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ABSTRACT
Efficient non-linear image registration implementations are
key for many biomedical imaging applications. By using the
classical demons approach, the associated optimization prob-
lem is solved by an alternate optimization scheme consisting
of a gradient descent step followed by Gaussian smoothing.
Despite being simple and powerful, the solution of the un-
derlying relaxed formulation is not guaranteed to minimize
the original global energy. Implicitly, however, this second
step can be recast as the proximal map of the regularizer.
This interpretation introduces a parallel to the more general
Forward-Backward Splitting (FBS) scheme consisting of a
forward gradient descent and proximal step. By shifting en-
tirely to FBS, we can take advantage of the recent advances in
FBS methods and solve the original, non-relaxed deformable
registration problem for any type of differentiable similarity
measure and convex regularization associated with a tractable
proximal operator. Additionally, global convergence to a
critical point is guaranteed under weak restrictions. For the
first time in the context of image registration, we show that
Tikhonov regularization breaks down to the simple use of
B-Spline filtering in the proximal step. We demonstrate the
versatility of FBS by encoding spatial transformation as dis-
placement fields or free-form B-Spline deformations. We use
state-of-the-art FBS solvers and compare their performance
against the classical demons, the recently proposed inertial
demons and the conjugate gradient optimizer. Numerical ex-
periments performed on both synthetic and clinical data show
the advantage of FBS in image registration in terms of both
convergence and accuracy.

1. INTRODUCTION

Efficient non-linear image registration implementations are
essential in the fields of medical and biomedical imaging to
allow for both timely and accurate modern image analysis. In
its general formulation, image registration aims at finding a
(non-linear) registration transform T which best aligns a fixed
with a moving image, denoted byF andM , respectively. This
is typically framed as the optimization of a global energy

E(T ) := Sim(F, M ◦ T ) + Reg(T ) (1)

consisting of a similarity measure Sim and an additional regu-
larization term Reg to better constrain the otherwise ill-posed
problem. Given the difficulty of solving the (in most appli-
cations of interest) non-convex problem (1) directly, in the
demons algorithm, the relaxed formulation,

Ẽ(S, T ) := Sim(F, M ◦ S) + λ‖S − T‖2 + Reg(T ) (2)

with λ > 0, is optimized instead by solving iteratively for the
spatial transformations S and T [1, 2, 3]. In the first step of
this demons approach, T is being fixed and the optimization
of Sim(F, M ◦S)+λ‖S−T‖2 with respect to S is approxi-
mated by a gradient descent step. Then, the updated S is fixed
and the optimization of λ‖S − T‖2 + Reg(T ) with respect to
T is performed with a simple Gaussian filter applied to S.
Both steps are then repeated until convergence. Despite its
simplicity, it has been shown to be a very powerful approach
in practice. Much work has been invested to further extend
the demons approach. For instance, in [3] the incorporation
of diffeomorphic transformations was suggested to enforce
preservation of topology and, more recently, it was suggested
to incorporate an additional inertial term to improve overall
convergence speed and accuracy [1]. The diffusion-like Gaus-
sian regularization was extended to bilateral filtering to allow
for deformation discontinuities in [4] and a duality-based To-
tal Variation (TV) approach for optical flow was proposed
in [5] to solve a convex approximation of form (2). Thus,
a wide range of algorithms typically solve a relaxed formu-
lation which is not guaranteed to obtain an optimal solution
of the original formulation (1). In contrast, gradient descent
and conjugate gradient methods have been applied to directly
solve the original problem (1) for a variety of cost functions
and regularizers, e.g. [6]. However, some form of relaxation
is typically employed in case the regularizing term is non-
differentiable as in the setting of TV regularization.

In this paper, we want to highlight a numerical frame-
work which indeed is able to solve the deformable registration
problem (1) in its original form. As an active field of research,
Forward-Backward Splitting (FBS) methods have been devel-
oped to solve convex and, more recently, non-convex prob-
lems of the form

min
u∈RN

(
f(u) + g(u)

)
(3)
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whereby the composite objective function consists of a
smooth (possibly non-convex) function f : RN → R and
a convex (possibly non-smooth) function g : RN → R [7, 8].
In case the associated proximal operator of g, i.e.

proxg(u, τ) := argmin
v∈RN

(
‖u− v‖2 + 2 τ g(v)

)
, (4)

with τ > 0 is easy to compute, FBS methods break down
the iterative solution of (3) into two simple, iterative steps:
a forward gradient descent step on f and a so-called proxi-
mal, backward gradient descent step. Their advantage, how-
ever, lies in their sound mathematical basis, proof of algorith-
mic convergence to a critical point, simplicity to use and their
richness of possible functions f and g.

In this work, (i) we propose using a guaranteed-to-
converge FBS framework to solve directly for non-linear
registration problems of the form (1); (ii) we demonstrate
their advantage to efficiently implement various kinds of
regularizers vital for medical image registration; (iii) we
specifically illustrate that Tikhonov regularization breaks
down to simple B-Spline filtering in the proximal step; (iv)
we showcase both the fast iterative shrinkage/thresholding
algorithm (FISTA) [7] and the recently proposed inertial
proximal algorithm for non-convex optimization (iPiano) [8]
as FBS instances; (v) we illustrate the versatility of FBS by
relying on a combination of displacement fields, free-form
B-Spline transformation, sum of squared differences (SSD)
and normalized mutual information (NMI) in conjunction
with second-order Tikhonov regularization; and (vi) we eval-
uate the performance of both FISTA and iPiano against the
classical demons, the recently proposed inertial demons [1]
and the conjugate gradient method within NIFTYREG [6].

2. FORWARD-BACKWARD SPLITTING FOR IMAGE
REGISTRATION

2.1. Forward-Backward Splitting Methods

Given a differentiable (possibly non-convex) function f and
a convex (possibly non-differentiable) function g, problems
of the form (3) can efficiently be solved by FBS methods in
cases where the proximal operator (4) of g can be evaluated
easily. In case of a convex f , the basic FBS algorithm

while not converged do
ũk+1 := uk − τk∇f(uk) (Forward step)
uk+1 := proxg(ũk+1, τk) (Proximal step)

end

guarantees the convergence of uk to a critical point û of (3)
for k → ∞ for an appropriate step size 0 < τk < 2/L(∇f),
which depends on the Lipschitz constant of the gradient on
f only [7, 8]. The recently proposed FBS-variant called
”inertial proximal algorithm for non-convex optimization”

(iPiano) extends this statement even to non-convex functions
f [8]. In practice, however, it can be very challenging to
estimate the Lipschitz constant L(∇f) beforehand. By us-
ing backtracking, the Lipschitz constant and, hence, the step
sizes τk can be estimated automatically. Several variants of
FBS have been proposed to speed up the convergence of po-
tentially slow FBS. For the numerical experiments we will
use both FISTA [9] and iPiano [8] with their basic iterations
shown in Algs. 1 and 2, respectively.

Algorithm 1: FISTA algorithm [9]
ṽk+1 := uk − τk∇f(uk) (Forward step)
vk+1 := proxg(ṽk+1, τk) (Proximal step)
αk+1 := (1 +

√
1 + 4α2

k)/2 (Acceleration parameter)
uk+1 := vk+1 +

αk−1
αk+1

(vk+1 − vk) (Prediction step)

Algorithm 2: Generic iPiano algorithm [8]
ũk+1 := uk − τk∇f(uk) + β(uk − uk−1) (Forward
step with inertia)
uk+1 := proxg(ũk+1, τk) (Proximal step)

FISTA is based on a predefined sequence of acceleration
parameters and is characterized by its lack of tuning parame-
ter in addition to its good worst-case performance. The cor-
rect step size can be estimated even without knowing the Lip-
schitz constant by using backtracking line search. Using non-
monotone backtracking has the advantage of not discarding it-
erates with a higher objective value which might still be closer
to the minimizer. This is especially useful in case of poorly
conditioned problems and alleviates the computational bur-
den since non-monotone line search conditions are less likely
to be violated. Generally, FISTA also performs well on non-
convex problems although global convergence is not guaran-
teed. Building on FISTA, the recent iPiano algorithm has
been specifically designed for non-convex problems. Its rig-
orous mathematical analysis ensures favorable properties and
guarantees global convergence also for non-convex f under
very weak restrictions. As opposed to FISTA, additional tun-
ing parameters are required. This includes the inertial weight
β ∈ [0, 1) and the parameters η, c > 1 which adaptively tune
the step size τk during run time to achieve fast convergence.

In the context of (non-linear) image registration (1) the
framework of FBS is ideal for dealing with a wide range of
composite objective functions. Here, f will typically corre-
spond to the (differentiable) similarity measure Sim and g to
the (convex) regularizer Reg.

2.2. Forward Step in Image Registration

To illustrate the use of forward step in FBS, we focus on
SSD as the similarity measure and displacement fields as the
spatial transformation model. Nonetheless, we highlight and



demonstrate in Section 3 that FBS allows for both paramet-
ric, e.g. free-form B-Spline, and non-parametric spatial trans-
formations. The forward step is based on the gradient of
f(u) = Sim(u) = SSD(u) = 1

2‖F −M ◦ u‖2 with vec-
tor field u. Explicitly written, this reads

∇uf(u(x)) =
(
M ◦ u(x)− F (x)

)
Ju(x) (5)

with Ju(x) = ∇uM
(
u(x)

)
or Ju(x) = 1

2

(
∇uM

(
u(x)

)
+

∇F (x)
)

in case symmetric forces are applied at a point
x [3]. Moreover, any other differentiable, parametric or
non-parametric spatial transform can be incorporated without
restriction. This includes the exponential map vital for image
registration on the Lie algebra of diffeomorphisms [10, 11, 3].

2.3. Proximal Step in Image Registration

An explicit or easy-to-solve proximal map proxg is critical
for the efficient computation of the proximal step in FBS. We
discuss important examples for image registration.

It is well known that Gaussian blurring Gσ with standard
deviation σ > 0 used in the demons algorithm corresponds
to applying diffusion-like regularization. Based on the re-
lationship between Gaussian smoothing and solving the heat
equation established in [12] we infer the closed-form solution
for the proximal operator for diffusion-like regularization, i.e.

Gσ ∗ u = argmin
v

(
‖u− v‖2 +

D∑
i,j=1

∞∑
k=1

σ2k

2kk!

∥∥∥ ∂k
∂xki

vj

∥∥∥2)
= proxgστ (u, τ) (6)

with gστ (v) =
1
2τ

∑D
i,j=1

∑∞
k=1

σ2k

2kk!

∥∥ ∂k

∂xki
vj
∥∥2 whereby v =

(vj)
D
j=1 : RD → RD andD denoting the dimension of space.

Hence, Gaussian filtering corresponds to using the function
gστ as regularizer and using a step size τk = τ for its proximal
operator. With a view to FBS where the same step size is used
for both the forward and proximal step, this means that adjust-
ing the step size τk at FBS iterations implicitly corresponds
to an adaptive scaling of the objective function according to
f + gστk = f + 1

τk
gσ1 in (3). However, proofs of convergence

are based on a fixed g and, hence, the strong mathematical
statement of guaranteed algorithmic convergence of FBS to a
critical point would be lost. Note that (6) corresponds to the
second step in the classical demons approach too.

Another class of important closed-form proximal maps
are related to the application of Tikhonov regularization.
Based on the insights in [13], we explicitly state the proximal
operator for r-th order Tikhonov regularization, i.e. gλr (v) =
λ
2

∑D
i,j=1

∥∥ ∂r

∂xri
vj
∥∥2 with regularization parameter λ > 0, as

B2r−1,τλ(v) = argmin
v

(
‖u− v‖2 + τλ

D∑
i,j=1

∥∥ ∂r
∂xri

vj
∥∥2)

= proxgλr (v, τ) (7)

whereby B2r−1,τλ denotes the B-Spline smoothing filter of
order 2r − 1 and smoothing parameter τλ. Varying step
sizes τk for adaptive FBS schemes can easily be incorporated
by scaling the smoothing parameter for the filtering with-
out changing the original objective function, in contrast to
Gaussian smoothing. Importantly, second-order Tikhonov
regularization represents a cubic spline smoothing for the
proximal step which can be efficiently implemented using
15D operations per voxel by recursive infinite impulse re-
sponse (IIR) filters [13].

Moreover, more complicated regularizers can easily be
wrapped into the FBS framework. For example, isotropic
TV regularization leads to a proximal step of

proxg(u, τk) = argmin
v

(
‖u− v‖2 + 2 τk λTViso(v)

)
(8)

which corresponds to a TV denoising step. By using its dual
formulation, isotropic TV regularization can be solved via a
nested FBS scheme in which a FBS is applied also for the
minimization in the proximal step (8) [7].

3. EXPERIMENTS

3.1. Circle to C
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Fig. 1. Convergence comparison of solvers for the non-linear
registration of the classical ”Circle to C” with markers indi-
cating every 500 iterations.

To examine the ability for the proposed FBS framework
to perform large deformations, we chose the classical ”Cir-
cle to C” experiment. We compare both FISTA and iPiano
against the additive demons and the recently proposed iner-
tial demons [1]. Based on the similarity measure SSD(u) =
1
2‖F−M◦u‖2 = f(u), we parameterized the inertial demons
as proposed in [1] and implemented the Efficient Second-
order Minimization (ESM) [3] based gradient in (5), set the
inertial weight α = 0.9 and the maximal step to 0.5 voxels for
the demons algorithms. The corresponding Gaussian smooth-
ing was performed using σ = 1. FISTA and iPiano were
implemented as outlined in [7, Alg. 3] and [8, Alg. 4], respec-
tively, whereby second-order Tikhonov (TK2) regularization
was applied using cubic B-Spline filtering for the proximal
step. The TK2-regularization parameter λ = 0.5 was set



based on the relationship σ2 =
√
2λ to the Gaussian standard

deviation σ established experimentally in [14]. The step size
parameter τ0 was arbitrarily initialized as in [7] by ensuring
a value higher than 2/L(∇f) from where backtracking line
search took care of finding the adequate step size for the FBS
variants. For iPiano the inertial weight β was set to 0.95 in
conjunction with c = 1.05 and η = 1.2 to adaptively tune the
step size parameter during runtime. The identity deformation
was provided as the initial value for all solvers.

Fig. 1 shows that both FISTA and iPiano outperform
the demons and inertial demons algorithm in terms of com-
putational speed and numerical accuracy converging about
four times faster than their demons counterparts. The oscil-
lations of FISTA at the beginning can be attributed to the
non-monotone backtracking line search to ensure that iter-
ates with higher objective values, but possibly closer to the
minimizer, are not discarded.

3.2. 3D Anatomical MRI
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Fig. 2. 3D-Comparison of FISTA and iPiano against the con-
jugate gradient (CG) solver based on overall 1180 registra-
tions. The Dice scores represent the mean of all propagated
labels for each registration. All FBS results, apart from NMI,
are statistically significantly better (p < 10−6) than the CG
ones based on the Wilcoxon signed rank test.

In the 3D experiment, we assessed the proposed FBS
framework by registering 35 T1-weighted brain MRIs as pro-
vided by Neuromorphometrics for the MICCAI 2012 Grand
Challenge on label fusion and propagated their respective
parcellations holding 143 labels. Each brain was registered
to the remaining 34 brains in either direction summing up to
overall 1190 registrations for each method. In order to eval-
uate the performance of the actual numerical solvers in this
task, we embedded both FISTA and iPiano as additional opti-
mizers into the NIFTYREG registration framework [6] which
is based on a cubic B-Spline parameterization. As similarity
measure, we chose normalized mutual information. Includ-
ing a TK2-regularization term in the objective function, the
conjugate gradient (CG) solver could be applied to the over-
all cost function (1). This could then directly be compared
against the performance of both FISTA and iPiano using
cubic B-Spline filtering for the proximal operator. For the

regularization parameter λ we chose 0.05. The step size for
both FBS solvers was fixed and set experimentally to avoid
its possible re-computation during the backtracking at each
iteration and β was set to 0.95 for iPiano. The registration
was performed within a multi-resolution framework with 2
levels. The FBS solvers ran for the total amount of 500 itera-
tions whereas the CG solver was terminated earlier in case the
stopping condition was met as implemented in NIFTYREG.

Fig. 2 summarizes the corresponding registration results.
Both FBS solvers reached statistically significantly better fig-
ures for overall similarity (NMI−λTK2), smoothness (TK2),
and Dice scores. However, 68 values were detected as outliers
with higher values in the TK2 term for iPiano. Further analy-
sis needs to be done but, presumably, this can be attributed to
a possibly too high inertial weight β used in the experiment.

4. DISCUSSION

In this paper, we present and demonstrate the capability of
Forward-Backward Splitting schemes to be efficiently used
in the challenging problem of deformable image registration.
The advantage of FBS lies in their general framework to solve
for arbitrary differentiable similarity measures in conjunction
with any kind of convex regularizer associated with an easy-
to-compute proximal operator. In addition, the use of FBS
comes with a proven algorithmic convergence to a critical
value of the original problem (1). We provide explicit for-
ward and proximal steps for several similarity and regularisa-
tion terms of benefit for (medical) image registration thereby
allowing for efficient solutions via FBS. Additionally, and for
the first time, we show the possibility to incorporate Tikhonov
regularization in image registration by the mere application
of B-Spline filtering in the proximal step which can be effi-
ciently implemented by recursive IIR filters. We showcase
two important instances of FBS solvers, FISTA and iPiano,
and obtain statistically significantly better results in our nu-
merical experiments than those obtained by the conjugate gra-
dient method in NIFTYREG. Overall, we recommend the use
of FBS methods to efficiently solve deformable registration
problems due to their favorable theoretical properties, sim-
plicity to use and general applicability to a wide range of sim-
ilarity measures and regularizers. Future work could include
the investigation of obtained deformation fields using FBS
and a comparison with Quasi-Newton optimization methods.
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