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Abstract  
 

On the occasion of Alexis T. Bell’s fiftieth year at Berkeley, we are honored to discuss a few 

aspects of his extensive contributions to catalysis, reaction engineering, and understanding of 

molecular scale structure in catalytic processes.  The illustrations provided here help reveal some 

of his traits most valued by our community: a drive to employ the best methods of 

instrumentational and computational analysis available; the instinct to search for the essence of 

the most important problems at hand, and the skill to write about them with exceptional clarity; 

and the formation and nurturing of collaborative teams to focus on the most essential questions. 

 

 
 

 
*
 Corresponding Author: email: mccormic@umn.edu 

 

 

Introduction   

 

The authors assembled for this account of course do not presume to strive for an 

overview of Alex Bell’s contributions of 50 years.  With around 700 papers and around 180 

students and postdoctoral associates (not even trying to count how many active collaborators!), 
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his career to date spans such broad and important problems that it would require a substantial 

Festschrift to even attempt to do any justice to the work (Supporting Information).  Nevertheless, 

as a collection of former group members spanning several decades (2010, 2004, 1998, 1987, 

1984, and 1979), rather than being comprehensive we aim to share a representative set of 

vignettes - a window into Alex’ approaches and patterns that, we think, illustrate his enduring 

impact on the field.  These are arranged roughly chronologically, addressing chemical vapor 

deposition, characterization of catalysts and catalytic processes, CO hydrogenation on supported 

metals, zeolite synthesis and design, partial oxidation on metal oxides, and quantum mechanical 

and statistical mechanical computation. 

With these vignettes, too, we hope to show glimpses of Alex’s keen insight and 

mentoring expertise that stand out for us, certainly influencing our own careers and interests, but 

more broadly also establishing currents in the whole catalysis community.   Finally, we briefly 

reflect on his personal influence on generations of students and collaborators.  We offer 

apologies in advance to our many peers who could easily offer even more compelling and 

interesting stories about Alex’s influence and contributions, but we are confident that they would 

all join us in celebrating his achievements and continuing to pass on the lessons learned from 

him. 

 

The Early Years 

 

 Alexis T. Bell’s earliest professional contributions were in the reaction engineering of 

plasma processes.  His research over the first decade explored the mechanisms and kinetics of 

the plasma-enhanced chemical vapor deposition of inorganic and organic films.  Through a series 

of papers published throughout the 70’s and early 80’s, Alex applied reaction engineering 

modeling to advance mechanistic descriptions of plasma chemistry and thin film growth (Figures 
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1 and 2).
e.g.,1-10

  In this work, we see the emergence of Alex’s approach towards scientific 

research: identify the important questions; master the spectroscopic and numerical tools needed 

to address the problem; determine the detailed reaction chemistry; and then share with the 

community the relationship between the reaction chemistry and process performance.  

 

 
 

Figure 1.  Sequence of elementary reactions expected to occur when a hydrocarbon monomer 

enters a discharge zone of a DC plasma reactor.
8
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Figure  2.  The rate of polymerization, which is the sum of gas and surface propagation steps 

was determined by solving the material balance equations that describe the monomer and free 

radical concentrations as a function of axial and radial position in the flow reactor.  Predicted 

and experimental rates of polymer deposition as a function of monomer flow rate are one 

illustration of this model fit.
8
 

 

Air pollution and energy security were major societal challenges of the early 70’s.  This 

created opportunities for exciting new research.  Catalysis offered great promise in solving two 

major societal needs: (1) removing harmful pollutants from automotive exhaust; and (2) 

producing synthetic fuels to meet the energy crisis created by the U.S. oil embargo.  Thus began 

the research program that is the foundation of Alex’s career in catalysis.  He started by 

addressing nitric oxide reduction
11,12

 and then moved on to Fischer-Tropsch synthesis and carbon 

monoxide hydrogenation to methanol.
13-18

   

Alex’s key motivation was to understand how catalyst structure affects selectivity, 

activity, and yield.  Taking to heart the message over Latimer lecture hall, i.e., that “progress in 
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science is based on advances in instrumentation”, he built a state-of-the-art laboratory for 

probing the active sites on catalysts.  In situ infrared (IR) spectroscopy was employed during 

adsorption and reaction of NO and CO on supported precious metal catalysts (Figure 3). 
e.g., 14,19-

25
  He developed the first micro-reactor for observing the infrared spectra of adsorbed NO and 

CO under the high-pressure conditions employed in Fischer-Tropsch synthesis.
26-28

  Dramatic 

changes in crystallite surface structure were discovered, depending on the composition of the 

metal oxide support and the method of preparing the catalyst.  In situ Raman spectroscopy and 

NMR techniques were added to the laboratory as well.
e.g., 29-40

  These techniques gave even 

greater insight into the evolution of the catalyst under reaction conditions.  The Bell group 

discovered how metal crystallites transformed in the reaction environment, how they interacted 

with the support and additives, and how the nature of the active sites changed with time during 

catalysis.
e.g., 41-57

  

 

 
 

 

 

Figure 3.  Dependence of the Rh-NCO and Rh-NO
δ-

 absorbance bands as a function of NO 

partial pressure.  During the reduction of NO by CO over a Rh/SiO2 catalyst an isocyanate group 

is formed on the surface of the rhodium microcrystallites.  The dependence of the Rh-NCO band 

intensity on partial pressures of NO and CO can be interpreted with the aid of the reaction 

mechanism.
24
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Alex pioneered transient techniques to complement his work on steady-state reaction rate 

chemistry.  He and his students investigated the response of the adsorbates and the reaction 

products to temperature transients and to isotopic substitution.  This allowed Alex to refine the 

reaction mechanisms proposed in his earlier work.
e.g., 27,28,58-64

  When coupled with in situ IR, 

Raman and NMR spectroscopy, he was able to elucidate the key rate-determining steps occurring 

on the surface of the metal catalysts, and to distinguish between the active and the spectator 

adsorbates (Figure 4).
29,31,61,65

  This combination of experimental techniques – developed and 

advanced by Alex, his students and collaborators – contributed to our current molecular-level 

understanding of relationship between catalyst structure and its function.   

 

 

 

 

 

Figure 4.  Transient response and isotope tracer studies revealed two distinctly different forms of 

carbon formed on Ru/SiO2 during CO hydrogenation.  Cα is highly reactive and is the principle 

precursor to C2+ hydrocarbons and methane.  Cβ accumulates slower than Cα and resides on Ru 

and the support.
27

  

 

 A hallmark of Alex’s research program was to bring together the best researchers, and 

share their ideas on how to tackle the many unanswered questions in catalysis.  The Bell and 

Somorjai groups met weekly at Lawrence Berkeley National Laboratory to discuss their latest 

achievements.  Structure sensitivity, intrinsic kinetics, and catalyst design were often the focus of 

these meetings. Several times a year, Alex Bell and Michel Boudart’s students would meet to 
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compare the latest results from their respective labs.  Students discussed the importance of 

identifying the active sites, looking for rate-limiting steps, and presenting rates in terms of 

turnover numbers.  Detente between the USSR and the USA created a special opportunity to 

collaborate with scientists from the Institute of Catalysis in Novosibirsk.  Doctors  Davydov, 

Kuznetsov and Ryndin came to Berkeley and brought exciting new approaches to catalyst 

synthesis.
66-69

  [Yuri Ryndin even taught members of the group how to drink liquid nitrogen 

straight out of the Dewar!]  Alex’s students benefited here again from his mentorship.  He taught 

us that scientific inquiry is a team effort; that to make breakthroughs one must embrace different 

viewpoints and learn new methods.  Collaboration is key to staying at the forefront of 

engineering innovation and research. 

 

Carbon Monoxide Hydrogenation on Supported Metal Catalysts 

 

One guiding principle in Alex’s overall approach to understanding Fischer-Tropsch and 

methanol synthesis is that catalyst science is advanced through understanding the structure of 

adsorbed species and the dynamics of elementary processes involved in catalyzed reactions. 

Starting with a description of the reaction pathways he and his students worked to develop a 

detailed mechanism based on establishing the adsorbed species under reaction conditions and the 

chemical nature of the key reaction intermediate(s) in the process.  This mechanism was then 

tested and refined against steady-state and transient measurements to establish the dynamics of 

the elementary processes.  The mechanistic and dynamics insight also allowed the group to 

address the nature of the active site and how the catalyst could be designed to improve activity, 

selectivity, and in turn, yield of the desired products. 

Infrared observations,
14,22

 reactive scavenging
15,70

 and kinetic isotope effects
16,59

 led to a 

mechanism that has CO dissociating and carbon being hydrogenated to methylene and methyl 
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groups, two key reaction intermediates (Fig 5).  Hydrogenation of methyl produces methane and 

insertion of methylene into methyl produces an alkyl group that can continue to increase in 

carbon number by the insertion of additional methylene groups.  During the early studies, it was 

noted that carbon was accumulating on the surface of the catalyst and not all the carbon was 

directly converted into products as indicated in Fig 5.  This led to the proposal
17,27,32,59,65,71

 that 

carbon resided in a carbidic form, Cα, and an alkyl form, Cβ (Fig 6). 

 

 
Figure 5.  Proposed mechanism of hydrocarbon synthesis from CO and H2.

18
 

 

 

 
 

Figure 6. Reaction scheme for the rapid equilibration of CO into adsorbed CO and the 

interconversion of dissociated CO into the various forms of carbon.
61

 

 

 

Alex adapted transient techniques (temperature programmed surface reaction (TPSR) and 

isotope switching) and established collaborations to bring in situ NMR spectroscopy to bear on 
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identifying where the carbon resided, and how the different forms of carbon interconverted on an 

active catalyst.
31,32

   The NMR signatures for carbidic and alkyl carbon were established as well 

as the carbon that migrated from the metal to the support.  Rates of interconversion of the 

carbidic and alkyl carbon were established with transient techniques.
61

  This understanding was 

used in later studies to improve selectivity and yield. 

Bell and coworkers discovered that methanol synthesis over palladium is strongly 

dependent on the composition of the support.
43,44,69

  Shown in Figure 7 is the effect of 

temperature and support type on the turnover frequency for carbon monoxide conversion into 

methanol.
69

  The intrinsic rate varies by over two orders of magnitude with the lowest rate 

observed for palladium black and the highest for palladium dispersed over lanthanum oxide.  

Characterization of the Pd on La2O3 by X-ray photoemission spectroscopy and infrared 

spectroscopy of adsorbed CO revealed that a thin covering of rare earth oxide migrates onto the 

metal crystallites.  A schematic of this unique catalyst structure is shown in Figure 8.
44

  The 

migration of partially reduced LaOx species onto the palladium is evidenced by a negative shift 

in the Pd 3d5/2 binding energy by as much as 0.7 eV below that for Pd dispersed on a non-

interacting support (e.g., SiO2).
43

  In addition, the LaOx species suppress carbon monoxide 

adsorption on the metal crystallites, and weaken the Pd-CO sigma bond strength.
44

  Surprisingly, 

the extent of the metal-support interaction, i.e., the fractional coverage of rare earth oxide on the 

palladium increases with the metal particle size.   
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Figure 7.  Arrhenius plots for the formation of methanol at 10 atm and a H2/CO ratio of 3.

69
 

 

 

 

 

 
Figure 8.  Schematic illustration of the interaction of the Pd with the support.

44
 

 

Bell’s extensive work on carbon monoxide hydrogenation over supported metal catalysts 

reveals the true richness of catalytic reaction chemistry.
72-75

  It further illustrates the central role 

played by the catalyst structure on the reaction kinetics.  The key to engineering better catalysts 

lies in the material and gaining molecular-level control over the synthesis of the active sites.  

This realization naturally led to Alex’s pioneering work on zeolites.      

 

Chemistry of Zeolite Synthesis 
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Starting in the mid-1980’s, Alex collaborated with Clay Radke, advising several students 

in projects to understand the hydrothermal synthesis of zeolites, with special attention to using 

the best tools available to gain insight into what governs the structure direction of zeolite and 

molecular sieve synthesis.  The emphasis was on understanding the process at the molecular 

level, with an eye to learning how to direct and engineer catalyst sites with molecular control.   

In one theme, they pursued an understanding of the solution chemistry, especially using 

high resolution quantitative multinuclear liquid nuclear magnetic resonance spectroscopy to 

characterize the solution chemistry at play in synthesis of aluminosilicate zeolites such as zeolite 

Y, of templated highly siliceous zeolites such as ZSM-5 and silicalite, and of molecular sieves of 

more varied composition.
e.g., 33,76-90

   

In another theme, they also used solid state magic angle spinning (MAS) NMR to gain 

understanding of the gel and nucleation processes.  One series of papers addressed the role of 

seed gels in governing the structure of template-free aluminosilicate zeolite synthesis, such as is 

typical for zeolite Y.
91-93

  In another series of papers, they pursued more particularly an 

understanding of the role of a template cation in directing the crystallization of silica-rich 

zeolites.
87,94-97

   

Characteristically, Alex punctuated with a few periodic papers that give an update on the 

current thinking, reviewing how patterns and insights can be perceived from contributions from 

both his own and others groups to frame the next set of broad questions.  We can take the 

opportunity with the series on silicalite to obtain a glimpse of how Alex approached this field 

and left a lasting impact.  In the following, short excerpts from the papers illustrate how the 

problem – how zeolite nucleation and structure control is achieved - was clearly framed early on, 
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attacked methodically, and after rigorous investigations brought to a new level of understanding 

and design challenges. 

Starting in 1991, with Clarence Chang
98

 (then visiting professor from Mobil Research 

and Development, and a leading figure in templated-zeolite synthesis) Alex examined the then 

extent data, and new data, of ZSM-5 synthesis carefully to postulate more clearly than anyone 

how templates might work.  They stated that “embryonic structures are formed rapidly with 

heating”, which may have the stoichiometry associated with a template cation surrounded by the 

intersection structure (Figure 9) – about 1 tetrapropylammonium ion (TPA) to 24 silicons – in a 

clathrate structure.  These structures could be  

“randomly lined together, but in time become ordered or “annealed” through repeated 

cleavage and recombination of the siloxane bonds, mediated by the OH- ion” (Figure 9).   

This clear, detailed, and testable hypothesis added structure to the discussion in the 

literature at the time, postulated by early leaders in the field such as Breck and Flanigen (nicely 

reviewed by Flanigen
99

); the basis of the hypothesis is that “the isomorphism between clathrate 

hydrates and certain framework silicates is exemplary”.  Further, though, Alex and Clarence 

drew this implication – that the richness and variety of templated zeolite structures might be 

explained and even predicted, since the  

“structure of the solvation sphere around the organic template will be influenced by 

factors other than geometry, such as pH, temperature, ionic strength, inorganic ions, etc. 

so that the same template may give rise to different zeolites phases under different 

conditions”.   

This laid out the challenge of that decade, then, in this field – to better understand and predict the 

action of the template. 
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Figure 9.  Illustration of clathrate organization around a template cation.

98
 

 

Alex pursued this challenge, seeking a rigorous understanding that could yield 

quantitative insights into structure direction.  Silicalite (the purely siliceous isomorph of ZSM5) 

provided an excellent model and a rich set of contributions.   By 1994, Alex was able to update 

the current thinking in another contribution, stating “the question is how do organic cations order 

the silica in zeolite synthesis gels form nuclei for zeolite crystallization”.  He summarized the 

findings then current: 
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“
29

Si MAS NMR and ion-exchange experiments of TPA-containing sodium silicate 

synthesis gels suggest that TPA is encapsulated in the gel in silicate cages prior to the 

appearance of any crystalline material.  Crystallization occurs within the gel via 

rearrangement of the TPA-occluded silicate cages by the breaking and reformation of 

siloxane bonds into the more stable silicalite structure”.   

Alex goes on to show that this understanding is consistent with the then-contemporary 

contributions from other groups using 
13

C NMR, 
1
H-

29
Si and 

1
H-

13
C CP-MAS NMR, small angle 

neutron scattering (SANS), and Raman spectroscopy.  Further, though, he again draws 

implications in the most precise terms of the time:  

“The evidence also suggests that to form a given zeolite, e.g., ZSM-5, the TAA cation 

should be as hydrophobic as possible, but not so large as to be unable to fit into the 

zeolite pore structure in an ordered array.”  

Even further, he suggests that these questions can and should be pursued with computation.  He 

also later contributed to this computational pursuit as well.
96,100,101

 

While encouraging the community along these lines, Alex and Clay made further 

contributions of their own through the 90’s, and Alex took the opportunity once again to give an 

update on current thinking and prospectus in 1999
102

 with a much more specific, quantitative, 

experimentally tested, and molecularly detailed explanation of all the extent data, suggesting  

“the following scenario for the nucleation and growth of silicalite.  The initial synthesis 

gel contains a highly articulated silicate network exhibiting a relatively low 

connectivity….  Hydrated TPA cations are trapped within pockets of the gel.   Upon 

heating, the silicate network condenses….  This accounts for the decrease in the {tri-

connected to tetra-connected site} ratio and the increase in pH of the mother liquor 
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during the induction period.  As the gel condenses, it becomes more hydrophobic and 

expels the water pockets along with the dissolved cations, accounting for the rise in the 

Si/TPA ratio in the solids.  As the gel condenses further and its connectivity increases 

(Figure 10), the hydrophobic TPA cations are engulfed by the silica network, thus 

forming a cage around the TPA cation.  In basic solutions, silica has a net negative 

charge, thus attracting the TPA cations by Coulombic forces.  Occlusion of TPA in the 

silicate cages competes with the expulsion of solvated TPA contained within the water 

pockets in the gel.  At the onset of crystallization, TPA occlusion dominates over the 

expulsion of solvated TPA, and as a consequence the Si/TPA ratio of the solid phase of 

the gel decreases.” 

 – ultimately reaching the stoichiometric value explained with Clarence Chang back in 1991.  

Figure 11 shows one of the key experiments – quantitative 
29

Si MAS NMR demonstrating a 

distinct shift in connectivity of the network that marks the induction period.  Reflecting on this 

excerpt a bit, we see Alex’s characteristic precision in cleaning up what had been a complicated 

and murky process description, accounting carefully for the implications from his own work as 

well as others’ work.  Each point in this carefully constructed explanation is backed up by data – 

much of it collected by Alex, Clay, and students following Alex’ formulation of the challenges in 

1991 and 1994. 
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Figure 10.  Assembly of clathrates into a prospective nucleus.

98
 

 

In that same review, Alex also was able to show patterns that clarified the current 

thinking of how aluminosilicates interact with templates to nucleate aluminum containing 

zeolites; the recent finding from both MAS and liquid NMR showed that the “aluminate anions 

appear to react with small silicate anions to produce aluminosilicate anions and cause a 

depolymerization of high molecular weight silicate structures”.   This crucial insight helped 

explain how Al containing systems could manage to participate in the templating process 

described with the purely siliceous system.  Alex and Clay also went on to further important 

contributions to address the solution behavior of an even richer variety of inorganic ion 

precursors and templates. 

This vignette shows again how Alex worked in collaboration to formulate and attack key 

problems in a field of importance (here, zeolite synthesis work), driving toward advancing the 

current state of understanding using both his own and others’ insights, and to periodically 

provide a clear exposition of the next challenging set of questions for the whole community to 

address. 
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Figure 11.  Quantitative 

29
Si MAS NMR patterns, offering key evidence pointing toward a 

comprehensive description of the silicalite synthesis induction period.
102

  

 

Oxidation Catalysis on Metal Oxides 

 

One is hard pressed to find either a catalytic moiety or a catalytic reaction that Alex has 

not touched. Still, certain thematic trends reappear more often than others. One particular family 

of catalytic materials that have yielded productive investigation spanning four decades has been 

supported vanadates,
39,40,103-129

 including collaboration with Enrique Iglesia to investigate the 

kinetics and mechanism for oxidative dehydrogenation of propane, and collaboration with T. 

Don Tilley to develop techniques for better control of deposition and anchoring of isolated 
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vanadates on metal oxide surfaces. The ability to generate catalytically active sites with 

structural uniformity using isolated vanadates that developed from these studies allowed Alex to 

expand his effort in the area of “single-site heterogeneous catalysis” as applied to the oxidation 

of methanol to formaldehyde.
130-140

 

Alex writes “A central objective in the field of catalysis is to establish relationships 

between the composition and structure of catalytically active centers and their activity and 

selectivity.
130

  For most heterogeneous catalysts, this is a difficult task because of the 

heterogeneity of active sites, making it nearly impossible to determine the environment of an 

active site uniquely.” By exploiting the ability to anchor isolated VO4 units onto the surfaces of 

several metal oxide supports, Alex was able to pursue this objective of uniquely tying structure 

and activity in a series of papers from the mid-2000s to the early 2010s that demonstrates his 

careful and meticulously thorough approach to mechanistic work. By this time, Alex was able to 

unleash the full capabilities of his now-mature techniques in in situ FTIR, Raman, and X-ray 

absorption near edge spectroscopy (XANES) along with density functional theory (DFT) 

calculations to leave no stone unturned in the pursuit of the definitive explanation that ties 

together disparate data collected by many researchers working in the same area. The resulting 

collection of papers reads a little like a multiperspective novel, with the reader’s attention 

shifting back and forth between the point-of-view of two narrators, an experimental one and a 

computational one. And, as with the fiction, the two narrators tell the same story in an 

overlapping and complementary way. 

The story begins on the computational side with an exploration of how VO4 interacts with 

the metal atoms of the support.
141

 Isolated vanadates consist of a central vanadium atom with a 

vanadyl oxygen (V=O) and three oxygens bridging with surface atoms (V-O-M). In this paper, 
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the computational model included essentially only this basic structure (OH groups were added to 

complete the valences of the M atoms), and varied the support (M = Si, Ti, Zr) to investigate the 

support effect. It was already established in the experimental literature that the activity of 

supported vanadates decreased in the order ZrO2 > TiO2 > SiO2, though the reason for this order 

was not established. While these early calculations did not reproduce the experimental results 

quantitatively, they also failed to show any significant difference in either the apparent activation 

energy or the pre-exponential factor for methanol oxidation over the different supports. This 

paper concluded that the electronic properties of the metal in the support could not explain the 

effects seen in the experiments, as they would have surely been apparent in the calculations. The 

results also suggested that methanol adsorption formed V-O-CH3 and M-O-H groups as they 

were predicted to be much more stable than the reverse of M-O-CH3 and V-O-H, but again 

negated any contribution of M in differentiating between supports.  

These results created a puzzle – why did the supports show activity differences in 

experiments but were nearly indistinguishable computationally? Alex would spend eight years 

building a systematic case to explain these observations, but the original conclusions of his first 

and simplest exploration of the subject were never refuted by his later work. 

Next, Alex set out to establish the definitive mechanism for methanol oxidation over 

vanadate on silica (MCM-48).
130 

 Through a series of carefully planned in situ temperature 

programmed spectroscopic experiments, the population of adsorbed and surface species were 

tied to the gaseous products. Every bit of data in the paper supports the final conclusion, and the 

paper is a great example of Alex’s ‘leave no stone unturned’ approach. Every possible surface 

interaction is tested and every competing theory is discussed. In the end, the totality of the FTIR, 

Raman, XANES and kinetic measurements leads to a single mechanism. Importantly, this paper 
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provides direct observation that proton transfer from methoxide to the vanadyl oxygen is the 

rate-limiting step – as suggested by earlier computational work. At the close of this experimental 

chapter, the evidence is summarized in two mechanistic schemes for the temperature 

programmed desorption (TPD) and temperature programmed oxidation (TPO) experiments that 

show the flux of each species and proposed intermediate (Figures 12 and 13). But these 

experiments were only able to observe the oxidation of methanol, which necessarily must have 

resulted in reduced vanadium centers that were not observed. Alex concluded that the 

reoxidation must have been fast, but no mechanism was known. 

 

 
Figure 12.  Mechanistic scheme for the TPD experiment on 3.4V/MCM-48.

130
   

 

 

 
Figure 13.  Mechanistic scheme for the TPO experiment on 3.4V/MCM-48.

130
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Naturally, the next paper in the series was about the reoxidation of the vanadium. If a 

process is too fast to observe experimentally, it is best approached computationally. An update to 

the support model for SiO2 involved using a silsesquioxane molecule, with one Si-atom vertex 

replaced by V=O (Figure 14).
131 

 With DFT, Alex was able to probe every step in the methanol 

oxidation/vandadium reduction mechanism and show that it matched the experimental results, 

but also add the missing details about the vanadium reoxidation mechanism. Once again, Alex’s 

intuition proved correct, and the reoxidation of V
3+

 to V
5+

 was facile as compared to the 

methanol oxidation step, explaining why V
3+

 species were never observed. In the process, the 

paper touches upon every possible mechanism along the way, so as to eliminate the infeasible 

ones with evidence. Here also the reoxidation mechanism was established. The issue is that each 

molecule of dioxygen should oxidize two reduced vanadium centers, but the vanadium atoms are 

isolated from one another. The solution is to have molecular oxygen adsorb to the V
3+

, creating a 

peroxo group that will propagate an oxygen atom through the support Si-O-Si bonds until it 

reaches another reduced V
3+

 center. The notion that oxygen atoms could travel through silica 

was counterintuitive, but was supported by both earlier work over isolated molybdates on 

silica
142

 and, of course, by Alex’s own follow up paper,
133

 where he showed the same isotopic 

scrambling using 
18

O2 over isolated vanadates on silica. 
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Figure 14.  Model of the VOx/SiO2 catalytic site.

131
   

 

 

 
Figure 15.  Model of the VOx/TiO2 catalytic site.  The location of the O-vacancy is circled.

135
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Common threads found throughout Alex’s work and exemplified in these papers are his 

ability to anticipate questions and criticisms and provide responses in the same papers, and his 

ability to predict correctly the findings of future papers in the same series. 

Having conquered the mechanism of methanol oxidation on VO4/SiO2, the next logical 

step was to understand why SiO2 was such a poor support and why TiO2
132

 and ZrO2
136

 were 

three orders of magnitude higher in activity under the same conditions. The reactivity of these 

supports is very different from silica, but how exactly does that make the methanol oxidation 

reaction faster? When all three supports were treated as structurally the same
141

 calculations 

suggested that the apparent activation energies for methanol oxidation would all fall between 112 

and 123 kJ mol
-1

. But the experiments showed that only SiO2 (96 kJ mol
-1

) was even close, with 

TiO2 (67 kJ mol
-1

) and ZrO2 (75 kJ mol
-1

) quite a bit lower.  

First, the experimental work ruled out all other possible explanations, and together with 

the computations, suggested that these surfaces are not structurally interchangeable. Of course, 

Alex had a hypothesis, which he then followed up with a new computational study that explored 

the role of oxygen vacancy defects on the activity for methane oxidation (Figure 15).
135

 As it 

turns out, the oxygen vacancies typically encountered on TiO2 surfaces, when located adjacent to 

a V-O-Ti bond, “provides the active site with more flexibility thereby allowing for a larger 

degree of H-bonding in the [V-O-CH3 dehydrogenation] product between Ti-OH and V-OH 

ligands.” The oxidation state and environment of vanadium are not changed, hence no 

differences in the XANES or Raman spectra between SiO2 and TiO2 are observed.  The surface 

species involved are the same, hence no change in the FTIR spectra either. Such a puzzle as 

support effects between SiO2 and TiO2 came down to a small difference in the flexibility of the 

bonding in the support backbone, leading to stronger hydrogen bonding. This small difference 
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had a big impact on the results. The stabilization of the transition state in the rate-limiting step 

lowered the calculated apparent activation energy to 66.5 kJ mol
-1

, in excellent agreement with 

the experiment. To engineer this observation into a new catalyst, Alex later followed up this 

work with computational and experimental investigations of bilayered VOx/MOx/SiO2 materials 

with defect forming metal oxides (M = Ti, Zr, Ce).
137-139

 

The story here developed from the ability to characterize the mechanism at single site 

catalysts, and under Alex’s watch revealed how structural flexibility in defective metal oxides 

enhances transition state stabilization, and how new classes of catalysts could be developed to 

exploit these properties. 

 

Alex in Theory 

 

From the end of the 1980s on, Bell’s work gradually includes more computational, 

quantum and statistical mechanical simulations to complement experimental work. As computers 

became more powerful, this was not a digression, but a natural expansion to achieve his overall 

objective to understand those fundamental underpinnings of catalysis that could be translated to 

the context of practical applications, for the purpose of catalyst development and design.  

His views are nicely outlined in a short perspective article in 1990
75

 on the “impact of 

catalyst science on catalyst design and development,” which is still relevant. Paraphrasing Bell, 

this impact results from: (1) the pursuit of scientific understanding, which continues to lead to 

the development of new analytical techniques, helping to reduce the time and options to evaluate 

catalysts by testing; (2) molecular level views (one could now add “nano”-level views, as in his 

perspective in Science in 2003),
143

 to guide catalyst formulations; (3) development of new 

theories and concepts, to achieve relationships between catalyst structure and performance. This 

scientific approach reduces empiricism in development, and, increasingly, design. 
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The chemical engineer in Bell is once again clear from his choice of reactions that are of 

particular, timely industrial significance, in particular in the energy and environmental arena, 

such as removal of NO, methanol or Fisher-Tropsch synthesis. Here, he attempts to obtain 

information under conditions that are relevant to industrial catalysis. For the same reasons, in situ 

spectroscopy is used to unravel reaction mechanisms and understand the structural and 

compositional changes that occur in heterogeneous catalysts, in mixtures, under reaction 

conditions. There is a preference for in situ IR and Raman, but also NMR and isotopic tracer 

studies, to probe species over time, on different surfaces that aim to best represent the industrial 

catalyst, or a model that would help to unravel pertinent principles.  

Alex Bell avidly collaborates with other chemical engineers and chemists at UC Berkeley 

and LBNL, as well as internationally, to build on complementary expertise. These key 

collaborations signal new directions, or help to obtain the missing piece in the catalytic puzzle.  

Alex’ theoretical work began in the late 1980s with Evgeny Shustorovich from Eastman 

Kodak in Rochester.  They used the bond-order-conservation-Morse-potential method (BOC –

MP)
74,144-151

 to account for molecule-surface and intermolecular interactions at realistic loadings, 

in order to study adsorption, surface diffusion and desorption by, for example, Monte-Carlo 

techniques. In conjunction with the papers with Lombardo over the same period,
64,103,152-154

 

theoretical models appeared that would help to describe kinetics of gases on metal and other 

surfaces. Importantly, results from these models could be tested against TPD and other 

experimental methods. The 1991 review by Lombardo and Bell in Surf. Sci. Rep.
154

 signaled a 

new era in which various types of Monte-Carlo simulations, molecular dynamics, transition-state 

theory, and other statistical physical as well as quantum mechanical approaches would 

Page 25 of 67

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26 

 

increasingly play a central role in studying diffusion, adsorption and reaction in catalysts, in 

particular zeolites. 

The second stage of Alex’ computational work, a notable collaboration with Doros 

Theodorou, lasted throughout the 1990s.  They developed powerful Monte Carlo tools for 

understanding adsorption and diffusion of molecules in zeolites.
155-157

  Alex and Doros showed 

how tools from statistical physics could predict how molecules arrange themselves and navigate 

the nanoscale pores within zeolites (Figure 16). In the process, they cultivated students who 

would put their own mark on this new branch of catalysis research: June,
158-162

 Snurr,
161,163-166

 

Maginn,
167-169

 and Coppens.
170-172

   

 

 
Figure 16. (a) Location of benzene molecules adsorbed in the pore space of silicalite-1 at 70

o
C, 

illustrating clearly defined sites in the pore space (dark regions: 95% probability), but also 

differences at low (top) and high loading (bottom).
165  

(b) Self-diffusivity of n-alkanes as a 

function of chain length, at 300 K, comparing molecular dynamics and hierarchical simulations 

with experiments. The simulation strategy utilizes concepts from Brownian motion theory and 

transition state theory.
169
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The overarching finding from this work is that adsorption and transport within zeolites is 

influenced by subtle heterogeneities in structure and composition and by the correlations 

between adsorbate molecules at high loadings.  These effects are not well captured by mean-field 

models.  Elsewhere in the catalysis world, van Santen, Sauer, Catlow and others were also 

finding that Langmuir-Hinshelwood expressions and other mean-field relationships do not 

adequately account for the local environments and interactions between adsorbed species on 

surfaces. Especially at higher loadings, these local environments differ from the averages, and 

may not be representative of the conditions relevant to heterogeneous catalysis. In the most 

extreme cases, as poignantly illustrated by Ertl, deviations from mean field behavior give rise to 

multiple steady states, transient behavior, and nonlinear waves.   

A third stage of Alex’ theoretical work began in the mid-1990s, as ab initio 

computational chemistry was growing in power, accuracy, and accessibility.  Alex and his 

colleague Arup Chakraborty saw an opportunity for catalysis research in new hybrid density 

functionals and Pople basis sets.  They were among the pioneers in using computational 

chemistry, particularly density functional theory, to study adsorption and reactivity in zeolites.  

Their work illustrated how these tools could be used to predict binding enthalpies, reaction 

energies, activation barriers, and to make ab initio spectroscopic assignments.
173-177

 

Trout et al. used density functional theory to study the speciation of Cu
+
, [CuO]

+
, and 

[CuOH]
+
 ions

173
 and the thermochemistry of NO decomposition

174
 in a Cu-ZSM-5 catalyst.  Rice 

et al. used DFT to understand the role of water in the demetallation of Cu-ZSM-5 and Co-ZSM-

5.
177

  In their study of N2O decomposition by Fe-ZSM-5 and Co-ZSM-5, Ryder et al. showed 

how ab initio calculations of rate constants and equilibrium constants can facilitate the 

construction of microkinetic models and the interpretation of experimental activation barriers.
178
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In these early computational studies, the number of intermediates and elementary steps was 

limited by the difficulty of the electronic structure calculations and transition state optimizations.   

Alex’ early computational studies, using tools from both molecular simulation and 

quantum chemistry, gave him a unique perspective on the challenges ahead.  His 2004 review 

article, “Challenges for the application of quantum chemical calculations to problems in 

catalysis”,
179

 identified four main challenges for the future.  This review article marks the 

beginning of a fourth stage in Alex’ theoretical/computational work.  The method development 

challenges identified in Alex’ article became a to-do list, not just for Alex, but also for the 

computational catalysis efforts of many others.  His method development goals and contributions 

toward achieving them include:  

(1) Accurate rate expressions for the elementary steps in catalysis.   

Alex has shown that recrossing corrections to transition state theory are usually negligible 

in catalysis,
180

 but tunnelling
181

 and curve-crossing (non-adiabatic) rates can be 

important.
136

  He has also shown that non-equilibrium dynamics determine product 

selectivity in acid (zeolite) catalysed cracking reactions.
182,183

   

(2) Accurate models of active sites and adsorbate interactions in zeolites. 

Alex’ early work used constrained cluster models for zeolites,
175,177,184

 but his more 

recent work used larger models with state-of-the-art quantum chemistry and importance 

sampling methods.  Their efforts resulted in benchmark studies of hydrocarbon 

adsorption that include electrostatics and dispersion through QM/MM embedding 

schemes,
185

 and re-optimized classical force fields for modelling alkanes in zeolites.
186,187

  

(3) Efficient, automated methods for discovering reaction pathways and intermediates.  In 

collaboration with Arup Chakraborty and Frerich Keil, Alex developed new transition 
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state search algorithms with improved efficiency,
188-194

 improved fault tolerance,
195

 

biases to avoid rediscovery,
196

 and automated path generation capabilities
197

 to reduce 

reliance on human effort and intuition.  Some of these tools are now state-of-the-art 

algorithms for discovering transition states and intermediates in complex reaction 

networks.   

The above methodological advances from Alex’ own research group and also from others 

enabled studies of vastly more complex catalytic reaction networks and processes.  In a series of 

computational papers published between 2005 and 2008, Alex revisited his earlier studies of N2O 

and NO decomposition by Fe-ZSM-5.  The works by Heyden et al.
198,199

 and Hansen et al.
200

 

expanded the NOx reduction mechanisms to include hundreds of elementary reactions at mono- 

and bi-nuclear Fe sites.  Their ab initio calculations and kinetic models explain the effects of 

temperature, humidity, oxygen, and iron loading on the NOx reduction activity of Fe-ZSM-

5.
175,201

   

An elegant series of computational studies from Alex’ group examined hydrocarbon 

cracking by acid zeolites.  The overall cracking mechanism involves three steps: adsorption of 

alkanes into the zeolite framework, association with an acid site, and the catalytic protonolysis 

steps.  Catalytic cracking, as Alex surely anticipated, was ideal for computational analysis: 

industrially important, simple enough to permit comprehensive calculations, and sufficiently 

complex to present unresolved questions.  At the time of their computational studies, the overall 

activation energy was known to depend on chain length primarily because of the adsorption step.  

Alex, working with Berend Smit and Martin Head-Gordon, extended our understanding to the 

more subtle effects of entropy, zeolite structure, and reaction dynamics.
182,202,203

  The analysis by 

Swisher et al. is a blueprint for rigorous and thorough computational work.
204

  They used 

Page 29 of 67

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30 

 

configurational bias Monte Carlo simulations to compute the adsorption enthalpy and entropy at 

reaction conditions for various alkanes, in various sites, and in several different zeolites.  They 

combined the computed adsorption enthalpies and entropies with overall activation parameters 

from experiment to obtain activation enthalpy and entropy estimates for the catalytic steps (see 

Figure 17).  Swisher et al. also used DFT to predict rates for the chemical step.
204

  Computed and 

measured overall rates (for the FAU zeolite) agreed within a factor of about 100 from propane to 

n-hexane.  Later calculations by Sharada et al.
205

 and Janda et al.
204

 improved the calculations 

with better DFT calculations and better zeolite models.    

 

 
Figure 17. Combined adsorption enthalpies and entropies from Monte Carlo simulations (blue) 

with overall activation parameters from experiment (red) to infer activation parameters for the 

chemical step (green).  An independent confirmation of the overall cracking mechanism can then 

be obtained by using DFT calculations for the elementary cracking step(s).
202

 

 

 

Alex in Practice 

 

This methodical approach reveals the long-term, systematic thinking of Alex Bell as a 

scientist. Patient development of new computational and experimental tools, applying them step 
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by step to pertinent problems in structured catalysts, allow him to, over time, construct a more 

and more complete picture of the problem at hand, solving outstanding questions that lead from 

science, to development, and to design, as outlined in Reference 75. 

 One thing that stands out when reading Alex Bell’s published work is his exceptional 

writing skill. Both in original journal articles and in perspective articles and reviews, his writing 

is clear and concise, with well-chosen words and easy sentences.  The presentation of the 

scientific story is well crafted from Abstract through to Conclusions.  The main findings, as well 

as the motivation for the work jump right off the page, supported by clear scientific arguments, 

and illustrated by the perfect number of tables and figures. Alex devoted much of his time 

teaching scientific writing to his graduate students.  All of them benefited greatly from his 

mentorship, and throughout their careers employed to advantage the writing and oral skills 

learned from Professor Bell.  

As a former postdoctoral researcher during the time that Bell was Dean of the College of 

Chemistry at UC Berkeley, one of the authors (Marc-Olivier Coppens) was struck by the way in 

which work for the College and research time would be perfectly separated, in space (different 

offices) and time (regular appointments). In this, he was as systematic as the way in which he 

would conduct his research. For example, on any Wednesday, Alex Bell would have research 

appointments in his Departmental office during the morning (Marc-Olivier’s were at 10am), then 

move to the Dean’s Office for the afternoon, and typically make a round in the evening, where 

he would sometimes drop into the office for an extra conversation. Alex Bell was always poised, 

well organised and prepared; he listened carefully and asked excellent questions, leading to 

effective discussions. This made a great impact on Marc-Olivier for organizing his work later on 
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in his career, especially in combining his current positions as Head of Department, Centre 

Director, scientific research and time for teaching and students. 

Those who haven’t worked with Alex may wonder how anyone can have such 

tremendous breadth, but anyone who has written a paper with him has seen the recipe.  When 

Alex sits down with collaborators or students to revise a manuscript, he isn’t just there to finish 

the paper.  He wants to assimilate and master the full skillset of his co-author.  In the familiar 

parts of a manuscript, he asks razor sharp questions about wording and internal consistency.  But 

when he encounters a part of the manuscript with ideas, principles, or methods that are new, he 

asks different types of questions.  He wants to know in full detail how it works and how it relates 

to what he already knows.  He is a fast study.  After one long meeting, Alex can not only use the 

new ideas but he can give an impromptu lesson to the next student.   

As a PhD advisor, Alex is a fountain of refreshing, child-like enthusiasm.  He typically 

arrives a few minutes late to meetings with his PhD students (we called it Berkeley time).  He 

hustles in with an excited grin, wringing his hands as though he was next up to bat, and then 

dives right into the technical discussion.  His excitement over new results was a wonderful 

source of motivation.    

 

Summary   

 

We have enjoyed putting together even this modest number of vignettes to help celebrate 

Alex’s contributions to catalysis and reaction engineering – both as a technical field and as a 

scholarly community.  At the occasion of his 70
th

 birthday celebration in Berkeley Alex 

commented that he was drawn to Berkeley because John Prausnitz told him on a visit that ‘here 

students do not work for us, we collaborate with them’.  He did just that – collaborate with his 

students and postdoctoral fellows.   
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Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at 

DOI:xxxxxxxxxxxx. 

A list of Alex Bell’s publications (PDF). 
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Figure 5.  Proposed mechanism of hydrocarbon synthesis from CO and H2.
18

 

Figure 6.  Reaction scheme for the rapid equilibration of CO into adsorbed CO and the 

interconversion of dissociated CO into the various forms of carbon.
61 

Figure 7.   Arrhenius plots for the formation of methanol at 10 atm and a H2/CO ratio of 3.
69 

Figure 8.   Schematic illustration of the interaction of the Pd with the support.
44

 

Figure 9.   Illustration of clathrate organization around a template cation.
98

 

Page 48 of 67

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



49 

 

Figure 10.   Assembly of clathrates into a prospective nucleus.
98

 

Figure 11.   Quantitative 
29

Si MAS NMR patterns, offering key evidence pointing toward a 

comprehensive description of the silicalite synthesis induction period.
102
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Figure 13.   Mechanistic scheme for the TPO experiment on 3.4V/MCM-48.
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but also differences at low (top) and high loading (bottom).
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