradient 181 
echo planar imaging sequence (matrix size, 64_64; field of view, 192_192mm; 182 
isotropic resolution, 3 x 3 x 3mm; 32 slices with ascending acquisition; slice 183 
thickness, 2 mm; slice gap, 1 mm; echo time (TE), 30 ms; repetition time (TR), 1920 184 
ms; flip angle, 90°; receiver bandwidth, 3551 Hz/pixel). In the middle of each 185 
scanning session, double-echo fast, low-angle shot sequence (FLASH) field maps 186 
(TE1, 10 ms; TE2, 12.46 ms; resolution, 3 x 3 x 2 mm; slice gap, 1 mm) were 187 
acquired and used to correct geometric distortions in the images attributable to field 188 
inhomogeneities. 189 
 190 

Real-time set up 191 
 192 
We used Turbo Brain Voyager (TBV, Brain Innovations, Maastricht, the Netherlands) 193 
with custom real-time image export tools programmed in ICE VA25 (Weiskopf et al., 194 
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2004b), and custom scripts running on MATLAB. The real-time data preprocessing 195 
was performed in Turbo Brain Voyager and encompassed 3D motion correction with 196 
realignment to a preselected template, smoothing (6mm FWHM Gaussian kernel), 197 
incremental linear detrending of time series (128s high pass filter) and statistical 198 
parametric mapping. Participants’ brain activations (blood oxygen level-dependent 199 
(BOLD) as region-of-interest (ROI) time course(s) were extracted from prescribed 200 
ROI masks. These were averaged and exported by TBV with a delay of 2s from the 201 
acquisition of the image. Images were corrected for the effects of head motion in 202 
realtime. Signal drift, spikes and high frequency noise were further removed in real 203 
time from the exported time courses with the custom MATLAB scripts (Koush et al., 204 
2012). 205 
 206 

Optimising the timing of stimulus presentations using M-sequences 207 
 208 
The timing of presentations for the stimuli in each quadrant was prepared using a 209 
quadrant specific m-sequence (Buračas and Boynton, 2002). Within a block each 210 
stimulus presentation represented an event, with each one lasting for 500ms. The 211 
stimulus presentations for each quadrant were interspersed with a set number of 212 
blank stimuli in keeping with a quadrant-specific m-sequence (Figure 2). The m-213 
sequences were prepared to ensure maximum orthogonality, providing 32 stimulus 214 
presentation slots per quadrant per block, and optimising placement of ‘blank’ stimuli. 215 
Attention to each quadrant-specific stimulus stream would therefore produce 216 
quadrant-specific neural activity with distinguishable haemodynamic responses 217 
(Buračas and Boynton, 2002).  218 
 219 
Prior to running the experiment, a simulation was used to confirm that expected 220 
BOLD signals for each quadrant could be distinguished as being different from the 221 
other three. The simulations were based on convolving m-sequence based stimuli 222 
with noise and the haemodynamic response function (HRF; Figure 1). This was 223 
performed by generating four m-sequences that were uncorrelated, and convolving 224 
them with a canonical HRF. The frequencies were sampled down to the typical TR 225 
(i.e. approximately 2s, 15 data points for a 32s sequence). The response function 226 
produced simulated the BOLD signals during the localiser run i.e. when stimuli were 227 
being presented in one quadrant per block. This was repeated for each quadrant, 228 
and then put together to confirm that the simulated ‘timeseries’ were uncorrelated 229 
(Figure 1).  230 
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The random noise was initially generated from pseudorandom values drawn from a 231 
standard normal distribution, with a mean level of zero and standard deviation of 1. 232 
The standard deviation of the noise was then scaled by the ratio of the contrast to the 233 
noise level of the simulated response function to the contrast to the noise level of the 234 
simulated noise (assuming the same standard deviation for both response and 235 
noise). Finally the scaled noise was added to the response function. 236 
 237 

 238 

Figure 1. Graphs showing the modeled brain responses to m-sequences by 239 
convolving the HRF with the delta functions for the m-sequence for each 240 
quadrant. (a) Timeseries for each quadrant, showing the relative orthogonality 241 
for each quadrant. (b) Degree of correlation between the timeseries from the 242 
‘localiser’ session with the ‘attended’ quadrant (red line) versus the other three 243 
simultaneous presented quadrant-based stimulus streams. By introducing a 244 
weighting to each of the quadrant time series, we examined if it would make it 245 
more discrete from the other three. The introduction of weighting served to 246 
mimic the effect of attention.  247 
  248 
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The correlation coefficient between the individual simulated timeseries from the 249 
‘localiser’ session and the combined simulated ‘timeseries for the ‘BCI’ sessions were 250 
calculated. The weighting of the contribution of one sequence (i.e. the 'attended 251 
sequence') to the total response was increased in small steps. These weights were 252 
normalised and acted to model the effect of attention on one of the quadrant-related 253 
timeseries in a BCI session. The correlation coefficient between the individual 254 
quadrant-specific timeseries from the localiser session and the same quadrant in the 255 
presence of the combined timeseries from the BCI session were calculated. The 256 
higher the correlation for a specific quadrant between the localiser session and the 257 
BCI session, the more separable the neural activity linked to the allocation of 258 
attention to that quadrant in the presence of competing stimulus streams. We 259 
performed this sequence one hundred times for each weighting level with the 260 
addition of random noise. The average response frequency was then calculated. 261 
Figure 1b illustrates the modeled BOLD responses for each quadrant and the effect 262 
of ‘attention’ (i.e. increased weighting on a specific quadrant). This confirmed that the 263 
modeled BOLD responses for each quadrant could be distinguished as being 264 
different from the other three, motivating the choice of each of the 4 quadrant specific 265 
m-sequences.  266 
 267 

Experimental procedure 268 
 269 
There were 5 sessions per participant. The structure of each session was the same. 270 
There were 8 blocks in each session, lasting 6 minutes 24s. The duration of one 271 
block was 48s, made up of 3s cue presentation, 32s of stimulus presentations, and 272 
13s of rest. During the 32s of stimulus presentations, 32 stimuli were shown, together 273 
with 32 interspersed ‘blank’ intervals (400ms per image, 100ms inter-stimulus 274 
interval, 500ms stimulus onset asynchrony). During this block of stimulus 275 
presentations, two ‘mini-blocks’ were shown each composed of 16 exemplars 276 
belonging to one of the 4 object categories (Figure 2,3). The order of the category of 277 
the mini-blocks was counter-balanced between and across sessions, and category 278 
exemplars were presented in a pseudo-random manner. 279 
 280 
Participants were explicitly instructed to attend one quadrant per block. During the 281 
cued session, the sequence of cues was different each time for the first four blocks; 282 
this sequence was then repeated for the remaining 4 blocks. During the un-cued 283 
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sessions (3-5), they were instructed to attend a different quadrant each time for the 284 
first four blocks, and to repeat this sequence in the subsequent four blocks.  285 
 286 
Session 1- Localiser 287 
 288 
During the first session, stimulus streams were presented in one quadrant of the 289 
screen for the duration of one block, with each quadrant hosting stimulus blocks 290 
twice per session. Participants were instructed to maintain central eye fixation 291 
throughout the session, and attend to the quadrant showing stimuli. 292 
 293 

 294 

Figure 2. ‘Cued attention’ session schematic. Participants were cued to attend 295 

stimuli presented in one quadrant per block. The directional cue stimulus was 296 

a stick man pointing towards the quadrant to be attended (first screen). During 297 

stimulus presentation in the 4 quadrants (i.e. second screen), blank stimuli 298 

(shown as black images) were interspersed with stimuli from the other four 299 

categories (i.e. faces, houses, body parts, food/drink), enabling quadrant-300 

specific m-sequences to be used for stimulus presentation. During the rest 301 

block (i.e. third screen) participants maintained central eye fixation, facilitated 302 

by a white dot at the centre of the screen. 303 

 304 

 3s 

 12.5s 

 32s 

Cue 

Rest 

Attention to cued quadrant only 
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 305 

Figure 3. ‘Non-cued’ sessions schematic. Participants were instructed to fixate 306 

centrally, and attend to one of four quadrants stimulus presentations for the 307 

duration of the block. They disclosed which quadrant they had attended at the 308 

end of each block using a button-box. Stimuli included four categories (faces, 309 

houses, household objects, body parts). ‘Blank’ stimuli (represented by black 310 

icons) appeared in a quadrant-specific fashion in keeping with a quadrant-311 

specific m-sequence. 312 

 313 
 314 
Defining functional regions of interest 315 
 316 
ROIs were selected using the TBV ROI selection option. For each participant, 317 
regressors for each stimulus category were placed at the onset of a stimulus block, 318 
for the duration of the bock, and were then convolved with the canonical HRF. The 319 
resulting parameter estimates were used to calculate a t-statistic at each voxel, 320 
indicating evidence of task-related activation. We used a t-threshold of 3. To define 321 
bilateral fusiform face area (FFA) voxels we contrasted parameter estimates evoked 322 
by faces against rest (t-contrast: faces > rest), and delineated the ROI in relation to 323 
ventral and lateral surfaces of the temporal lobe in proximity to the fusiform gyrus. To 324 
define bilateral lateral occipital cortex (LOC) voxels we contrasted parameter 325 

Covert decision

Rest

Covert Attention to single quadrant

Self report

3s

32s

12.5s

Covert attention to single quadrant 
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estimates evoked by objects against rest (t-contrast: everyday objects > rest), and 326 
delineated the ROI along the posterolateral aspect of the fusiform gyrus, extending 327 
ventrally and dorsally. For bilateral parietal regions we contrasted parameter 328 
estimates evoked by all stimuli versus rest. Using the Juelich histological atlas to 329 
provide anatomical landmarks (Eickhoff et al., 2006, 2005), we selected voxels in the 330 
superior parietal lobe (SPL) and those on the dorsal and ventral banks of intraparietal 331 
sulcus (IPS; both regions which have been shown to demonstrate object-sensitivity 332 
(Kim and Biederman, 2011; Serences et al., 2004; Wojciulik and Kanwisher, 1999)). 333 
The t-maps were overlaid onto cortical hemispheres using TBV. Participant-specific 334 
functional ROIs were delineated manually and resulted in discrete selection of non-335 
overlapping voxels in bilateral parietal cortex, FFA and LOC. (Please also see 336 
Supplementary results for ROI centroids). 337 
 338 
Session 2 - Cued attention  339 
 340 
During stimulus presentation blocks, stimuli were presented repeatedly and 341 
simultaneously in all four visual quadrants (Figure 2). Attention to a particular 342 
quadrant was indicated using a directional cue presented during the cue interval. 343 
Each quadrant was cued twice per session. Participants were instructed to maintain 344 
central eye fixation throughout the session. To ensure participants remained 345 
engaged in all sessions, a button press was required if two successive exemplars 346 
were identical (i.e. one-back task). This occurred between one to three times per 347 
mini-block. All quadrants, in addition to the attended one had repeated stimuli. The n-348 
back task was included to help attentional engagement through the presentation of 349 
stimuli. All button presses were taken to be associated with the attended quadrant. 350 
 351 
Sessions 3-5 – BCI ‘decoding’ sessions  352 
 353 
Stimuli were presented as described in the previous paragraph. Participants were 354 
now instructed to covertly attend a quadrant of their choice for the duration of a whole 355 
block while maintaining central eye fixation. They were further instructed to use a 356 
strategy that would enable them to attend all quadrants twice over the course of the 357 
scanning session. They disclosed the attended quadrant using a button press during 358 
the rest period at the end of each of block (Figure 3). 359 

 360 
  361 
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Eye tracking  362 
 363 
Eye-tracking during fMRI was not performed in this experiment, due to the complexity 364 
of the experimental set-up. Eye movements could represent a potential confound – 365 
eye movement-related brain activations in the cortical oculomotor network may 366 
overlap with those produced by covert shifts of spatial attention (Corbetta et al., 367 
1998). However, eye movements typically disturb decoding of attention, reducing 368 
classification accuracy to below chance (Gunduz et al., 2012; Treder et al., 2011). 369 
We used eye tracking in a non-realtime fMRI version of this experiment and obtained 370 
similar classification accuracies in the same brain regions to those generated with 371 
online decoding, with an absence of excessive eye movements (see data in brief 372 
article 2). Eye position was found not to vary in a consistent manner during the 373 
experiment, precluding fixations on attended quadrants. 374 
 375 

Analysis of main experiment (Sessions 2 to 5) 376 
 377 
We investigated the extent to which functionally delineated higher-order visual cortex 378 
ROIs could be used to predict the direction of spatial attention. The inclusion of 379 
unique temporal information in the presentation of stimuli at each of the four quadrant 380 
spatial locations was applied to improve decoding accuracy. The resulting accuracies 381 
for individual ROI based classifications were based on comparing the highest 382 
quadrant specific parameter estimate with the disclosed covertly attended quadrant 383 
during a task block.  384 
 385 
Cortical responses to the four attentional conditions were specified using HRF-386 
convolved regressors at the onset times of the images, together within a given m-387 
sequence. Each m-sequence was unique and specific to each of the four quadrants; 388 
the same m-sequence for a given quadrant was used across all sessions, 389 
irrespective of the object category. A general linear model (GLM) modelled each of 390 
the quadrant parameter estimates over each block consisting of 24 volumes. 391 
‘Decoding’ was carried out at the end of each block in a ‘winner-takes-all’ approach, 392 
based on which one of the four parameter estimates had the greatest mean value. 393 
Data were read by the script and lagged behind image acquisition by approximately 394 
2s. 395 
 396 
The attended quadrant, during a specific block, was the one with the highest 397 
representative parameter estimate. A prediction was made on a block-by-block basis, 398 
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which could then be compared to the actual quadrant attended to by the participant 399 
(as indicated by the button-response at the end of each block) allowing decoding 400 
accuracies to be calculated across all sessions and blocks for all ROIs.  401 
 402 
 403 
Reaction times 404 
 405 
The potential effects of the time taken during BCI usage and its effect on decoding 406 
accuracy are an important consideration for ensuring accuracy in a BCI. A possible 407 
effect of time might be to decrease decoding accuracy as a result of increasing 408 
fatigue with task performance over time. We therefore further examined the changes 409 
in decoding accuracy over time. We did this by dividing each session into the first 410 
four blocks and the second four blocks, and compared reaction times during the 411 
performance of an n-back task between the first half and the second half of the 412 
session. The reaction time data from two participants was corrupted, and was 413 
therefore not analysed. 414 
 415 

Results 416 
 417 

Decoding accuracies 418 
 419 
We first examined decoding accuracies across all sessions and blocks, for each of 420 
the three bilateral ROIs (Figure. 4), to establish whether the quadrant to which 421 
attention was being directed could be decoded at above chance levels from signals 422 
evoked in each ROI. For each ROI (FFA, LOC, parietal), decoding accuracy was 423 
significantly above chance levels (25%): FFA (Decoding accuracy=49.61, SD=5.65, 424 
t(7)=12.32, p<.001); LOC (Decoding accuracy=43.36, SD=5.40, t(7)=9.63, p<.001); 425 
Parietal (Decoding accuracy=39.06, SD=7.83, t(7)=5.08, p<.01). 426 
 427 
We had an a priori hypothesis that decoding accuracies would decrease with time as 428 
a result of fatigue. We hypothesised that this would be more likely to occur within 429 
sessions, rather than across sessions, which allowed for a rest between sessions 430 
(Figure. 5, 6). A paired t-test (2-tailed) comparing decoding accuracy over the first 431 
four blocks as compared to the second four blocks revealed a significant decline in 432 
decoding accuracy for bilateral LOC (t= 3.16, p= 0.016) and bilateral parietal ROIs 433 
(t=2.94, p=0.022). There was no significant decline in decoding accuracy for bilateral 434 
FFA (t=1.92, p=0.097) (Figure 5). 435 
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 436 
Figure 4. Participant-averaged decoding accuracy for the three ROIs averaged 437 
across sessions and blocks. Chance-level decoding at 25% (horizontal red 438 
line). Error bars indicate ±1 SEM. Dotted horizontal grey lines indicate 439 
confidence intervals. Asterisks indicate when decoding accuracy was 440 
significantly above chance.  441 
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Figure 5. Decoding accuracies during each session, shown as pairs of bar 443 
graphs, comparing the first four blocks with the second four blocks. Chance is 444 
at 25% (horizontal red line). The columns in dark/solid colours represent 445 
decoding accuracy over the first four blocks, averaged across all sessions; the 446 
lighter columns represent decoding accuracy over the second four blocks, 447 
averaged across all sessions. Decoding accuracy in bilateral LOC and bilateral 448 
parietal ROIs was significantly higher during the first half of each session, as 449 
compared to the second half of each session. Error bars indicate ±1 SEM. 450 
Dotted horizontal grey lines indicate confidence intervals. Asterisks indicate 451 
significant differences in decoding accuracy, comparing the first four with the 452 
second four blocks. 453 
  454 
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 455 

 456 
Figure 6A 457 

 458 
Figure 6B 459 

 460 
Figure 6. Decoding accuracies for individual participants, comparing the first 461 
four blocks (Figure. A), with the second four blocks (Figure. B), averaged 462 
across all sessions.  Chance is at 25% (horizontal red line). Dotted horizontal 463 
grey lines indicate confidence intervals. 464 
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Data-driven assessment of statistical significance 466 
 467 
We performed permutation testing to confirm the statistical significance of the 468 
classification accuracies for ROIs averaged across subjects. Predictions were 469 
repeatedly shuffled and compared with the correct allocation of attention in order to 470 
generate a data-driven distribution of classification accuracies under the null 471 
hypothesis. Permutation p-values were derived using percentiles. 10,000 472 
permutations were carried per ROI per subject. Classification accuracies for all 3 473 
ROIs were found to be statistically significant e.g. Bilateral FFA p=0.0019 (individual 474 
participants p<0.0025); Bilateral LOC p=0.014 (individual participants p<0.017); 475 
Bilateral Parietal p=0.035 (individual participants p<0.045). 476 
 477 
 478 
N-back task  479 
 480 
Average accuracy for n-back task performance (e.g. number of accurate 481 
identifications of repeats in the attended quadrant) across the 6 participants on whom 482 
data was obtained was 64% (SD=14%). The average false alarm rate was 17% 483 
(SD=14%). 484 
 485 
An assessment of reaction times on the n-back task was also performed on the 6 486 
participants on whom data was obtained, using an ANOVA across sessions (2-5) and 487 
blocks (averaged over first 4 blocks, averaged over second 4 blocks) (Figure 7). A 488 
change in reaction times affecting task performance either across and/or within 489 
sessions (i.e. across blocks) would be suggestive of fatigue as a result of time. A 490 
main effect of block was observed (F(1,5)=7.751, p=0.04), with an increase in 491 
reaction times over the blocks (Figure 7). There was no effect of sessions 492 
(F(3,15)=1.00, p=0.42), nor was there an interaction of blocks with sessions 493 
(F(3,15)=0.49, p=0.70). 494 
 495 
 496 
 497 
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 498 
Figure 7. Graph showing average reaction times averaged across participants 499 
for n-back task performance, for each session. Sessions were divided further 500 
into the first 4 and second 4 blocks to show the effects of experimental time on 501 
task performance. Matched average reaction times for individual participants 502 
are shown for first 4 blocks and second 4 blocks of each session, using 503 
coloured connected lines for each participant.  504 
 505 
  506 

Session	2	 Session	3	 Session	4	 Session	5	
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Offline eye-tracking 507 
We used eye tracking in a non-realtime fMRI ‘offline’ version of this experiment. 508 
Similar classification accuracies were obtained in the same brain regions to those 509 
used in the current study, with a concurrent absence of excessive eye movements 510 
(see Data in brief article 2). 511 
 512 
Participants were instructed to maintain central eye fixation throughout all the 8 task 513 
blocks, for each of four ‘decoding’ sessions. A repeated measures ANOVA was 514 
performed on the X and Y eye position data separately, and the factors of horizontal 515 
attention (left, right) and vertical attention (up, down) demonstrated no main effect of 516 
horizontal or vertical attention, and no interaction between them: for X-position data: 517 
left vs. right, F(1,7)=0.697, p=0.431; up vs. down, F(1,7)=0.387, p=0.554, interaction, 518 
F(1,7)=1.164, p=0.316; for Y–position data: left vs. right, F(1,7)=0.697, p=0.431, up 519 
vs. down, F(1,7)=0.387, p=0.554, interaction, F(1,7)=1.164, p=0.316). Participants 520 
therefore did not significantly move their eyes in a consistent manner over the 521 
experiment. Furthermore, we found overall decoding accuracies in the standard fMRI 522 
version of this experiment were comparable (Bilateral parietal 39% cf. 39%; Bilateral 523 
LOC 50% cf. 43%; Bilateral FFA 47% cf. 50%). 524 
 525 
We further investigated whether there were systematic differences in eye position in 526 
relation to the attended quadrant. A two-way ANOVA with factors of quadrant (four 527 
levels, upper left, upper right, lower left, lower right) and sessions (four levels, 2-5) 528 
revealed no main effect of session or quadrant for the X and Y eye positions and X 529 
and Y standard deviations (see Table 1). 530 
 531 
 

X-mean 

position 

Session Quadrant Session*Quadrant 

P=0.23 

F(1.29, 9.09)=1.69 

P=0.41 

F(1.25, 8.76)=0.86 

P=0.19 

F(2.02,1.50)=0.19 

Y- mean 

position 

P=0.55 

F(2.03, 14.22)=0.63 

P=0.12 

F(1.59,11.15)=2.66 

P=0.30 

F(1.33,1.46)=1.33 

X-standard 

deviation 

P=0.51 

F(1.26, 8.89)= 0.58 

P=0.34 

F(3.90,3.40)=0.34 

P=0.41 

F(2, 14.01)=0.41 

Y-standard 

deviation 

P 0.39 

F(1.01, 7.08)=0.83 

P=0.13 

F(1.63,11.38)=2.54 

P=0.32 

F(1.14, 7.95)=1.18 

 532 
Table 1: Table showing results of statistical tests performed on eye position 533 
data taken during an offline experiment with the same procedural set-up as the 534 
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reported online experiment examining realtime decoding of attention. 535 
Greenhouse-Geisser corrections were applied following violation of sphericity. 536 
 537 

538 



 
22 

Discussion 539 
 540 
We report a novel rt-fMRI-based cognitive BCI based on the online classification or 541 
‘decoding’ of the voluntary deployment of covert attention to spatially distinct streams 542 
of real-world stimuli. This study was inspired by the seminal work conducted with 543 
electroencephalography (EEG)-based BCIs using the P300 signal, a 544 
neurophysiological correlate of attention (Birbaumer et al., 2000; Donchin et al., 545 
2000; Farwell and Donchin, 1988; Piccione et al., 2006). Here, we exploited the 546 
increased spatial resolution of fMRI. We sought to optimise quadrant-specific 547 
decoding for the purposes of an operational BCI, which might work by providing 548 
different user-options at each of the 4 quadrant locations. Classification or ‘decoding’ 549 
of the visual responses in the three target brain regions was therefore driven by 550 
combined contributions from top-down attentional modulation signals, as well as 551 
category-specific stimulus information, and the timing of stimulus presentation. M-552 
sequences were used to optimally distinguish BOLD signals, by producing quadrant-553 
specific timing for the stimulus streams (see also supplementary discussion, and 554 
Data in brief articles 1 & 2 for preceding work). A novel algorithm was implemented 555 
with a ‘winner-take all’ decision rule using quadrant-specific parameter estimates. 556 
Decoding accuracies in selected higher-order visual ROIs (i.e. FFA, LOC, parietal 557 
cortex) were significantly above chance in all 3 ROIs (p’s < 0.001); individual 558 
decoding accuracies reached between 60%-70% during the first half of each 559 
experimental session. Participant reaction times on an interposed n-back task 560 
increased in the second half of each session, suggesting fatigue may have 561 
contributed to the observed reduction in decoding accuracies towards the end of 562 
each experimental session. 563 
 564 
Attention enables focused processing of sensory signals evoked by environmental 565 
stimuli. Specific populations of neurones respond to the volitional direction of 566 
attention to circumscribed regions of space (which are retinotopically represented), or 567 
to real-world objects. Objects may also spatiotopically activate category-specific 568 
cortex (Saygin and Sereno, 2008b). Although specific cortical circuits subserve 569 
different aspects of attentional control (Corbetta et al., 2000; Hopfinger et al., 2000; 570 
Kastner et al., 1999; Pinto et al., 2013), there is a significant degree of overlap (Cichy 571 
et al., 2011b; Larsson and Heeger, 2006). This may enable one or more higher-order 572 
regions to generate an ‘attentional command signal’, biasing spatial and non-spatial 573 
features, and integrating emotional and motivational valence via an attentional 574 
priority map (Bisley, 2011). The outside world is spatially represented by internally 575 
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maintained retinotopic maps, demonstrated throughout the visual hierarchy, including 576 
the dorsal (IPS) (Saygin and Sereno, 2008b)) and ventral processing streams (e.g. 577 
LOC; Cichy et al., 2011). An attention map is likely to be based on retinotopic 578 
representations, with specific top-down weighting of salient locations (Baluch and Itti, 579 
2011), and an interaction between top-down and bottom-up influences (Bisley, 2011; 580 
Corbetta and Shulman, 2002). The increase in the functional weighting of the 581 
attended location by higher order brain regions may itself be linked to suppression of 582 
salient but behaviourally distracting stimuli at non-attended locations (Ipata et al., 583 
2006). 584 
 585 
Topographical information linking object position with retinotopic maps can be 586 
identified in higher-order regions traditionally associated with feature and category-587 
based attention, e.g. FFA, LOC (Schwarzlose et al., 2008). Therefore, object 588 
category and retinotopy may be jointly coded in higher-order visual cortex (Corbetta 589 
et al., 1998; Gunduz et al., 2012; Larsson and Heeger, 2006). Allocation of a top-590 
down attention command signal in these regions could act to co-ordinate separate 591 
category and spatial properties of a stimulus, in preparation for a behaviourally 592 
relevant action. 593 
 594 
We used stimuli that would be relevant for day-to-day communication in a BCI for 595 
assistive communication (see also Data in brief article 2). Users would potentially be 596 
able to ‘indicate’ their requests to carers via images on a visual display e.g. a 597 
particular body part that needed medical attention, to request a food item, or ask for 598 
an individual using a facial image. In our study each quadrant provided a specific 599 
stream of information, which the participant could direct their attention to as required. 600 
These stimuli activated category-specific neural representations in higher-order 601 
visual cortex, specifically LOC, FFA and parietal lobe, making an additional 602 
contribution to brain activations produced by attentional shifts. Of note, previous rt-603 
fMRI based decoding of category-based attention only used whole brain classifiers 604 
(Niazi et al., 2014). We also added a temporal element to help further distinguish 605 
haemodynamic responses produced by deploying attention to quadrant-specific 606 
streams of stimuli. Blank stimuli were interspersed with stimulus presentations, 607 
enabling the application of m-sequences to specify optimal event ordering. M-608 
sequences are nearly orthogonal to cyclically time-shifted versions of themselves 609 
(Buračas and Boynton, 2002), affording maximal statistical efficiency for separating 610 
different stimulus events. 611 
 612 
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Our study provides proof-of-principle for a cognitive BCI, delivering classification 613 
accuracies for four-quadrant spatial attention deployment at approximately twice 614 
chance (i.e.25%)- FFA (50% accuracy, SD 5.65), LOC (43% accuracy, SD 5.40), 615 
Parietal lobe (39% accuracy, SD 7.83). Most BCIs use binary classifications e.g. left 616 
versus right (Kelly et al., 2005). The choice of rt-fMRI for a non-invasive BCI was 617 
based on its superior spatial specificity as compared to other non-invasive imaging 618 
modalities e.g. magnetoencephalography (MEG)/EEG (Sitaram et al., 2007). 619 
Andersson et al. used primary retinotopic cortex for an rt-fMRI BCI, decoding spatial 620 
attention at 7T. Participants covertly directed attention to a high contrast grating or a 621 
high luminescence arrow (Andersson et al., 2013b, 2012, 2011, 2010, 2009). 622 
Accuracy for four-quadrant decoding reached 79% on average. However this was 623 
with simple high contrast stimuli. An important distinction with our BCI set-up was the 624 
use of higher-order brain regions and real-world stimuli. Higher order cognitive 625 
processes may be harnessed for a more versatile BCI (Friedrich et al., 2014; Tankus 626 
et al., 2014; Vansteensel et al., 2010). This may be necessary for BCI use in certain 627 
clinical populations. These include patients with amyotrophic lateral sclerosis (ALS) 628 
(Marchetti et al., 2013), a progressive disease of lower and upper motor neurones 629 
which ultimately leads to complete paralysis, and brain injury patients (Chen et al., 630 
2011), where damage may only involve primary somatosensory cortex. Cognitive 631 
function and central control is preserved in these patients. 632 
 633 
Previous BCI approaches utilising higher-order brain regions have focused on using 634 
brain activations that are unrelated to the task. Instead, they have been used as a 635 
surrogate for navigation e.g. through a virtual maze, or letter selection on an online 636 
keyboard (Sorger et al., 2012; Yoo et al., 2004). We targeted a cognitive process - 637 
spatial attention, which can be used to intuitively bypass explicit movement. Further, 638 
we specifically selected putative control regions with the aim of identifying 639 
concentrated neural populations in discrete cortical locations which may have 640 
multiple functional outputs (i.e. ‘multiplexing’; Gilbert and Sigman, 2007b; Ipata et al., 641 
2006; Moxon and Foffani, 2015). In contrast to the use of large areas of brain to 642 
extract signal for a BCI, using smaller cortical areas engaged in cognitive control 643 
processes (Hauschild et al., 2012) may enable a higher signal-to-noise ratio by 644 
reducing the incidence of unrelated brain activations. A alternative approach would 645 
be to use pattern recognition techniques to improve information extraction i.e. whole 646 
brain classifiers (Niazi et al., 2014). However in the ultimate translation to a surgically 647 
implanted BCI (see Figure 8), using a smaller region of brain facilitates use of a 648 
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smaller prosthesis, minimising surgical exposure, reducing operative time, surgical 649 
risk and inpatient stay. 650 
 651 
Implantable BCIs (e.g. extradural or intradural surface electrode strips, 652 
microelectrode arrays (MEAs)) offer advantages in terms of higher fidelity signal 653 
extraction and portability (Allison et al., 2007; Daly and Wolpaw, 2008; Wolpaw, 654 
2012). More specifically, a ‘hybrid’ approach, combining use of a non-invasive BCI, 655 
such as rt-fMRI to allow tailoring of parameters prior to implantation with an 656 
intracranial BCI device, might provide an important means of optimisation of BCI 657 
performance. This is particularly important for the successful uptake and use of BCIs 658 
in clinical populations (e.g. ALS), where patients are more frail, and prone to fatigue 659 
during learning associated with BCI use (Riccio et al., 2013; van Gerven et al., 2009).  660 
 661 
Recent work with implanted interfaces in primates has demonstrated sustained BCI 662 
use is associated with significant cortical reorganisation, resulting in the alteration of 663 
directional neuronal tuning properties of BCI-specific brain regions, and concurrent 664 
reduced modulation in BCI-adjacent neuronal populations (Ganguly et al., 2011; 665 
Orsborn and Carmena, 2013). Data extraction from a specific cortical location using 666 
an rt-fMRI based BCI could therefore be optimised by training with a non-invasive 667 
BCI such as that described in this study. This could then be followed by surgical 668 
implantation of a prosthesis in the target brain region with a higher likelihood of 669 
success. Figure 8 illustrates a possible operational pipeline. 670 
 671 

 672 
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Figure 8.  Proposed pipeline using a non-invasive BCI interface with rt- fMRI to 673 
prime and prepare specific brain regions with a BCI task, prior to surgery for 674 
placement of longer-term implantable BCI. 1) Realtime-fMRI decoding pathway 675 
(e.g. as used in this study) 2) A. Implantation of subdural electrodes B, C. 3D 676 
reconstruction showing final placement of temporal and inferior temporal 677 
subdural (ECoG) grids for recording of relevant cortical activity, as part of a 678 
long-term implanted BCI. 679 
 680 
Recent proof-of-principle for this type of pipeline using primary sensory regions was 681 
demonstrated, using an rt-fMRI BCI to train retinotopic regions prior to intracranial 682 
recordings with electrocorticography (ECoG), for spatial attention deployment 683 
(Andersson et al., 2011). ECoG BCIs recording from primary visual cortex in non-684 
human primates have demonstrated classification accuracy of >90% for attention to 685 
two spatial locations, and 67-79% for four locations (Astrand et al., 2014; Rotermund 686 
et al., 2013). MEAs have been used to classify a two-position spatial attention task 687 
using local field potentials from Macaque area MT (Esghaei and Daliri, 2014; Seif 688 
and Daliri, 2015). However MEAs cause brain tissue reactions, which limit the size of 689 
the implant that can be used, and affect signal stability and implant lifetime. 690 
Implantable BCIs can provide potential benefits as a result of closer proximity to the 691 
brain, although challenges remain with regards to long-term use and signal 692 
optimisation (Murphy et al., 2015; Obien et al., 2015).  693 
 694 
In our study, classification accuracies for deployment of four-quadrant spatial 695 
attention were between 40-50% across subjects, but reached just above or just 696 
below 70% in individual participants. The latter is a level previously suggested as the 697 
operational accuracy required for use of BCIs in communication (Halder et al., 2013; 698 
Kübler et al., 2004, 2001, 1999). This level of accuracy (or near it) was only achieved 699 
during the first half of the experimental sessions, and only by some participants. 700 
There was a significant reduction in decoding accuracy during the second half of the 701 
experimental sessions. A majority of participants exhibited above chance 702 
classification in the first half of each scanning session, across the three ROIs (e.g. 703 
Participant 4, Figure 6A), but performed less well during the second half of the 704 
experiment (Figure 6B). Possible reasons for this decline in within-session decoding 705 
accuracies may have been related to fatigue (Assmus et al., 2003; Coull and Nobre, 706 
1998). Reaction times were examined as a surrogate for fatigue, and were found to 707 
significantly increase within a session. Mental fatigue, linked to impairment in 708 
complex task performance, has been associated with reductions in BOLD activation 709 
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(Assmus et al., 2005). Additionally, fatigued individuals are prone to distraction 710 
(Faber et al., 2012), as might have been caused by the use of multiple streams of 711 
stimuli. Therefore, ensuring sessions are short, e.g. 3-4 minutes may help to improve 712 
rt-BCI user-performance. Other potential experimental details, which may have 713 
affected decoding accuracy, relate to the visual stimuli themselves. We controlled for 714 
specific stimulus properties such as luminescence and grey scale values. On the 715 
other hand, local contrast differences between stimuli were not explicitly controlled 716 
for. Although this may have acted to reduce decoding accuracy, it was felt to more 717 
accurately represent the conditions and constraints of a real-world operational BCI 718 
set-up. Finally placing the quadrant-based stimuli more eccentrically may have 719 
helped to improve decoding accuracy.   720 
 721 
Variations in decoding accuracy between individuals were observed among the three 722 
different ROIs used in the study, with some participants performing better with one 723 
ROI during the first half of the experiment, and another ROI during the second half of 724 
the experiment. The order of presentation of category of stimuli was balanced across 725 
quadrants, and over sessions to prevent biasing towards a particular category in a 726 
particular quadrant. The need to optimise ROI selection for classification in relation to 727 
communication-based BCIs using realtime fMRI has recently been addressed 728 
through the use of automated ROI selection on a per participant basis, combining a 729 
localiser, together with unsupervised machine learning algorithms (Lührs et al., 730 
2017). Further participant-specific factors such as strategies used to allocate, control 731 
and maintain attention to particular quadrants are likely to vary, in addition to intrinsic 732 
differences in cognitive capacities and arousal (Ghose and Maunsell, 2002; Matthias 733 
et al., 2010; Willems et al., 2015). Other sources of variance may arise from 734 
unrelated fluctuations in the measured BOLD signal e.g. participant movement in the 735 
scanner.  736 
 737 
A more sophisticated means of ensuring optimal BCI performance might be to 738 
actively feedback a measure of performance as an operant goal e.g. decoding 739 
accuracy (deBettencourt et al., 2015), or the level of brain activation in BCI-relevant 740 
regions (Andersson et al., 2012, 2011). This type of closed-loop adaptive BCI may 741 
allow the user to monitor successful use of the BCI within a session, while facilitating 742 
instrumental neuroprosthetic learning, leading to improved BCI performance with 743 
successive use. 744 
 745 
 746 
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Conclusions 747 
 748 
This study demonstrates accurate decoding of attention-based information, using 749 
realtime fMRI. We accessed internal, higher-order processes which are not 750 
dependent on motor or primary sensory cortex activation and achieved decoding 751 
which reached 70% accuracy in some participants.  752 
 753 
For a BCI to have perfect ecological validity it needs to satisfy two conditions – 1/ a 754 
user environment that reflects real world decisions and/or utilises common themes or 755 
stimuli 2/ an operational mechanism which mimics or is similar to an actual neural 756 
process. We have attempted to address both of these requirements by i) using an 757 
overarching cognitive process (category-based and spatial attention) which can 758 
produce utilisable output in the context of a BCI and ii) accessing this process in a 759 
behaviourally meaningful way though the use of stimuli with real-word significance. 760 
(e.g., the selection of an item such as a glass of water from several objects that are 761 
presented in a spatially distributed manner).  The application of m-sequences served 762 
to take advantage of underlying patterns in timing-related changes in cerebral blood 763 
flow. It is a statistical adjunct that enhanced our decoding approach, without acting as 764 
the principal driver. This study embodies the principles that are essential for the 765 
creation of an ecologically valid BCI, serving as the basis for further development. 766 
 767 
A non-invasive BCI approach may provide a necessary first step to accessing 768 
important higher order brain regions in the pathway to implementing long-term 769 
implantable BCIs for applications such as aiding with communication in patients 770 
lacking the ability to move or speak.  771 
 772 

773 
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