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Abstract
Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological

and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback train-

ing is feasible in Huntington’s disease (HD), and assess any factors that contribute to its

effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD

to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed

behavioral and neuroimaging data before and after training to examine changes of brain function

and structure, and cognitive and motor performance. We found that patients overall learned to

increase activity of the target region during training with variable effects on cognitive and motor

behavior. Improved cognitive and motor performance after training predicted increases in pre-

SMA grey matter volume, fMRI activity in the left putamen, and increased SMA–left putamen

functional connectivity. Although we did not directly target the putamen and corticostriatal con-

nectivity during neurofeedback training, our results suggest that training the SMA can lead to

regulation of associated networks with beneficial effects in behavior. We conclude that neurofeed-

back training can induce plasticity in patients with Huntington’s disease despite the presence of

neurodegeneration, and the effects of training a single region may engage other regions and cir-

cuits implicated in disease pathology.
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1 | INTRODUCTION

Neurological disease symptoms are associated with neuronal dysfunc-

tion, that is, atrophy, increased (Filippini et al., 2009) or decreased

activity, or connectivity (Burciu et al., 2016). Novel methods that

induce neuroplasticity could normalize neuronal function and may

improve symptoms or slow disease progression. Real-time fMRI neuro-

feedback training is a novel approach that uses real-time fMRI and rein-

forcement learning to induce changes in brain activity (Caria, Sitaram, &

Birbaumer, 2012; De Charms, 2008; Linden and Turner, 2016; MacIn-

nes, Dickerson, Chen, & Adcock, 2016; Shibata, Watanabe, Sasaki, &

Kawato, 2011; Sulzer et al., 2013; Weiskopf, 2012). It improves cogni-

tive function in healthy individuals (De Bettencourt, Cohen, Lee, Nor-

man, & Turk-Browne, 2015; Scharnowski, Hutton, Josephs, Weiskopf,

& Rees, 2012) and motor function in patients with Parkinson’s disease

(Subramanian et al., 2011, 2016). By providing participants with feed-

back of their own neural activity in a closed-loop experimental design,

participants gradually learn to control it, thereby inducing structural

and functional changes to target regions and their associated networks

(Greer, Trujillo, Glover, & Knutson, 2014; Haller et al., 2013; Horovitz,

Berman, & Hallett, 2010; MacInnes et al., 2016; Megumi, Yamashita,

Kawato, & Imamizu, 2015; Ruiz et al., 2013).

For Huntington’s disease (HD), an autosomal-dominant neurodege-

nerative disease affecting motor and cognitive function, regions

affected by disease pathology typically show atrophy and reduction of

activity and connectivity that correlates with impairment (McColgan

et al., 2015; Novak et al., 2012, 2015; Poudel et al., 2014; Tabrizi et al.,

2009, 2011; Wolf, Vasic, Sch€onfeldt-Lecuona, Landwehrmeyer, &

Ecker, 2007; Wolf et al., 2012). An important question is therefore

whether HD patients can learn to volitionally regulate the activity of

affected regions, and what effect that would have on their brain activ-

ity after training, and their cognitive and motor performance. To

answer this question, we recruited ten HD patients to take part in an

intensive real-time fMRI neurofeedback training study that consisted

of at least 3 neurofeedback training visits on separate days. Patients

were trained to volitionally increase BOLD fMRI signals from the Sup-

plementary Motor Area (SMA) by receiving near real-time visual feed-

back in the form of a thermometer bar whose height represented the

BOLD signal recorded from SMA (Figure 1). We also examined changes

in their brain function and structure, as well as their cognitive and

motor performance before and after training. The aim of this proof-of-

concept study was to determine whether neurofeedback training is

feasible in HD, and to identify any parameters that were associated

with improvement of patient performance in order to inform future

randomized controlled trials.

As part of the training, patients used motor imagery and received

continuous feedback reflecting the level of BOLD activity of the SMA

(including pre-SMA). We selected the SMA, because its function and

connectivity with the striatum is affected by HD (Kl€oppel et al., 2009)

and can provide reliable, continuous signal estimates suitable for real-

time fMRI neurofeedback training (Subramanian et al., 2011, 2016).

We expected that patients’ SMA activity would increase during the

training and after the training patients would be able to volitionally reg-

ulate their SMA activity, even in the absence of neurofeedback (Haller

et al., 2013; Scharnowski et al., 2012). To the extent that learnt control

of SMA activity is beneficial, we expect that it would have a positive

effect on the patients’ behavioral performance. Changes in structural

MRI measurements have not been previously reported following

FIGURE 1 Schematics of the neurofeedback training setup. Continuous feedback in the form of a red bar representing the BOLD signal
recorded from the target ROI (here, SMA) is rear-projected onto a screen viewed by the participant while they are lying in the MRI scanner.
SMA signals are recorded using the MRI scanner, analyzed in near real-time using Turbo-BrainVoyager and converted into a visual represen-
tation using custom MATLAB scripts. The height of the red bar reflects the magnitude of the BOLD signal from the SMA during upregula-
tion compared to baseline. The participants are instructed to attempt to use motor imagery (or any other strategy that works) to increase
the height of the bar as much as they can. The frame around the bar turns green and the black line goes up to signal to the participants to
upregulate and increase the height of the red bar. SMA5 supplementary motor area
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neurofeedback training; however, other types of training paradigms

have reported changes in grey and white matter (Draganski et al.,

2004; Lewis, Baldassarre, Committeri, Romani, & Corbetta, 2009; Sagi

et al., 2012; Sampaio-Baptista et al., 2013, 2014; Takeuchi et al., 2010)

following training and we were therefore interested in examining

whether such effects would be present in regions modulated during

training.

Previous studies using neurofeedback training have shown that

the changes induced by neurofeedback are not just localized to the

training target region, but extend to other areas connected to the tar-

get region or engaged by the neurofeedback training task (Emmert

et al., 2016; Haller et al., 2013; Horovitz et al., 2010; Koush et al.,

2013; Ruiz et al., 2013; Zhang, Yao, Shen, Yang, & Zhao, 2015; Zotev

et al., 2011). Using real-time fMRI based neurofeedback instead of

EEG-based neurofeedback enables us to monitor changes in functional

brain activity that occur during training, not only in the target region,

but the whole-brain, including sub-cortical regions such as the striatum,

which is commonly recruited during neurofeedback training (Emmert

et al., 2016). Corticostriatal connectivity is disrupted in HD and associ-

ated with cognitive and motor impairment (Bohanna, Georgiou-

Karistianis, & Egan, 2011; McColgan et al., 2015; Novak et al., 2015;

Tabrizi et al., 2009, 2011), we were therefore interested to examine

whether learning to regulate SMA activity would lead to changes in

striatal function and connectivity with the SMA.

The effect of interventions such as multidomain cognitive training

extend to untrained tasks or everyday aspects (Anguera et al., 2013;

Subramaniam et al., 2012; Willis et al., 2006), an effect known as

“transfer,” whereby improvements on cognitive domains relevant to a

disease can be generalized to other domains of cognition and general

quality of life. The exact mechanism of transfer is, however, not well

understood and could be related to both targeting the pathology and

stimulating neuroplasticity (Mishra and Gazzaley, 2014). Neurofeed-

back training is primarily based on reinforcement learning, but also

includes visual processing and decision making (Haller et al., 2013; Law-

rence et al., 2014). Here, by using the SMA as the target region, motor

control networks were also engaged. It is therefore possible, that neu-

rofeedback training could have a beneficial effect on untrained cogni-

tive and motor tasks, especially if those tasks are associated with brain

regions and networks that are engaged during the training. Although

the aim of this study was not to prove efficacy, but feasibility, prelimi-

nary evidence was collected on cognitive and motor tasks before and

after training using untrained, independently validated biomarkers of

HD progression (Tabrizi et al., 2009, 2011, 2012, 2013). This allowed

us to gain insight on whether such methods hold promise as an inter-

vention in HD, and to identify the factors associated with any improve-

ment in patient performance.

In summary, the aim of this study was to examine whether HD

patients are able to learn to regulate their SMA activity using real-time

fMRI neurofeedback training and what effect that would have on their

motor and cognitive performance. In addition, we were interested to

understand which changes in brain function would correlate with

improvement in behavior, which is important to improve the design of

future trials.

2 | MATERIALS AND METHODS

2.1 | Participants

Eleven adults were recruited to the study. One participant withdrew

from the study after two visits for reasons unrelated to the study; the

data were not used in any of the analyses. The remaining 10 partici-

pants completed the training and testing protocol (7 females, 3 males;

mean (SD) age551.1 (9.4); see Table 1 for detailed participant infor-

mation). All participants reported that they were right-handed and all

had undergone genetic testing for HD with a positive result. Because

large head movements cause severe artefacts in the MRI signal, partici-

pants were selected with none-to-mild motor signs. To take part in the

study, they had to have a Unified Huntington’s Disease Rating Scale

(Huntington Study Group, 1996) (UHDRS) Total Motor Score (TMS) of

<20 and a chorea subscore of <5. The UHDRS assessment was per-

formed by trained clinicians from the HD Multidisciplinary Clinic at the

National Hospital for Neurology and Neurosurgery (NHNN)

<12 months before recruitment to the study. None of the participants

recruited were prescribed dopamine receptor antagonists, for example,

tetrabenazine or olanzapine, which could disrupt reinforcement learn-

ing. At the first visit participants also completed the Montreal Cognitive

Assessment test (Nasreddine et al., 2005) (MOCA), which gave an esti-

mate of the participants’ level of cognitive capacity. All participants

provided written informed consent according to the Declaration of

Helsinki and the study was approved by the local Research Ethics

Committee.

To identify and exclude data with large motion related artefacts

or other issues, thorough checks were performed. Data that did not

fit the criteria specified in detail in the Methods section below were

excluded. From some of the analyses, we excluded participants;

however, the main analyses included in this article include all 10

patients. In more detail, all 10 patients were used in the analyses

testing for training effects (i.e., the change in the target ROI activity

from the first to the last training session). All 10 patients were also

used in the analyses looking at change in cognitive and motor per-

formance before and after training (composite score). All 10 patients

were included in the regression analyses with performance (i.e.,

composite score) and change in BOLD signal from the first to the

last training session, and the regression analyses between the com-

posite score and change in connectivity between the target ROI and

left putamen and the rest of the brain. One patient was excluded

from the VBM and VBQ analyses because of head motion, that is,

nine patients were used in this analysis. One patient was excluded

from the fMRI paced tapping task analyses, because of poor per-

formance during the tapping task (Supporting Information), that is,

nine patients were used in this analysis. One additional patient was

excluded from the analyses of the behavioral data of the fMRI tap-

ping task and the regression analyses between the BOLD signal and

the tapping task performance, because the data collected from the

button box were not reliable enough to perform the required analy-

ses. Therefore only eight patients were used in these analyses.
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2.2 | Study protocol

As part of the study, participants completed 1–2 pretraining, 3–4 neu-

rofeedback training, and 1–2 post-training visits, depending on the par-

ticipants’ availability and preference. To take part in the study,

participants had to commit to complete at least three training visits

(the fourth visit was optional) in addition to the baseline and follow-up

visits. Each visit was 3 days to 2 weeks apart. Two participants com-

pleted only three training visits, whereas the remaining eight were able

to complete four. The mean (6SD) period between consecutive visits

was 8.8 (67.9) days and the mean (6SD) period from the first to the

last visit was 53.7 (617.4) days. A diagram of the study design is shown

in Supporting Information, diagram 1.

2.2.1 | Neurofeedback training visits

The neurofeedback training visits started with an fMRI fist clenching

task with the nondominant hand, which consisted of 21 blocks of rest

followed by fist clenching with 20 s duration per block. This was used

as a functional localizer for the supplementary motor area (SMA) bilat-

erally (Subramanian et al., 2011) and was analyzed in real-time using

Turbo-BrainVoyager (TBV; Brain Innovation, The Netherlands). A

region of interest (ROI) was drawn for the contrast fist clenching versus

rest selecting the voxels with activation greater than a t value of 3 in

the SMA (including pre-SMA) bilaterally (Figure 1 and Supporting Infor-

mation, Figure 1). The selected ROI was then used as target for the

subsequent neurofeedback training runs. The ROI was redrawn at

every visit for each participant, which ensured that only the highest

activated voxels in the SMA were used for neurofeedback at each

training visit and for each participant. This is comparable to the

approach used in other studies, where the neurofeedback signal pre-

sented in each block is calculated from the highest activated voxels

within the same region (Nicholson et al., 2017; Paret et al., 2014, 2016;

Subramanian et al., 2011) or across the whole brain (Linden et al.,

2012), and thereby the voxels included in the calculation of the neuro-

feedback signal are different in every trial, but most relevant for neuro-

feedback training.

The participants performed 4 neurofeedback training runs per visit

(one participant on one of the training visits only completed 3 training

runs, because of a technical failure). Prior to scanning, the participants

were instructed to refrain from making any overt movements and use

motor imagery, or any other mental strategy they felt is effective, to

increase the activation of the target ROI during the upregulation

blocks. To inspect the participants’ limb movements during the func-

tional localizer and neurofeedback training runs and ensure task com-

pliance, pneumatic tubes connected to a pressure sensor were taped

along the participants’ palms and feet. This setup enabled the detection

of gross limb movements, for example, flexing one’s fingers or squeez-

ing one’s fist, during the scanning session and ensured task compliance

(see paragraph on data quality control on the Supporting Information).

The neurofeedback training runs consisted of 6 baseline blocks, 6

response blocks, and 5 upregulation blocks, presented in interleaved

order. The baseline and upregulation blocks were 30 s long, the

response blocks were 16 s to allow for the hemodynamic response to

return to baseline prior to the upregulation blocks. To prevent partici-

pants from engaging in motor imagery during the baseline blocks and

to provide an appropriate control condition, the baseline blocks con-

sisted of a simple visual attention task that was closely matched to the

neurofeedback training blocks. During the baseline blocks, the partici-

pants monitored changes in the luminance of the white bar, if the white

bar flickered to grey (for 1 s), they would wait until a question mark

appeared inside the white bar and then make a response by clenching

their left (nondominant) fist once (Supporting Information, Figure 2). A

maximum 3 out of 6 baseline blocks flickered per run and the timing of

the flickering during the block was random.

TABLE 1 Participant characteristics

Participant Gender Age
CAG repeat
length

CAG age
product
(CAP)

Caudate
volume
(%ICV)

Montreal
Cognitive
Assessment
(MOCA)

UHDRS

Total Motor
Score (TMS)

Diagnostic Confidence
Score (DCS)

Total Functional
Capacity (TFC)

1 F 43 46 110 0.29 22 14 4 13

2 F 56 40 89 0.53 30 4 3 12

3 F 46 44 104 0.39 26 16 4 11

4 F 68 39 98 0.45 27 11 4 12

5 M 48 45 115 0.33 29 13 4 12

6 F 59 42 112 0.36 28 12 4 13

7 F 61 40 97 0.48 27 5 1 13

8 F 43 41 76 0.47 28 0 0 13

9 M 48 44 108 0.41 23 17 4 12

10 M 39 43 81 0.46 29 8 3 13

Note. Abbreviations: ICV5 intracranial volume; UHDRS5Unified Huntington’s Disease Rating Score. Normalized CAG Age Product (CAP score) was
calculated as 100 3 Age 3 (CAG2 30)/627, based on the formula by Ross et al. (2014), such that the CAP score is �100 at an HD gene-carrier’s
expected age of onset as estimated by Langbehn et al. (2004).
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During the upregulation blocks, neurofeedback reflecting the level

of target ROI activation was presented visually as a red thermometer

bar (Subramanian et al., 2011) (Figure 1 and Supporting Information,

Figure 2). The height of the thermometer bar updated on average every

1.5 s and indicated the target ROI percent signal change (PSC) at any

given point during upregulation compared to the mean activity of the

preceding baseline block. A black line was set at 3/5 of the thermome-

ter height and acted as an additional reminder to the participant that

they needed to increase the height of the red bar. To calculate the

baseline, we averaged the target ROI activity during the preceding

baseline block weighted by a mixture of two gamma functions model-

ling the hemodynamic response during the 30 s baseline block. The

activity during the response blocks was not included in the estimation

of the baseline activity.

To facilitate learning and control participant levels of anxiety and

motivation, we introduced shaping, whereby the difficulty in increasing

the height of the thermometer bar was adjusted in response to the par-

ticipants’ performance (Linden et al., 2012; Weiskopf et al., 2004). In

more detail, the maximum height of the thermometer bar was scaled

by the maximum PSC achieved during the preceding upregulation

block. If participants’ PSC during an upregulation block was low, the

maximum height of the bar for the next block would be set low. There-

fore, small increases in PSC would appear larger during the next block,

rewarding positive results, even if low. On the other hand, if partici-

pants achieved a large increase in the target ROI PSC, they would need

to achieve a higher PSC in the next block to be rewarded with a higher

than before increase in the height of the thermometer bar. Only PSC

increases were fed back to participants, decreases were not shown. In

this way, participants were positively reinforced to continuously

improve by adjusting the level of difficulty in each block, but without

becoming demoralized, even if they underperformed during a block.

2.2.2 | Pre- and post-training visits

The pre- and post-training sessions included (a) a selection of cognitive

and quantitative motor (Q-Motor) assessments sensitive to HD pro-

gression from the Track-HD assessment battery (Tabrizi et al., 2009,

2011, 2012, 2013) (see paragraph below on measures of cognitive and

motor performance for details of the tasks included), (b) Multi-

Parameter Maps to assess structural MRI plasticity (Weiskopf et al.,

2013), and (c) an fMRI paced finger-tapping task with the left (nondo-

minant) index finger. To minimize practice effects when comparing pre-

and post-training performance, the cognitive and Q-Motor assessments

were repeated prior to the first neurofeedback training session. The

second assessment was the baseline visit and compared against the

post-training performance.

The paced tapping task that was performed during the pre- and

post-training visits consisted of alternating blocks of rest and paced

tapping with the left (nondominant) index finger at 1.8 Hz (11 blocks

per run with 20 s duration per block). The pacing tone was on during

both the rest and tapping blocks, but participants were instructed to

tap only during the tapping blocks, that is, when the frame was green

(Supporting Information, Figure 2).

The post-training visits included two versions of the paced tapping

task, with and without upregulation. The two types of runs where iden-

tical in their presentation and participants were informed by the experi-

menter before the start of the run whether they should upregulate or

not during the upcoming run. During the runs with upregulation, the

participants were asked to upregulate activity within their target ROI

while tapping, but without receiving any neurofeedback. The instruc-

tions provided regarding upregulation, were to apply the strategy they

felt was the most successful in getting the bar high during the neuro-

feedback training runs. The paced tapping runs with upregulation were

designed to test whether participants were able to volitionally upregu-

late activity within the target ROI in the absence of neurofeedback and

the effect that this will have on their performance (Scharnowski et al.,

2012). The presentation order of the runs was counterbalanced across

participants and visits with half of the sessions starting with the tapping

with upregulation runs.

2.2.3 | fMRI task setup

Stimulus presentation and response recording was controlled using in-

house MATLAB (Mathworks) scripts and the Cogent toolbox (http://

www.vislab.ucl.ac.uk/cogent_2000.php). Turbo-BrainVoyager (Brain

Innovation, The Netherlands) was used to record the target ROI activity

during the neurofeedback training visits. Spike2 (CED) was used to

record participant limb movements using the pneumatic tubes, and

breathing and heart rate. Etymotic earphones (Etymotic ER-3A) were

used to deliver auditory stimuli.

Stimulus presentation was consistent across all fMRI tasks—paced

tapping, fist clenching and neurofeedback training. The “active” blocks,

that is, the paced tapping, fist clenching and upregulation blocks, con-

sisted of a white bar inside a green frame, whereas the “baseline”

blocks consisted of a white bar inside a grey frame (Supporting Infor-

mation, Figure 2). Our rationale was to condition participants accord-

ingly to increase motor activation only during the “active” blocks (green

frame), thereby ensuring greater task compliance. This was important

for the neurofeedback training runs, where the participants were

instructed to increase brain activity only during the upregulation blocks

and rest during the baseline blocks. All fMRI tasks were practiced prior

to each scanning session. More details on the exact setup of the tasks

for each of the sessions are presented in the Supporting Information,

methods.

2.3 | Measures of cognitive and motor performance

(composite score)

Selected cognitive and Q-Motor measures, independently validated as

sensitive to disease progression in HD (Tabrizi et al., 2009, 2011, 2012,

2013), were used to assess changes in cognitive and motor perform-

ance following neurofeedback training. Because we did not have an a

priori hypothesis about which of these measures would be affected by

the training, but were instead interested in identifying changes in over-

all cognitive and motor capacity, we combined all the selected meas-

ures into one composite score. The measures collected were objective
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measurements of cognitive and motor performance and suitable for

patients at both pre- and early symptomatic stages of HD.

In more detail, the cognitive measurements included were number

correct for Stroop Word Reading only, number correct for Symbol Digit

Modalities Test (SDMT), annulus length for Indirect Circle Tracing (log

transformed), and number correct for negative Emotion Recognition.

The Q-Motor measurements included were inter-tap interval (ITI) and

standard deviation of inter-onset interval (log transformed; log SD IOI)

during speeded tapping with the left (nondominant) index finger, and

standard deviation of mid-tap interval deviation from target rhythm

(log transformed; log SD dMTI) for paced tapping with left index finger

at 1.8 Hz. To harmonize the direction of change across all measures, so

that a larger number equates better performance, ITI, log SD IOI, and

log SD dMTI were converted to negative. The selected measures were

then standardized using the mean and standard deviation from an inde-

pendent sample of early HD patients (Track-HD visit 2 (Tabrizi et al.,

2011)). The mean of each participant’s standardized values was then

used as the composite score of Q-Motor and cognitive performance

for all visits.

The composite score at the baseline visit correlated highly with the

normalized CAG Age Product score (CAP score; Spearman’s r52.80,

p5 .010), the MOCA (Spearman’s r5 .78, p5 .014), and UHDRS TMS

(Spearman’s r52.88 and p5 .002) after controlling for age (all results

were also significant without controlling for age, all p< .02). It was

therefore a sensitive measure of the participant’s disease stage and

overall cognitive and motor capacity.

2.4 | Measures of disease pathology

Caudate volume (as percent of intracranial volume; ICV) was used as

an indirect measure of disease pathology (Kl€oppel et al., 2015). Caudate

atrophy is a characteristic sign of disease onset, which can be detected

many years before symptom onset and is very sensitive to disease pro-

gression (Tabrizi et al., 2009, 2011, 2012, 2013). It is therefore an

appropriate measure of disease pathology to be used in both pre- and

manifest HD patients. Our measure of caudate volume correlated

highly with both the CAP score (Ross et al., 2014), the UHDRS TMS, as

well as the composite score at the baseline visit (Spearman’s r52.86,

r52.77 and r5 .81 respectively, all p< .02).

2.5 | MRI acquisition parameters

For all the fMRI tasks, we used a whole-brain multi-shot 3D echo-

planar imaging (EPI) sequence (Lutti, Thomas, Hutton, & Weiskopf,

2013) with TR51 s, TE529.5 ms, excitation flip angle5158, 60 sli-

ces/partitions, in-plane resolution564 3 64, voxel size53 3 3 3

3 mm3 and GRAPPA parallel imaging in phase encoding and partition

encoding direction with 2 3 3 acceleration. FMRI tasks were included

in all visits, the baseline and post-training and the neurofeedback train-

ing visits.

For the quantitative Multi-parameter Maps (Callaghan et al., 2014;

Draganski et al., 2011; Weiskopf et al., 2013), we acquired 3 spoiled

multi-echo 3D fast low angle shot (FLASH) whole-brain volumes: (a)

proton density (PD) weighted images with flip angle568, TR523.7

ms, (b) magnetization transfer (MT) weighted images with flip-

angle568, TR523.7 ms, a Gaussian RF pulse with 4ms duration and

2208 nominal flip angle was applied 2 kHz off-resonance before non-

selective excitation, and (c) T1-weighted images with flip angle5208,

TR518.7 ms. All volumes had a voxel size51 3 1 3 1 mm3, using a

field of view (FoV) of 256 mm head–foot, 240 mm anterior–posterior,

and 176 mm right–left. Details of the protocol acquisition are described

in Helms and Dechent (2009) and Lutti, Hutton, Finsterbusch, Helms,

and Weiskopf (2010). MPMs were acquired only during the baseline

and post-training visits.

2.6 | Structural MRI analysis

All MPM volumes were co-registered to correct for interscan move-

ment using the voxel-based quantification (VBQ) toolbox (Callaghan

et al., 2014; Draganski et al., 2011). The first six echoes of each of the

weighted FLASH volumes were averaged to increase signal-to-noise

ratio and were subsequently used to calculate the MT, R1, R2*, and

PD* maps as previously described (Callaghan et al., 2014; Helms and

Dechent, 2009; Weiskopf et al., 2013).

Using pairwise longitudinal registration we created unbiased aver-

age MT and T1w images for the pre-training and post-training visits,

and a volume with the Jacobian rate of change between the visits (Ash-

burner and Ridgway, 2013). The average MT and T1w were segmented

using multispectral segmentation and the resulting grey and white mat-

ter probability maps were used to create a normalization template with

DARTEL (Ashburner, 2007).

The grey, white matter, and cerebrospinal fluid (CSF) probability

maps were used to calculate the intracranial volume (ICV). Caudate vol-

ume was measured using a manual segmentation procedure with MRI-

cro. The Striatum Atlas from the Harvard–Oxford atlas (http://www.

cma.mgh.harvard.edu/fsl_atlas.html) was used to create a spatial prior

for the caudate nucleus bilaterally; this was then manually edited by

MP to create individual participant segmentation masks. Caudate vol-

ume was then calculated as the sum of voxels within the caudate

nucleus segmentation masks bilaterally as percent of ICV.

For longitudinal voxel-based morphometry (VBM) analysis, we

masked the Jacobian rate of change for the MT volumes (Callaghan

et al., 2014) with the grey matter probability volumes and normalized

to MNI space using the template generated by DARTEL with modula-

tion and applying an isotropic 6 mm FWHM Gaussian smoothing ker-

nel. Non-stationarity correction was applied to the whole-brain results.

Age, ICV and caudate volume (as percent ICV) were included as con-

founds in all analyses. Data from one participant were excluded from

the analysis because of visible ringing across the brain due to large

head motion; therefore, nine participants were used in this analysis.

For longitudinal VBQ analysis, the PD*, R2*, R1, and MT volumes

for the pre- and post-training visits were transformed into the average

T1 image space by applying the deformations field created during the

longitudinal registration step. The resulting images were then normal-

ized to MNI space using the template generated by DARTEL without

modulation and applying an isotropic 6 mm FWHM Gaussian
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smoothing kernel. The resulting images were then used to create a

post-training versus pretraining difference map which was used in the

analyses. Statistical models included age, time difference between

scans, ICV, and caudate volume (as percent ICV) as confounds. The

results from the VBQ analyses are presented in Supporting

Information.

2.7 | Offline fMRI analysis

Statistical Parametric Mapping SPM12 (Wellcome Trust Centre for

Neuroimaging, London) was used for offline preprocessing and statisti-

cal analyses of the functional and structural MRI data. The first 10 vol-

umes were removed from the EPI time series. The images were then

corrected for head-motion with rigid-body realignment and normalized

to MNI using DARTEL without modulation and applying an isotropic

8 mm FWHM Gaussian smoothing kernel. Artrepair (http://cibsr.stan-

ford.edu/tools/human-brain-project/artrepair-software.html) was used

to identify scan-to-scan movement larger than 1 mm and create a

regressor for the first-level (single-participant) models, in addition to 6

head motion parameters generated during realignment and 14 regres-

sors modelling heart rate and breathing associated effects (Hutton

et al., 2011). The images were also inspected visually for movement-

related artefacts. In total, five runs were excluded from the analysis

because of the presence of artefacts due to large scan-to-scan move-

ments (>2 mm) across most of the upregulate, tapping, or baseline

blocks of the run. One run was further excluded because of the pres-

ence of strong RF artefacts throughout the time series.

For the statistical analyses of the neurofeedback training runs,

each run was modelled separately at the first level and contrast maps

were created for upregulation versus baseline. For the ROI analyses

marsbar (http://marsbar.sourceforge.net/) was used to extract the con-

trast estimates for the target ROI mask (see section on ROI masks for

details on the mask creation and Supporting Information, Figure 1 for a

depiction of the mask). The ROI contrast estimates and whole-brain

contrast maps were then used in linear mixed effects models with visit

and run as fixed effects and subjects treated as random effects. Age

and caudate volume (as percent ICV) were also included as confounds.

For the statistical analyses of the paced tapping task, each type of

run was modeled separately at the first level, for example, separate

models for the pretraining and post-training runs with and without

upregulation. The contrasts for tapping versus rest were then used in a

1-way ANOVA of differences among 3 session types: pretraining, post-

training with upregulation, and post-training without upregulation. Age

and caudate volume (as percent ICV) were included as confounds.

The functional connectivity analyses were performed using the

psycho–physiological interactions (PPI) approach and using the target

ROI and left putamen as seed regions. For each participant a sphere

with a 6 mm radius was drawn around the voxel with the highest acti-

vation for the upregulate versus baseline contrast and nearest to the

group peak for the contrast linear increase for upregulate versus base-

line across visits. Masks of the target ROI and the left putamen were

used such that only voxels within the masks were used to extract the

seed ROI timeseries. The putamen mask was based on the AAL atlas

provided by WFU Pickatlas toolbox (Maldjian, Laurienti, Kraft, & Bur-

dette, 2003). The PPI models included the seed region time series, the

condition regressor (upregulate vs baseline) and the interaction

between the condition and time series regressor, the PPI regressor.

The models also included 6 head motion parameters generated during

realignment and 14 regressors generated modeling heart rate and

breathing associated effects (Hutton et al., 2011). The first-level con-

trasts for the PPI factor were then used in second-level models to test

for changes in functional connectivity from the first to the last training

visit (mixed effects model with factors visit and run). Age and caudate

volume (as percent ICV) were included as confounds.

Whole-brain multiple regression analyses were performed to

establish the relationship between MRI measures of functional activity,

connectivity, and brain structure, with change in cognitive and motor

performance after neurofeedback training. In all cases, age and caudate

volume (as percent ICV) were included as confounds.

All whole-brain and small volume correction (SVC) analyses were

thresholded at voxel-wise p< .001 uncorrected, cluster-wise p< .05

family-wise error (FWE) corrected for multiple comparisons. Nonstatio-

narity correction was applied to the SVC results.

2.8 | ROI masks

Because the target ROI was redrawn at each neurofeedback training

visit using a fist clenching task as a functional localizer for the SMA,

there were differences in the voxels included in the ROI across visits.

This is comparable to other studies (Linden et al., 2012; Nicholson

et al., 2017; Paret et al., 2014, 2016; Subramanian et al., 2011)

whereby the voxels included in the calculation of the neurofeedback

are different, but most relevant for neurofeedback. To determine

whether there were any significant effects of visit on the size of the

ROI we performed a random effects analysis using training visit as a

fixed factor. This revealed that there were no significant changes in

size across visits (main effect of visit F(3, 23.8)52.01, p5 .14, increase

in size from the first to the fourth training visit t(23.6)51.34, p5 .19;

mean(SE) number of voxels was 157.8(68.5), 211(65.4), 346(65.4), and

231(72.0) for the four training visits, respectively).

To further ensure that our results were focused on changes in ROI

activity change and not affected by any incidental changes in ROI size,

for all the analyses presented in this article, we used the group target

ROI for analyses. The neurofeedback training target ROI mask was cre-

ated for each participant by adding (inclusive OR) all the ROI files used

in each training session together. Prior to being combined together into

a group mask (exclusive OR), the ROI files were normalized and

smoothed (FWHM58 similar to the EPI images) using DARTEL. The

resulting mask was then thresholded and binarized such that all voxels

from the individual participant masks were included in the group mask

(voxel intensity threshold�1). A map showing the overlap of

all patients’ individual masks is shown on Supporting Information,

Figure 1.

The mask for the striatum used for small-volume correction in

SPM12 was created using the AAL atlas provided by the WFU Pickat-

las toolbox and included the putamen and caudate nucleus bilaterally.
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3 | RESULTS

To establish whether patients were able to learn to regulate their brain

activity during training, we tested for a progressive increase across

time (visits and runs) of the target ROI activation when patients were

asked to upregulate (compared to baseline). Using a mixed linear model

with participants as a random effects factor we found a significant

increase of the target ROI activation from the first to the last training

visit (t(120)52.2, p5 .03 for models both unadjusted and adjusted for

age and caudate volume atrophy; Figure 2a), but no significant change

from the first to the last run within visit (t(120)520.3, p5 .76). There

was also no significant run by visit interaction (F(9, 120)50.77,

p5 .64). Although there was a significant, linear, mean increase across

visits, there was evident variability in signal change across visits

between participants (Figure 2a). Similarly, the voxels within the target

ROI that showed a significant effect of training were also variable

between participants, suggesting that there were differences within

the group in terms of training effects.

Although during training, the neurofeedback presented was based

on the average signal from the target ROI, it is likely that only a subpart

of the selected region would be engaged by the participants. To iden-

tify the exact voxels that showed a change across training, we

performed fixed effects analyses (at the single-participant level) charac-

terizing the increase in BOLD signal within the target-ROI during

upregulation across training visits. In Supporting Information, Figure 3a,

we show the significant clusters within the target-ROI for each of the

participants (at threshold p< .001 voxel uncorrected, p< .05 cluster

FWE-corrected), and plot the contrast estimates for upregulation vs

baseline across all visits from the significant clusters, which are more

representative of the participants’ training progress (Supporting Infor-

mation, Figure 3b). Our group of HD patients was therefore able to

learn to regulate the activity of the target region during training,

although there was variability within the group. We then asked what

the effects of the learnt volitional regulation were on the activity of the

target ROI and motor performance, while they were performing a sim-

ple motor task.

On separate visits within 2 weeks after completion of the neuro-

feedback training, patients performed in the scanner paced tapping

with the left index finger with and without volitional upregulation of

the target ROI. Paced tapping is a simple motor task that engages the

SMA and also ensures that motor performance, such as number of taps

and speed, is comparable across the different sessions. Therefore, it

allows us to observe changes in motor network activity due to upregu-

lation, unconfounded by any gross differences in motor performance,

FIGURE 2 Neurofeedback training and upregulation results. (a) Plots show target ROI activation for upregulation compared to baseline for
each of the four training visits. Left plot shows the unadjusted data for each participant at each visit (grey dots) and the group mean (black
dash). Right plot shows adjusted means (for age and caudate volume) with 95% CI derived from the linear mixed model (black squares). In
both cases, target ROI activity significantly increases from the first to the last training visit (*p< .05). (b) Superimposed on a T1 template on
left are the significant voxels with the target-ROI (small-volume corrected, t value�7, p < .001 voxel uncorr., p < .05 FWE cluster corr)
showing a correlation between reduced paced tapping inter-onset interval variability (log SD dIOI) and increased activation of the right pre-
SMA during tapping with upregulation compared to tapping without upregulation after neurofeedback training. Upregulating pre-SMA activ-
ity therefore had a beneficial effect on tapping performance (reduced variability). Scatter plot on right plots fMRI contrast estimates (tapping
versus baseline with upregulation compared to without) from the right pre-SMA cluster as a function of log SD dIOI change during tapping
with versus without upregulation (red dots). Regression slope is shown in black dotted line. Pre-SMA5 pre-supplementary motor area.
Z-coordinates are in MNI space
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such as differences in number of taps. Indeed there were no significant

differences in the number of taps across the three sessions (F(2, 14)5

1.27, p5 .31; adjusted mean(SE) number of taps was 35.10(0.7), 35.05

(0.7), and 36.00(0.7) for pretraining visits and post-training without and

with upregulation, respectively. Also see Supporting Information). As a

subtle measure of motor performance for these analyses, we used vari-

ability in deviation from the paced tapping rhythm (log SD dIOI). This is

a sensitive marker of HD motor impairment and progression measuring

the capacity of patients to maintain a rhythm (Bechtel et al., 2010),

whereby the larger the variability, the greater the motor impairment.

To determine whether patients learned to control their activity after

training, we compared tapping with and without upregulation. The

comparisons between the pretraining and post-training visits are pre-

sented in the Supporting Information for completeness.

Using a repeated measures model of tapping performance with the

presence or absence of upregulation as a factor, plus covariates age

and caudate volume, we found no significant upregulation effect upon

log SD dIOI (F(1, 5)50.064, p5 .81; adjusted mean(SE)53.98(0.92)

and 4.00(0.13). Only data from 8 subjects were included in this analysis,

refer to the Participants section for more details). In analogous statisti-

cal models contrasting fMRI activation during tapping with upregula-

tion versus without, we also did not find any significant differences

either across the whole-brain or within the target ROI (at threshold

p< .001 voxel uncorrected, p< .05 cluster FWE-corrected). Based on

our results, therefore, patients did not show substantial evidence of

learnt control at a group level, while performing a simple motor task.

To examine whether there were differences within the group in

the patients’ ability to upregulate the fMRI activation of the target ROI

after training, we performed regression analyses using tapping perform-

ance as a predictor. We hypothesized that improved performance in

the tapping task after training would correlate with ability to upregulate

the target ROI activation. Indeed, regression analyses using log SD dIOI

as a performance marker showed that lower variability, that is, better

performance, predicted increased fMRI activation within the target

ROI, and other motor areas during tapping with upregulation compared

to without. More specifically, significant clusters were within the target

ROI (small-volume-corrected results within the target ROI; pre-SMA

cluster peak MNI: 21 24 50, cluster size537 voxels, cluster FWE-

corrected p< .001; Figure 2b), and in RH dorsal pre-SMA (cluster peak

MNI: 26 8 50, cluster size5148 voxels, cluster FWE-corrected

p5 .003) and RH cerebellum (cluster peak MNI: 40 268 232, cluster

size5121 voxels, cluster FWE-corrected p5 .010). Patients therefore

differed in the degree to which they were able to volitionally upregu-

late the activity within the target region in the absence of neurofeed-

back while performing a simple motor task. Importantly, patients who

succeeded in volitionally upregulating their target ROI activity after

training had better task performance, suggesting that success at learnt

control of the target ROI activation can lead to improvement in motor

performance.

To evaluate whether the effects of neurofeedback training

extended beyond the period when participants were engaged in voli-

tional upregulation of their brain activity, we compared patient per-

formance before and after training in a set of untrained, cognitive and

motor measures sensitive to HD progression. We did not have a priori

hypotheses about which specific measures would improve significantly

following the training, but were interested in whether neurofeedback

training would have a benefit on cognitive and motor function overall.

As a measure of cognitive and motor capacity we therefore employed

a previously used composite score approach (Kl€oppel et al., 2015) that

comprised of a priori selected tasks from the Track-HD battery, that

were unrelated to the neurofeedback training and are sensitive to HD

progression (Tabrizi et al., 2009, 2011, 2012, 2013) (see Methods for

more details). To account for short-term practice related effects and

stabilize participant performance, all assessments were performed

twice on separate visits prior to the onset of the training; the second

assessment was the baseline visit and compared against the assess-

ment after training. Patients were not instructed to upregulate their

brain activity during these tests. The calculated composite score at the

baseline visit was sensitive to disease pathology and stage. Patients

with low scores had smaller caudate volume, an accurate measure of

disease pathology (Spearman’s r5 .82, p5 .006), and high normalized

CAG age product (Ross et al., 2014) (CAP score), an estimate of disease

stage (Spearman’s r52.80, p5 .010). All correlations were adjusted

for age, but results were significant without adjustment as well (all

p< .02). The composite score after training was higher (better) than the

baseline visit measure in 8 out 10 patients, although not significant

(group mean (SD)50.70 (0.68) and 0.76 (0.65) for the baseline and

post-training visits, respectively; paired t-test t(9)52.18, p5 .057;

Figure 3a). The change across all seven measures that comprised the

composite score is presented in Supporting Information, Figure 4 for

completeness. However, because we did not have an a priori hypothe-

sis about which of the individual measures should show improvement

following neurofeedback training, we did not perform any post-hoc sta-

tistical analysis and the data presented are only descriptive. Our results

therefore suggest that although all patients successfully learnt to

upregulate activity within the target ROI during neurofeedback training,

not all of them improved in measures of cognitive and motor function.

To identify the changes in brain structure and function that corre-

late with the improvement in cognitive and motor performance that

we observed, we used linear regression to examine the structural and

functional MRI changes during and following training that correlated

with improved function. Changes at the group level (without correla-

tion with performance) are presented in the Supporting Information for

completeness. In terms of changes in brain structure, we performed

VBM and show that improvement in the composite score after training

correlated significantly with an increase in left pre-SMA grey matter

(GM) volume after training (cluster peak MNI: 222 10 48, cluster

size554 voxels, cluster FWE-corrected p5 .009; located by the left

border of the functionally defined target ROI mask; Figure 3b) and in

the right inferior frontal gyrus (RIFG; cluster peak MNI: 58 16 8, cluster

size554 voxels, cluster FWE-corrected p5 .001).

To examine changes in brain function during training, we per-

formed random effects linear regression analyses examining the rela-

tionship between change in the composite score and change in the

fMRI signal levels from the first to the last training visit. Contrary to

expectation, improvement in the composite score did not predict
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increasing activation from the first to the last training visit within the

target ROI (regression with ROI estimates (F1, 9)53.35, p5 .104; as

well as no significant clusters using small-volume correction within the

target ROI), but instead in the left putamen (small-volume-corrected

results within the striatum bilaterally; cluster peak MNI: 227 4 28,

cluster size5111 voxels, cluster FWE-corrected p< .001; Figure 3c). It

also predicted decreasing activation from the first to the last training

visit in the right supramarginal gyrus (SMG; cluster peak MNI: 56 218

32, cluster size5656 voxels, cluster FWE-corrected p< .001).

Although the left putamen was not directly targeted during neurofeed-

back training, its activation during upregulation could have been modu-

lated indirectly via afferent connections to the target ROI. In this case,

we would expect to also see a correlation between improved perform-

ance and increase in functional connectivity between the target-ROI

and the left putamen during the training.

We used a psycho–physiological interactions approach (Friston

et al., 1997) to test for changes in functional connectivity from the first

to the last training visit between the target ROI and the left putamen

cluster that was previously shown to correlate with improved perform-

ance. Change in the composite score after training was then used as a

regressor to identify the functional connectivity changes that correlate

with improvement in behavior. Our results are consistent with the

notion of training a wider motor network. Using as seed ROI the left

putamen cluster we found that improved performance predicted

increase in functional connectivity with the target ROI (small-volume-

corrected results within the target ROI; pre-SMA cluster peak MNI:

212 40 40, cluster size541 voxels, cluster FWE-corrected p5 .010;

Figure 3c). Using the target ROI as the seed region we found that

improved performance also predicted increased connectivity between

the target ROI and the right cerebellum from the first to the last train-

ing visit (cluster peak MNI: 26 278 252, size5249 voxels, cluster

FWE-corrected p< .001). The increased connectivity between the left

putamen and the pre-SMA cluster significantly correlated with the

increase in pre-SMA GM volume (Spearman’s r5 .78, p5 .017), but not

with increased left putamen activity (Spearman’s r5 .16, p5 .66) or the

increase in target ROI activity during the training (Spearman’s r52.21,

p5 .56). The changes in left pre-SMA GM volume are therefore associ-

ated with training-related changes in functional connectivity between

the left pre-SMA and putamen. The results from the regression analy-

ses provide a link between training-related structural and functional

plasticity and improvement in overall cognitive and motor performance.

They also suggest that neurofeedback training can induce plasticity in

FIGURE 3 Change in performance after training and correlation with functional and structural changes. (a) Change in the composite score
after neurofeedback training compared to before for each patient and the group mean (SD) (last column). Positive scores along the y-axis
indicate that patients performed better overall after training compared to before. (b) VBM: overlaid on T1 template on left are significant
voxels (t value�7, p < .001 voxel uncorr, p < .05 FWE cluster corr) showing a correlation between improvement in the composite score
and increase in grey matter volume in the left pre-SMA after training compared to before. On right contrast estimates from the left pre-
SMA cluster are plotted as a function of composite score change. Regression slope shown in black dotted line. (c) Top left: voxels in the left
putamen showing significant correlation between improvement in the composite score after training and increased activation from the first
to the last neurofeedback training visit (SVC within the striatum bilaterally, t value�5, p < .001 voxel uncorr, p < .05 FWE cluster corr).

Top right: voxels within the target ROI showing significant correlation between improvement in the composite score and increased func-
tional connectivity (PPI) with the left putamen from the first to the last training visit (SVC within the target ROI, t value�5, p < .001 voxel
uncorr, p < .05 FWE cluster corr). Results are overlaid on a T1 template in MNI space. Scatter plot at the bottom shows the PPI contrast
estimates from the left pre-SMA cluster (shown on top right) as a function of composite score change. Regression line shown in black dot-
ted line. VBM5 voxel-based morphometry; Pre-SMA5pre-supplementary motor area; SVC5 small volume correction; PPI5psychophysio-
logical interactions
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HD patients despite the presence of neurodegeneration and that the

effects of training in a single region can extend to corticostriatal circuits

implicated in the disease pathology.

4 | DISCUSSION

In this study, we have presented preliminary evidence to suggest that

neurofeedback training is feasible in HD, and may induce disease-

relevant neuroplasticity with potentially beneficial effects on cognitive

and motor function. We did not include a control group, as the main

aim of the study was to show proof-of-concept, feasibility, and provide

important data to inform future trials. This approach is consistent with

other proof-of-concept neurofeedback training studies (Corlier et al.,

2016; Nicholson et al., 2017). In terms of our primary aim, we have

shown that HD patients can be trained to regulate their own brain

activity using neurofeedback training. In addition, the results from the

regression analyses identify a statistically significant link between

training-related plasticity and improvement in performance in patients

with a neurodegenerative condition. It is notable that in a disease such

as HD, which is characterized by progressive atrophy, we also observed

increased GM volume following the training in the participants that

improved in performance. To our knowledge, this is the first time that

an increase in GM volume has been observed after neurofeedback

training, which is possibly because our training protocol, including 3–4

training visits per participant on a weekly/bi-weekly basis, was more

intense than those previously reported.

To further understand the potential benefits of upregulating one’s

own brain activity, we asked participants after the training to perform a

simple motor task (paced finger tapping) in the scanner, while they

attempted to upregulate the activity of their target ROI in the absence

of neurofeedback. We found that participants that were able to upreg-

ulate their brain activity, while tapping, performed the task better, than

those who could not upregulate their activity. This provides additional

evidence that self-regulation of one’s own brain activity, can have ben-

eficial effects on performance. It is an interesting question, why some

participants were able to upregulate and others not. Because of the rel-

atively small sample size for this feasibility study, it is not possible to

draw any strong conclusions. However, even in studies with healthy

young adults, some participants are not able to learn to self-regulate

(Chiew, LaConte, & Graham, 2012; Scharnowski et al., 2012). The rea-

sons for this difference, between learners and nonlearners, remain

unclear.

In this study, we selected the SMA as a target ROI for neurofeed-

back training because of its role in motor control and HD symptoms.

SMA activation and SMA–striatal connectivity correlate with disease

progression and symptoms in HD (Bohanna et al., 2011; Kl€oppel et al.,

2015; McColgan et al., 2015; Novak et al., 2015). We found that

patients learned to increase their SMA activation across the training

visits and that performance improved in those patients who were able

to upregulate their SMA activity while performing a tapping task after

training. However, improvement in overall cognitive and motor per-

formance in untrained tasks was not related to change in SMA (target

ROI) activity, but rather change in left putamen activity and the con-

nectivity between the pre-SMA and the left putamen. Efferent connec-

tions and striatal activity are engaged during neurofeedback training

(Emmert et al., 2016; Haller et al., 2013; Koush et al., 2013; Nicholson

et al., 2017; Ruiz et al., 2013; Scharnowski et al., 2012; Zhang et al.,

2015; Zotev et al., 2011), reflecting cognitive processes that are also

involved in neurofeedback training, for example, change in attention

and reward processing. In our study, the engagement of the left puta-

men could reflect the use of motor imagery and reinforcement learning

during neurofeedback training, stimulating SMA–striatal connectivity.

The fact that strengthening of cortico-striatal connectivity correlated

with improvement in behavior further highlights its role in HD pathol-

ogy and suggests that stimulating cortico-striatal connectivity might be

more appropriate as a target for neurofeedback training compared to

SMA training. Our findings are consistent with recent claims that

changes in brain networks during neurofeedback training mediate

improvements in behavioral performance (Zhang et al., 2015).

Because of the absence of a control group, it is difficult to establish

whether the observed changes in brain function and structure, as well

as cognitive and motor performance, came about because of the train-

ing or because of placebo or other training-unrelated effects. However,

we believe it is unlikely that the changes that were observed in cogni-

tive and motor performance could be attributed to practice effects.

Although cognitive and motor scores could be improved because of

practice alone, most of the improvement takes place between the first

and second repetition (screening and baseline visits) (Stout et al., 2014).

In our case, the composite score change that we reported was between

the second and third repetition (baseline and post-training visits). Fur-

thermore, practice effects of the cognitive and q-motor tasks cannot

fully explain the correlation between the change in the composite score

and the increase in putamen activity and connectivity from the first to

the last training visit. Patients did not perform the cognitive and motor

tasks during the 3–4 training visits, but in separate visits before and

after the training that were at least 1 month apart. Therefore it is

unlikely that an increase in cortico-striatal connectivity from the first to

the last training visit, would relate to simple task practice effects, unre-

lated to the training.

It is however possible that the practice of motor imagery, which

occurred during neurofeedback training, could be responsible for the

observed changes in brain function and structure as well as improve-

ments in cognitive and motor performance. Because both motor

imagery and neurofeedback were used concurrently, the presentation

of neurofeedback could have contributed to improvement in motor

imagery and vice versa. Similar to other proof-of-concept neurofeed-

back training studies (Corlier et al., 2016; Nicholson et al., 2017), it was

beyond the scope of this study to disentangle the contribution of the

cognitive strategy involved in the training (motor imagery in this case)

from the effect of receiving neurofeedback. Previous studies have used

neurofeedback training and included control groups that were practic-

ing motor imagery alone, without neurofeedback. They have all shown

that motor imagery alone is not as effective as neurofeedback in

increasing brain activity during the training and improving behavior

after training (Sepulveda et al., 2016; Subramanian et al., 2011; Yoo,
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Lee, O’leary, Panych, & Jolesz, 2008). However, the small size of these

studies, and the fact that in some cases the participants were not

blinded to their group allocation (Subramanian et al., 2011), makes it

equally difficult to draw any firm conclusions. It is possible that differ-

ences in performance could be attributed to differences in motivation

and placebo effects. To answer this question in a definitive way, future,

randomized and single- or double- blinded trials are required that

would include a sham-neurofeedback group. Our study provides impor-

tant data that can be used to design such future trials.

The neurofeedback training protocol adopted in our study included

shaping, whereby the scale of reward presented to the participants

during each block was dependent on their performance in the previous

block. Shaping has been previously used in other neurofeedback train-

ing studies (De Charms et al., 2004; Linden et al., 2012), with different

studies using different ways of implementing shaping. Linden et al.

(2012) implemented shaping by choosing different voxels across the

brain as targets for neurofeedback after each run. De Charms et al.

(2004) followed a different approach, whereby the target level of acti-

vation was updated after each block using a 3 up 1 down approach. In

this study, we chose to update the target level of activation after each

block using the maximum PSC from the previous block, because we

aimed at keeping the participants motivated throughout the run. By

adjusting the target level for every block participants constantly applied

effort in order to receive positive feedback, while also ensuring that

they did not become demotivated if they were underperfoming. This

was particularly important for our patient group, which is highly anx-

ious and could become distressed in the scanner if, for example, they

underperformed consistently. In this way, we rewarded positive per-

formance even if it was low. At present there is no evidence to deter-

mine the optimal shaping protocol for real-time fMRI neurofeedback

training. To answer this question, future studies would need to be

designed that can compare different shaping approaches. In this study,

the fact that our participants learned to increase their target-ROI acti-

vation is evidence in support of the fact that our training protocol was

successful.

5 | CONCLUSION

We have shown that HD patients can learn to regulate their own brain

activity using neurofeedback training. Importantly, we were able to

identify the functional and structural changes that occurred during neu-

rofeedback training and which correlated with cognitive and motor

improvement in a set of (untrained) measures sensitive to disease pro-

gression. Our data suggest that functional connectivity between the

SMA and the left putamen may be a promising target for neurofeed-

back training. Our results can inform the design of future larger,

randomized and controlled studies, which are now required to provide

stronger evidence on the effectiveness and benefits of this approach.

Because it is noninvasive, neurofeedback training could be used pre-

ventatively or as adjunct treatment (Linden, 2012) to other disease-

modifying therapies and restore function in HD and other neurodege-

nerative diseases.

6 | DATA AVAILABILITY

All relevant data are available from the authors.
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