# 1 Molecular and functional variation in iPSC-derived sensory

## 2 neurons

3 Jeremy Schwartzentruber<sup>1\*</sup>, Stefanie Foskolou<sup>2</sup>, Helena Kilpinen<sup>3</sup>, Julia Rodrigues<sup>1</sup>, Kaur

- 4 Alasoo<sup>1</sup>, Andrew Knights<sup>1</sup>, Minal Patel<sup>1</sup>, Angela Goncalves<sup>1</sup>, Rita Ferreira<sup>2</sup>, Caroline Louise
- 5 Benn<sup>2</sup>, Anna Wilbrey<sup>2</sup>, Magda Bictash<sup>2</sup>, Emma Impey<sup>2</sup>, Lishuang Cao<sup>2</sup>, Sergio Lainez<sup>2</sup>,
- 6 Alexandre Julien Loucif<sup>2</sup>, Paul John Whiting<sup>2,4</sup>, HIPSCI Consortium (www.hipsci.org), Alex
- 7 Gutteridge<sup>2\*</sup>, Daniel J. Gaffney<sup>1\*</sup>
- 8
- 9 1) Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom
- 10 2) Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge,
- 11 United Kingdom
- 12 3) European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome
- 13 Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
- 14 4) AR-UK Drug Discovery Institute, Institute of Neurology, University College London,
- 15 London, WC1E 6BT, United Kingdom
- 16
- 17 \*Corresponding authors: Jeremy Schwartzentruber (js29@sanger.ac.uk), Alex Gutteridge
- 18 (alex.x.gutteridge@gsk.com), Daniel Gaffney (dg13@sanger.ac.uk)
- 19

## 20 Abstract

Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools
to model biological processes and disease mechanisms, particularly in cell types such as
neurons that are difficult to access from living donors. Here, we present the first map of
regulatory variants in iPSC-derived neurons. We performed 123 differentiations of iPSCs
from 103 unique donors to a sensory neuronal fate, and measured gene expression,
chromatin accessibility, and neuronal excitability. Compared with primary dorsal root

- 27 ganglion, gene expression was more variable across iPSC-derived neuronal cultures,
- 28 particularly in genes related to differentiation and nervous system development. Single cell
- 29 RNA-sequencing revealed that, although the majority of cells are neuronal and express the
- 30 expected marker genes, a substantial fraction have a fibroblast-like expression profile. We
- found that the fraction of neuronal cells was influenced by the culture conditions of the
- 32 iPSCs prior to the start of differentiation. Despite this differentiation-induced variability,
- 33 applying an allele-specific method enabled us to detect thousands of quantitative trait loci
- 34 influencing gene expression, chromatin accessibility, and RNA splicing. A number of these
- 35 overlap with common disease associations, including known causal variants at SNCA for
- 36 Parkinson's disease and *TNFRSF1A* for multiple sclerosis, as well as new candidates for
- 37 Parkinson's disease and schizophrenia. Finally we show that recall by genotype studies of
- 38 specific variants using iPSC-derived cells are likely to require sample sizes of 20-80
- 39 individuals to detect the effects of regulatory variants with moderately large (1.5- to 2-fold)
- 40 effect sizes.

## 41 Introduction

42 Cellular disease models are critical for understanding the molecular mechanisms of disease 43 and for the development of novel therapeutics. In principle, induced pluripotent stem cell 44 (iPSC) technology enables the development of these models in any human cell type. Initial 45 uses of iPSCs for disease modelling have focused mostly on highly penetrant, rare coding 46 variants with large phenotypic effects (Itzhaki et al. 2011; Liu et al. 2011; Wainger et al. 47 2014; Lee et al. 2009; Cao et al. 2016). However, there is growing interest in using iPSCs to 48 model the effects of the common genetic variants of modest effect size that drive complex 49 disease (Warren, Jaquish, et al. 2017). A key question is to what extent variability in directed 50 differentiation is a barrier to studying the effects of common disease-associated variants in 51 iPSC-derived cells. In addition, because cultured cells are imperfect models of primary 52 tissues, not all common disease-associated genetic variants also alter cell phenotypes in 53 iPSC-derived systems.

54

55 Here, we present the first large-scale study of common genetic effects in a neuronal cell type 56 differentiated from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Peripheral 57 sensory nerve fibres innervate the skin and other organs and are brought together at the 58 dorsal root ganglia (DRG) before synapsing with the spinal cord around the dorsal horn. The 59 development of efficient protocols to differentiate iPSCs into nociceptive (pain-sensing) 60 neurons (Young et al. 2014) provides the opportunity to model common genetic effects on 61 human sensory neuron function, which may underlie individual differences in pain sensitivity 62 and chronic pain. We investigate how power to detect common genetic effects is affected by 63 the variability introduced by differentiation and demonstrate how initial iPSC growing 64 conditions influence cell phenotypes in IPSDSNs. We identify quantitative trait loci (QTLs) 65 for gene expression, RNA splicing, and chromatin accessibility and identify a number of 66 overlaps between molecular QTLs and common disease associations. In generating this 67 gene regulatory map we establish effective techniques for using IPSDSN cells to model 68 molecular phenotypes relevant to common diseases.

69

#### Results 70

#### Sensory neuron differentiation and characterisation 71

72 We obtained 107 IPS cell lines derived from unrelated apparently healthy individuals by the 73 HIPSCI resource (Kilpinen et al. 2017), and followed an established small molecule protocol 74 (Young et al. 2014) to differentiate these into sensory neurons of a nociceptor phenotype 75 (Figure 1a). We performed a total of 123 differentiations; 13 of these were done with an early 76 version of the protocol (P1) which was subsequently refined (P2) to reduce the number of 77 differentiation failures and to yield a higher proportion of neuronal cells in the final cultures. 78 One RNA-seq sample failed sequencing, and four others were outliers based on principal 79 components analysis and were excluded (Supplementary Figure 1). This left a set of 119 80 differentiations with gene expression data from 100 unique iPSC donors; all subsequent 81 analyses focused on the 106 P2 protocol samples, except for QTL calling, where we used all 82 samples to maximize discovery power.

83

84 We clustered our gene expression data with 239 iPSC samples from the many of same 85 donors, as well as 28 post-mortem DRG tissue samples from 10 different donors, and 44 86 primary tissues from the GTEx project (Mele et al. 2015) (Figure 1b). Globally, IPSDSN 87 samples showed greatest similarity to iPSCs (gene expression correlation Spearman 88  $\rho$ =0.89), followed by DRG ( $\rho$ =0.84), and then brain samples from GTEx. However, because 89 different gene expression quantitation methods were used in GTEx, we cannot be certain of 90 relative similarities between GTEx tissues and the samples we uniformly processed 91 (IPSDSNs, iPSCs, DRG). The similarity to iPSCs may reflect lack of maturity in IPSDSNs, 92 which is a well-recognized problem with iPSC-derived cells (Soldner et al. 2016; Pashos et 93 al. 2017; Warren, Sullivan, et al. 2017; Sala, Bellin, and Mummery 2016). We also note that 94 because the same iPSCs were differentiated to IPSDSNs, both donor genetic background 95 and cell culture effects may contribute to the observed similarity. Despite this, key sensory neuronal marker genes were highly expressed in IPSDSNs, while pluripotency genes were 96 not (Figure 1c). Using  $Ca^{2+}$  flux measurements on a subset of differentiated cultures (n=31) 97 98 we confirmed that the cells consistently responded to veratridine (a sodium ion channel 99 agonist) and tetrodotoxin (a selective sodium ion channel antagonist), as expected (Supplementary Figure 2). Patch-clamp electrophysiology on 616 individual neurons from 31 100 101 donors (Supplementary Figures 3,4) showed that the distribution of rheobases was 102 comparable to those obtained from primary DRG cells, but showed significant variation 103 between donors (Supplementary Figure 5). 104

- 105
- 106





108 Figure 1 Characterization of molecular phenotypes in iPSC-derived sensory neurons. 109 (a) Schematic of IPSDSN differentiation and assays. iPSCs were received in Essential 8 (E8) medium 110 (N=82) or on mouse embryonic fibroblasts (MEFs, N=49), and transferred to KSR-XF medium. Over 111 11 days, different inhibitor combinations were added (2i, 5i, 3i, see Methods), and N2B27 medium 112 phased in, followed by transfer to growth factor medium at day 11 for neuronal maturation. (b) PCA 113 plot projecting IPSDSN, iPSC, and DRG samples onto the first two principal components defined 114 based on RNA-seq FPKMs in GTEx tissues. Some GTEx tissues are unlabelled due to overlapping 115 labels. (c) Expression of sensory neuronal marker genes (SCN9A, DRGX) and key iPSC genes 116 (NANOG, POU5F1).

## 118 Quantifying differentiation variability using single-cell RNA-seq

In previous work we showed that not all individual cells express neuronal marker genes after 119 120 differentiation (Young et al. 2014). Samples also appeared to differ visually in the fraction of 121 cells with a neuronal morphology. To further characterize this heterogeneity, we sequenced 122 177 IPSDSN cells from one individual and clustered them based on expression profiles 123 using SC3 (Kiselev et al. 2016). The data were best explained by two clusters (Figure 2a 124 and Supplementary Figure 6), with 63% of cells forming a tight cluster expressing sensory-125 neuronal genes (e.g. SCN9A, CHRNB2), and the remaining 37% of cells forming a looser cluster expressing genes typical of a fibroblastic cell type (e.g. MSN, VIM). The two cell 126 127 types also separated cleanly in a principal components plot (Supplementary Figure 7), 128 indicating that the cells do not fall on a smooth gradient from more neuronal to less, but rather have differentiated to distinct cell states. Comparing gene expression from each 129 130 cluster to other tissues showed that the neuronal cluster was most similar to DRG 131 (Spearman's  $\rho=0.654$ ), followed by iPSCs ( $\rho=0.609$ ) and GTEx brain (mean  $\rho=0.599$ ) 132 (Supplementary Figure 8) while the fibroblast-like cluster was most similar to GTEx transformed fibroblasts ( $\rho$ =0.683), DRG ( $\rho$ =0.662), and iPSCs ( $\rho$ =0.653). The similarity of 133

134 these cells to GTEx fibroblasts could suggest a general similarity of adherent cultured cells, 135 although the neuronal cluster had lower similarity to GTEx fibroblasts ( $\rho$ =0.579) than many 136 other tissues.

## 137

138 Next, we used CIBERSORT (Newman et al. 2015) to estimate the fraction of RNA from 139 neuronal cells in our bulk RNA-seq samples, using the single cell gene expression counts with their cluster labels from SC3 as signatures of neuronal or fibroblast-like expression. The 140 141 estimated neuronal content was strongly correlated ( $R^2 = 0.75$ ) with the first principal 142 component of gene expression, and this corresponded well with a visual assessment of 143 neuronal content from microscopy images (Figure 2b, Supplementary Figures 9,10). 144 Although a majority of samples appeared by microscopy to have high neuronal content, 145 CIBERSORT estimated relatively high fibroblast-like content for many samples (mean 49%). 146 A factor contributing to this may be the greater RNA content (2.3-fold greater; 147 Supplementary Figure 11) of fibroblast-like cells: indeed when the single cell counts are 148 pooled, CIBERSORT estimates the fibroblast content of this "sample" as 60%, considerably 149 higher than the 37% of single cells in the fibroblast-like cluster. A second consideration is 150 that our scRNA-seq sample was matured for 8 weeks, whereas our bulk RNA-seq samples 151 were matured for 4 weeks. Although gene expression changes are minor after 4 weeks 152 maturation (Young et al. 2014), this difference in maturity means that our single cell 153 reference profiles do not perfectly represent cells in our bulk samples. Despite this, IPSDSN 154 samples estimated to have high fibroblast content still showed greater similarity in genome-155 wide gene expression with DRG than with any GTEx tissue, including fibroblast cell lines 156 (Supplementary Figure 12). Although these similarities are reassuring, we note that technical 157 factors could contribute to the greater similarity with DRG, as different gene expression 158 quantification tools were used for GTEx (RNASeQC) and for our iPSC, DRG, and IPSDSN 159 samples (featureCounts).

160



#### 161 162

Figure 2 Single-cell sequencing of IPSDSN cells. (a) A heatmap of RNA-seq data for ten marker
genes of the two cell clusters identified by SC3. Color scale denotes normalised gene expression levels.
(b) The first two principal components (PCs) of IPSDSN gene expression, with estimated fibroblastlike percentage from CIBERSORT, from samples derived using protocols 1 and 2 (P1 and P2).

#### 168 Heterogeneity in IPSDSN gene expression

169 A central issue for genetic studies in iPSC-derived cells is heterogeneity of cellular 170 phenotypes. This heterogeneity could arise from donor genetic background, effects of clonal selection and effects of the cell culture environment during reprogramming and 171 172 differentiation. Genome-wide gene expression was highly correlated within lines 173 differentiated multiple times (median Spearman  $\rho$ =0.96) and reduced slightly between 174 IPSDSNs from different donors (median  $\rho$ =0.93) (Supplementary Figure 13). However, differentiation replicates within donor cell lines did not consistently cluster together 175 176 (Supplementary Figure 14), suggesting that variability due to differentiation was at least as 177 large as that due to donor genetic background and iPSC reprogramming together. Although 178 marker genes specific to sensory neurons and nociceptors were expressed (FPKM > 1) in 179 nearly all samples, we observed a high degree of heterogeneity in the level of expression of 180 some genes compared with DRG (Figure 1c and Supplementary Figure 15), despite the fact 181 that a cell culture system is theoretically more pure in cell type composition than a complex 182 tissue. These observations were independent of sample size, and were robust when 183 comparing with DRG samples from unique donors only, rather than all 28 DRG samples 184 (Supplementary Figure 16). 185 186 Next, we examined how between-sample variability in global gene expression of IPSDSNs compared with other somatic tissues and cell lines. The distribution of coefficient of variation 187 188 (CV) of gene expression in IPSDSNs fell within the range of most GTEx tissues (Figure 3a). 189 However, the median CV of gene expression in IPSDSNs (0.37) was considerably higher

- than in DRG (0.23), indicating that IPSDSNs have greater between-sample variability in 190 191 expression than the primary tissue they are intended to model. Highly variable genes in 192 IPSDSNs were enriched for function in neuronal differentiation and development 193 (Supplementary Table 4). Genes that were significantly upregulated between iPSCs and 194 IPSDSNs, which will include those essential for sensory neuronal function, were also more 195 variable than remaining genes (Supplementary Figure 17). Importantly, we did not observe similar levels of expression variability of neuronal or developmental gene groups in DRG, 196 197 iPSCs, or GTEx nervous tissues (Supplementary Figure 18). These results highlight that 198 expression of neuronal genes varies substantially more in IPSDSNs than in somatic nervous 199 tissue, probably as a result of variability in differentiation. Consistent with this, variance 200 components analysis (Figure 3b, Supplementary Figure 19) showed that as much or more variation was explained by differentiation batch (median 24.7%) as donor/iPSC line of origin 201 202 (median 23.3%), which would include both donor and reprogramming effects.
- 203
- 204
- 205



207

208 Figure 3 Gene expression variability in IPSDSNs is influenced by differentiation conditions. (a) 209 Density plot of the coefficient of variation of genes across samples, separately for each GTEx tissue, 210 IPSDSN samples (n=106, P2 protocol only), iPSC (n=200), and DRG (n=28). (b) Violin plot showing, 211 for each gene, the estimated fraction of total expression variability across samples due to 212 differentiation batch, donor genetics or iPSC reprogramming, culture conditions ("wasFeeder": feeder-213 dependent vs. E8 medium), and gender. (c) Differentially expressed genes (FDR 1%, blue and red 214 points) between iPSC samples grown on feeders (n=68) vs. E8 medium (n=171). (d) Differentially 215 expressed genes (FDR 1%) between IPSDSNs from feeder- (n=27) and E8-iPSCs (n=79). Neuronal 216 differentiation genes, such as RET and L1CAM, are more highly expressed in samples from E8-217 iPSCs. (e) Left barplot: global gene expression differences between feeder- and E8-iPSCs are 218 captured in PC1. Right two barplots: selected differentially expressed genes. (f) Left barplot: 219 estimated neural fraction of samples differs in IPSDSNs derived from feeder- and E8-iPSCs. Right 220 two barplots: selected differentially expressed genes.

221

#### 222 iPSC culture conditions influence cell fate

223 Intriguingly our variance components analysis suggested that, although the cell lines for this 224 analysis were differentiated using an identical protocol, starting iPSC cell culture conditions 225 influenced gene expression patterns in the IPSDSNs produced four weeks later (Figure 3). 226 Of the 106 successful P2 protocol differentiations, 27 were from iPSCs maintained on 227 mouse embryonic fibroblast (MEF) feeder cells (feeder-iPSCs), while the remaining 79 were 228 grown in Essential 8 medium (E8-iPSCs). The first principal component (PC) of iPSC gene 229 expression clearly differentiated feeder- and E8-iPSCs (Figure 3e), indicating that culture 230 conditions are among the largest global effects on transcription. Similarly, PC1 of gene 231 expression in IPSDSNs distinguished samples originating from feeder- and E8-iPSCs; 232 moreover, IPSDSNs from E8-iPSCs had higher neuronal content (Figure 3f, 28% higher for E8-iPSCs, t-test p=1.84x10<sup>-5</sup>). A possible technical explanation for these results is that 233 234 protocol implementation and batch effects changed subtly over the course of the project. 235 However, the difference in neuronal content between IPSDSNs derived from E8 or feederiPSCs remained when sample derivation date was included as an explanatory covariate 236 237 (linear regression p=6.5x10<sup>-4</sup>, 36% higher for E8-iPSCs, Supplementary Figure 20). 238

- 239 Next, we determined genes that were differentially expressed between E8- and feeder-240 iPSCs and IPSDSNs (Figure 3c,d). Genes more highly expressed in feeder-iPSCs were strongly enriched for mesenchyme development, stem cell differentiation, and Wnt and TGF-241 242 β signalling, while genes more highly expressed in E8-iPSCs showed less clear enrichment 243 (Supplementary Tables 5-7). Notably, inhibition of TGF- $\beta$ /SMAD signalling is a key step in 244 sensory neuronal differentiation. Top differentially expressed genes include early 245 developmental regulators such as EMX1 (15-fold higher in E8-iPSCs), important for specific 246 neuronal cell fates, and BMP2 (13-fold higher in feeders), which has been shown to 247 suppress differentiation to sensory cell fates by antagonizing Wnt/beta-catenin (Kléber et al. 248 2005) (Figure 3e). In addition, SCN9A and TAC1, key markers of sensory neurons, were expressed at low levels in iPSCs, with 2.2-fold and 2.9-fold higher expression in E8-iPSCs. 249 250 We also considered genes differentially expressed between IPSDSNs derived from E8- and 251 feeder-iPSCs (Figure 3d). Genes more highly expressed in IPSDSN samples from feeder-252 iPSCs were overrepresented in extracellular matrix components, pattern specification, organ 253 morphogenesis, and Wnt signalling (Supplementary Tables 8-10), and include FGFR2, 254 BMP7, and WNT5A (Figure 3f). Genes more highly expressed in IPSDSN samples from E8-255 iPSCs were overrepresented in ion channel complexes, peripheral nervous system 256 development, and synapse organisation, and include SCN9A, DRGX, and CACNA1A. These 257 differences likely reflect the increased neuronal content of samples from E8-iPSCs. Together 258 these results suggest that iPSCs are primed towards different cell fates depending on the 259 iPSC culture medium.
- 260

261 Since iPSC culture conditions influenced differentiation outcomes, we examined gene 262 expression variability within subsets of IPSDSN samples. IPSDSNs differentiated from 263 feeder-iPSCs had somewhat higher global gene expression variability, yet those from E8-264 iPSCs were still highly variable relative to DRG and iPSCs (Supplementary Figure 21), with 265 neuronal and developmental gene sets enriched for highly variable genes (Supplementary 266 Table 11). Among the 79 IPSDSNs from E8-iPSCs, samples with high fibroblast content had 267 somewhat higher variability, but those with low fibroblast content still showed high variability 268 relative to DRG and iPSCs.

- 269 Genetic variants influence gene expression, splicing and chromatin
- 270 accessibility in sensory neurons

271 Using a linear model (FastQTL (Ongen et al. 2016)), we mapped 1,403 expression quantitative trait loci (eQTLs) at FDR 10%, of which 746 were expressed at a moderate level 272 (FPKM > 1). We noted that we discovered many fewer eQTLs than in GTEx tissues of 273 274 comparable sample size (Supplementary Figure 23). This suggested that power for eQTL 275 discovery was lower in IPSDSNs than somatic tissues, possibly due to additional variability 276 introduced by differentiation. Using an allele-specific method (Kumasaka, Knights, and 277 Gaffney 2015) we detected 3,778 genes with expression-modifying genetic variants, termed 278 eGenes, at FDR 10% (Supplementary Table 12), with 2,607 of these expressed at FPKM > 279 1. Notably, it was only using the additional information from allele specific signals that we 280 achieved approximately similar statistical power to GTEx tissues with equivalent sample 281 sizes, and the improvement in power was greatest among genes with high variability across 282 samples (Supplementary Figures 22,23).

283

284 We next compared our eQTLs with GTEx. When clustering tissues based on the pairwise 285 correlation in eQTL effect sizes, IPSDSNs clustered most closely with GTEx brain tissues, 286 while also showing elevated correlation with GTEx fibroblasts (Supplementary Figure 24). 287 We could not call eQTLs in DRG as the samples were not consented for use of genetic data. 288 To identify eQTLs that were not already reported in GTEx (v6), we used a protocol described 289 previously for the HIPSCI project (Kilpinen et al. 2017). Of all 3,778 eGenes, 954 had tissue-290 specific associations (Supplementary Table 15), including genes with known involvement in 291 pain or neuropathies, such as SCN9A, GRIN3A, P2RX7, CACNA1H/Cav3.2, and NTRK2. 292 Because these eQTLs were not seen in any GTEx tissue, this suggests that these are 293 regulatory variants with IPSDSN-specific function.

294

295 Variants affecting gene splicing (sQTLs) often change either protein structure or context-296 dependent gene regulation, and may be more enriched for complex trait loci than are eQTLs 297 (Li et al. 2016). To detect sQTLs we used the annotation-free method LeafCutter (Li, 298 Knowles, and Pritchard 2016) to define 30,591 clusters of alternatively spliced introns. Using 299 FastQTL (Ongen et al. 2016) we discovered QTLs for 2,079 alternative splicing clusters at FDR 10% (Supplementary Table 13). Notably, only 538 (26%) of the lead variants for these 300 301 splicing associations were in linkage disequilibrium (LD)  $r^2 \ge 0.5$  with a lead eQTL variant in 302 our dataset, indicating that the sQTLs extend our catalog of expression-altering variants and 303 are not merely proxies for gene-level eQTLs (or vice versa). 304

|                  | Number | GWAS<br>overlap |
|------------------|--------|-----------------|
| eQTLs            | 3778   | 156             |
| sQTLs            | 2079   | 129             |
| ATAC QTLs        | 6318   | 172             |
| Joint ATAC/eQTLs | 177    | 14              |

306Table 1 QTL associations. Columns show the number of associations and the number of unique307overlaps ( $r^2 > 0.8$ ) between lead QTL SNPs and GWAS catalog SNPs after removing duplicates for308each GWAS trait.

309

310 We collected ATAC-seq data for 31 samples (Buenrostro et al. 2013) and used this to 311 identify active regulatory regions in IPSDSNs and to map 6.318 caQTLs chromatin 312 accessibility QTLs (caQTLs) at FDR 10% (Supplementary Table 14). To identify transcription 313 factors in IPSDSNs whose binding is altered by regulatory variants, we used the LOLA 314 Bioconductor package (Sheffield and Bock 2015) to test for enrichment of our lead QTL 315 SNPs, relative to GTEx lead SNPs, in ENCODE ChIP-seq peaks and JASPAR transcription 316 factor motifs (Supplementary Tables 16,17). Tissue-specific eQTLs were highly enriched within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and 14.1;  $p < 5x10^{-5}$ ), which are 317 318 both members of the neuron-specific chromatin remodeling (nBAF) complex (Lessard et al. 319 2007). Considering all IPSDSN eQTLs, we found enrichments for ELK1 and ELK4, as well 320 as c-Fos, a target of ELK1 and ELK4 which is widely expressed but is known to have 321 specific functions in sensory neurons (Hunt, Pini, and Evan 1987; Kohno et al. 2003). 322 Notably, DNA sequence motifs for REST, ELK1 and ELK4 are also among the most highly 323 enriched motifs in our ATAC-seq peaks (Supplementary Table 18). 324

### 325 Sensory neuron eQTLs and sQTLs overlap with complex trait loci

326 While we were interested in comparing our set of QTLs with GWAS for pain, the largest 327 GWAS for pain to date included just 1,308 samples and found no associations at genome-328 wide significance (Peters et al. 2013). We therefore considered all GWAS catalog associations with p <  $5x10^{-8}$  that were in high LD (r<sup>2</sup> > 0.8) with a QTL in our dataset, with 329 330 two purposes in mind: to determine whether any GWAS traits are enriched overall for 331 overlap with sensory neuron QTLs, and to find individual cases where a QTL is a strong 332 candidate as a causal association for the GWAS trait. Overall, IPSDSN eQTLs were 333 significantly enriched for overlap with GWAS catalog SNPs (p < 0.001) relative to 1000 random sets of SNPs matched for minor allele frequency (MAF), distance to nearest gene, 334 335 gene density, and LD (Pers, Timshel, and Hirschhorn 2014), and the overlap was consistent 336 with that seen for eQTL studies in other tissues (Supplementary Figure 25). Although 337 nociceptive neurons are specialized for sensing and relaying pain signals, they share 338 characteristics with other neurons; thus, we might expect enrichment for traits known to 339 involve the nervous system more generally. However, among the 41 traits with at least 40 340 GWAS catalog associations, we could not detect any trait with significantly greater overlap 341 with our QTL catalog than other traits after correcting for multiple testing (Supplementary 342 Table 19).

344 Across all traits, we found 156 genes with an eQTL overlapping at least one GWAS 345 association, and similarly 129 sQTLs and 172 caQTLs with GWAS overlap (full catalog in 346 Supplementary Tables 20-22). We examined individual associations, in conjunction with 347 ATAC-seq peaks and LD information, to identify candidate causal variants influencing both a 348 molecular phenotype and a complex trait. For most of these associations we do not expect 349 that sensory neurons are the most relevant cell type; rather the overlaps may reflect either 350 general neuronal mechanisms or non-cell-type-specific functions. We thus focused on traits 351 where neurons are likely to be a relevant cell type.

352

353 Among overlapping associations we found a number that relate to neuronal diseases, such 354 as Parkinson's disease, multiple sclerosis, and Alzheimer's disease. One striking overlap is 355 between an eQTL for SNCA, encoding alpha synuclein, and Parkinson's disease, for which a likely causal variant has recently been identified (Soldner et al. 2016). The lead GWAS 356 357 SNP and our lead eQTL are both in perfect LD with rs356168 (1000 genomes MAF 0.39), 358 which lies in an ATAC-seq peak in an intron of SNCA. Soldner et al. used CRISPR/Cas9 359 genome editing in iPSC-derived neurons to show that rs356168 alters both SNCA 360 expression and binding of brain-specific transcription factors (Soldner et al. 2016). In 361 IPSDSN cells we find that the G allele of rs356168 increases SNCA expression 1.14-fold, in 362 line with Soldner et al. who reported 1.06- to 1.18-fold increases in neurons and neural 363 precursors. However, despite residing in a visible ATAC-seq peak in our data, rs356168 is not detected as a caQTL (SNP p value = 0.22). eQTLs for SNCA have recently been 364 365 reported in the latest GTEx release (v6p), but none of the tissue lead SNPs are in LD ( $r^2 >$ 366 0.2) with rs356168, suggesting that the effect of this SNP can be more readily detected in 367 specific cell and tissue types, including IPSDSNs and the frontal cortex tissue and iPSC 368 derived neurons studied by Soldner et al.

369

370 We also find multiple compelling overlaps between splice QTLs and GWAS associations (Figure 4). One known example is a strong sQTL for *TNFRSF1A* (p=9.9x10<sup>-29</sup>) with the same 371 372 lead SNP (rs1800693, MAF 0.30) as a multiple sclerosis association. This likely causal SNP 373 is located 10 base pairs from the donor splice site downstream of exon 6, and has been 374 experimentally shown to cause skipping of exon 6, which results in a truncated, soluble form 375 of TNFR1 that appears to reduce TNF (Gregory et al. 2012). TNFRSF1A is highly expressed 376 (>15 FPKM) in both IPSDSNs and in DRG. We do not see an effect of this variant on total 377 expression levels in our cells (p > 0.5), but we observe skipping of exon 6 in about 12% of 378 transcripts from individuals homozygous for rs1800693 (Figure 4a). Since these transcripts 379 undergo nonsense-mediated decay, the actual rate of exon skipping is likely to be higher. 380 Given the broad role of TNF in inflammation and immunity, it is interesting that rs1800693 is 381 associated with MS but not with other autoimmune disorders, apart from primary biliary cirrhosis (Gregory et al. 2012). Moreover, whereas TNF inhibitors are effective in many 382 autoimmune disorders, they exacerbate MS, an effect that is mimicked by the reduction in 383 384 TNF signalling produced by the TNFRSF1A splice variant. These observations suggest an 385 interplay between cells of the CNS and immune system involving TNF signalling. TNF 386 signalling has been shown to have both inflammatory and neuroprotective effects in the CNS 387 and, despite a large body of research, the exact mechanisms and cell types responsible for 388 the genetic risk associated with TNF receptor polymorphisms remain unclear (Probert 2015).



Figure 4 Splicing QTLs overlapping GWAS. (a) An sQTL for *TNFRSF1A* leads to skipping of exon 6,
and overlaps with a multiple sclerosis association. (b) An sQTL for *SIPA1L2* leads to increased
skipping of an unannotated exon between alternative promoters, and overlaps with a Parkinson's
disease association. (c) An sQTL for *APOPT1* alters skipping of exons 2 and 3, and overlaps with a
schizophrenia association. P values are from the beta approximation based on 10,000 permutations
as reported by FastQTL.

397

An sQTL for SIPA1L2 (rs16857578, MAF 0.23) is in LD with associations for both 398 399 Parkinson's disease (rs10797576,  $r^2$ =0.93) and blood pressure (rs11589828,  $r^2$ =0.94). An 400 unannotated noncoding exon (chr1:232533490-232533583) between alternative SIPA1L2 401 promoters is included in nearly 50% of transcripts in individuals with the reference genotype, 402 but splicing in of the exon is abolished by the variant (Figure 4b). SIPA1L2, also known as 403 SPAR2, is a Rap GTPase-activating protein expressed in the brain and enriched at synaptic 404 spines (Spilker and Kreutz 2010). Although its function is not yet clear, expression is seen in 405 many tissues profiled by GTEx, with highest expression in the peripheral tibial nerve. 406 Interestingly, the related protein SIPA1L1 exhibits an alternative protein isoform with an N-407 terminal extension that is regulated post-translationally to influence neurite outgrowth 408 (Jordan et al. 2005).

409

- 410 A complex sQTL for *APOPT1* (rs4906337, MAF 0.22) is in near-perfect LD with a
- 411 schizophrenia association (rs12887734). The splicing events involve skipping either of exon
- 412 3 only or both exons 2 and 3 (Figure 4c). At least 20 variants are in high LD ( $r^2 > 0.9$ ),
- 413 including rs4906337 which is 40 bp from the exon 3 acceptor splice site, and rs2403197
- 414 which is 63 bp from the exon 4 donor splice site. No sQTL is reported in GTEx, and although

- 415 eQTLs are reported for *APOPT1*, only the thyroid-specific eQTL (rs35496194) is in LD ( $r^2 =$
- 416 0.94) with the schizophrenia-associated SNP rs12887734. APOPT1 is localized to
- 417 mitochondria and is broadly expressed. Homozygous loss-of-function mutations in this gene
- lead to Cytochrome c oxidase deficiency and a distinctive brain MRI pattern showing
   cavitating leukodystrophy in the posterior region of the cerebral hemispheres, with affected
- 420 individuals having variable motor and cognitive impairments and peripheral neuropathy
- 420 Individuals having variable motor and cognitive impairments and 421 (Melchionda et al. 2014).
- 422

## 423 Recall by genotype studies in iPSC-derived cells will require large

424 sample sizes

425 One attractive future use of iPSCs is to experimentally characterise GWAS loci using a 426 "recall by genotype" approach. Here, iPSC lines with specific genotypes are chosen from a 427 large bank and differentiated into target cell types (for example, see (Warren, Sullivan, et al. 428 2017)). Our observations suggested that, for certain protocols, the additional cellular 429 heterogeneity introduced by differentiation could impact the power of these studies to detect 430 the effects of common genetic variants. Importantly, our large set of differentiations gave us 431 accurate genome-wide estimates of effect size and expression variability in an IPS-derived 432 cell type, for use as a benchmark "ground truth". We investigated the performance of iPSC-433 based recall by genotype studies by bootstrap resampling from a stringent (FDR 1%) 434 IPSDSN eQTL call set. For each eQTL gene we sampled expression counts from an equal 435 number of major and minor homozygotes for the lead SNP, sampling with replacement to 436 achieve a specific sample size. We then estimated power as the fraction of 100 bootstrap 437 replicates where we found a significant difference (p < 0.05, Wilcoxon rank sum test) in 438 expression between the homozygotes. 439

440 Our results illustrate important trends. First, recall by genotype studies in IPS-derived cells 441 are likely to require relatively large sample sizes, typically 20-80 unrelated individuals, for 442 variants with a 1.5-2-fold effect size (Figure 5a). Second, as expected, highly variable genes 443 are more challenging (Figure 5b) with power below 40% in a sample size of 20 for even 444 moderately variable genes (CV 0.5 - 0.75). While expression noise will not typically be 445 known accurately a priori, an estimate of effect size may be available from previous eQTL 446 studies in specific tissues. This could enable estimating the number of samples needed to 447 achieve a desired power (Figure 5a).

448

449 Note that these power estimates assume that a single gene is being tested, which is only 450 likely to be the case when there is a very strong prior belief in the causal gene and few 451 genes in the region. Where multiple genes are tested, power will be lower. These results 452 also suggest that large sample sizes will be required when using genome editing to identify 453 causal GWAS-associated variants: although genetic background can be controlled in such 454 an experiment, differentiation noise will continue to be a major contributor to gene 455 expression variability.

456



Figure 5 Power to detect a genetic effect in a single-variant single-gene test depends on sample
size, allelic effect size, and gene expression variability. (a) TPR as a function of allelic fold change for
five different numbers of replicates (half the total sample size). (b) TPR as a function of CV for five
bins of allelic fold change, with 10 samples of each genotype.

## 463 Discussion

2010).

464 iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant
 465 human cell types, including those which are inaccessible as primary tissue samples.

466 Because the effect sizes of common disease-associated risk alleles tend to be small,

467 observing their effects in cellular models is challenging (Soldner et al. 2016; Pashos et al.

468 2017). In an iPSC-based system, this difficulty is compounded by variability between

samples in the success of differentiation, as described for hepatocytes (Dianat et al. 2013),

- 470 hematopoietic progenitors (Smith et al. 2013), and neurons (Handel et al. 2016; Hu et al.
- 471 472

473 Our study is the first that we are aware of to perform iPSC differentiation to a neuronal cell 474 type and functionally characterise the resulting cells at scale. Sample-to-sample variability in 475 gene expression in the iPSC-derived cells was greater than in DRGs, with highly variable 476 genes enriched in processes relating to neuronal differentiation and development. This 477 highlights that genes likely to be of particular interest and relevance for the function of these 478 cells are also among the most variable, a challenge which may be broadly true of iPSC-479 derived cells. Despite the observed sample-to-sample variability in gene expression, we 480 detected thousands of eQTLs, sQTLs, and caQTLs in IPSDSNs, most of which were 481 discovered only with a model that statistically combines both allele-specific and between 482 individual differences in expression to improve power for association mapping. Some of these 483 overlap known expression-modifying variants that are associated with disease, such as an 484 eQTL for SNCA associated with Parkinson's disease. However, for most of these disease 485 overlaps the causal variants are not known. This QTL map is thus a starting point for in-depth 486 dissection of individual loci in iPSC-derived neurons where we have shown that a genetic 487 effect is present.

489 Although our study highlights the potential power of IPSC derived cells as model systems for 490 studying human genetic variation, our results also illustrate the limitations of this approach. 491 First, despite expressing key marker genes and exhibiting neuronal morphology and 492 electrophysiology, it is clear from our data that IPSDSNs are transcriptionally distinct from their 493 primary counterparts, DRGs. This reflects a limitation of existing in vitro differentiation 494 protocols, which produce cells that are not as functionally or transcriptionally mature as 495 primary tissues. Second, our differentiations did not produce pure populations of neurons, nor 496 could we measure the purity of the resulting cultures precisely. A portion of the sample-to-497 sample variability that we observed is likely due to this mixture of cell types, which varied 498 across differentiations. Although mature neurons can be labeled for marker genes, they are 499 not easily sorted by automated systems, which limits the high-throughput options available for 500 purifying neuronal populations. As a result, the eQTLs that we discovered do not represent 501 those of a pure sensory neuronal cell type. For many cell types, sorting is more feasible, and 502 could provide one solution to the variable maturity and heterogeneity of differentiated cell 503 populations.

504

We used single-cell RNA-seq from three differentiation batches to characterise IPSDSN heterogeneity, which showed that they cluster into neuronal cells and cells with more fibroblast-like gene expression. Using reference profiles from these clusters enabled us to estimate a proxy measure of neuronal cell purity in our bulk RNA-seq samples, and these estimates qualitatively agreed with the neuronal content in images from the cell cultures. Our method is similar to a deconvolution approach described recently using bulk and single-cell

- 511 sequencing of primary human and mouse pancreas (Baron et al. 2016).
- 512

513 The similarity of the fibroblast-like single cells to DRG raises the important question of 514 whether these cells are immature sensory neurons. Single-cell sequencing at multiple time 515 points during MYOD-mediated myogenic reprogramming has suggested that some individual 516 cells traverse a desired course, while others terminate at incomplete or aberrant 517 reprogramming outcomes (Cacchiarelli et al. 2017). Such an approach in IPSDSNs could 518 reveal determinants of neuronal differentiation trajectories, and may yield useful insights for 519 protocol changes to improve the purity of differentiated neurons, or to specify more precise 520 neuronal subtypes. More generally, replacing bulk RNA-seq with single cell sequencing 521 across many samples could enable *in silico* sorting of cells based on their transcriptome, 522 and better characterisation of the sources of variation within a differentiated population of 523 cells. Further, culturing cells from multiple donors in a pool, along with an scRNA-seq 524 readout, could reduce differentiation-related batch effects while retaining the ability to 525 identify donor-specific genetic effects on gene expression. These advantages suggest to us 526 that a move towards scRNA-seq will be extremely useful in iPSC-derived cell models. 527

528 For iPSC models of common disease associated variants to be used effectively, it is critical 529 to know which candidate disease associated variants exhibit a detectable cellular phenotype 530 in an in vitro model. We used *in silico* resampling to estimate the sample sizes needed to 531 detect the effects of noncoding regulatory variants in iPSC-derived cells using a recall by 532 genotype design. Power above 80% is only achieved with surprisingly large (40+) samples, 533 even for alleles with a fold change of 1.5 to 2. Further, the power we report may be 534 overestimated, due to ascertainment bias in defining a set of eQTLs as "true positives", 535 which fails to include true genetic effects that we did not discover in our samples. Even

- 537 are to be tested. These observations are consistent with a recent genome-editing
- 538 experiment that required 136 differentiations in hepatocyte-like cells to discover an effect of
- 539 rs12740374 on SORT1 gene expression (Warren, Sullivan, et al. 2017). Notably, the modest
- 540 effect of this variant on expression in hepatocyte-like cells (1.3-fold increase) stands in
- 541 contrast to the large effect of the variant (4- to 12-fold increase) observed previously in
- 542 primary liver (Musunuru et al. 2010). Where it is possible to use a coding SNP to assess the 543 allele-specific effect of a genome edit, as done for SNCA (Soldner et al. 2016), this may
- 544 prove a more efficient approach to detecting causal effects of individual regulatory variants.
- 545

546 In summary, we have measured multiple molecular phenotypes in a large panel of iPSC-

- 547 derived neurons. The catalog of QTLs we provide reveals a large set of common variants 548 and target genes with detectable effects in IPSDSNs. These associations provide promising
- 549 targets for functional studies to fine-map causal disease-associated alleles, such as by
- 550 allelic replacement using CRISPR-Cas9, and our study describes the importance of
- 551 considering differentiation-induced variability when planning these studies in iPSC-derived cells.
- 552

#### URLs 553

- 554 OpenTargets, www.targetvalidation.org.
- 555 CIBERSORT, cibersort.stanford.edu.
- 556 ENCODE, www.encodeproject.org.
- 557 GTEx, www.gtexportal.org.
- 558 HIPSCI, www.hipsci.org.
- 559

#### Data Availability 560

561 Code used for processing and analysing data is available at https://github.org/js29/ipsdsn. RNA-seg 562 and ATAC-seq data for open access samples are deposited in the European Nucleotide Archive

- 563 under accession ERP020576. These data for managed access samples are deposited in the
- 564 European Genome Archive under accession EGAD00001003145. Summary statistics and gene
- 565 expression counts are available at https://www.ebi.ac.uk/biostudies/studies/S-BSST16. Sample
- 566 genotypes and accession numbers are available at http://www.hipsci.org/data.

#### Acknowledgments 567

- 568 The iPSC lines were generated under the Human Induced Pluripotent Stem Cell Initiative (HIPSCI)
- 569 funded by a grant from the Wellcome Trust and Medical Research Council, supported by the
- 570 Wellcome Trust (WT098051) and the NIHR/Wellcome Trust Clinical Research Facility. HIPSCI
- 571 funding was used for sensory neuron RNA-sequencing. We acknowledge Life Science Technologies
- 572 Corporation as the provider of Cytotune. Pfizer Neuroscience (Pfizer Ltd.) funded neuronal
- 573 differentiation, functional assays, single-cell RNA-sequencing, and collection and sequencing of
- 574 dorsal root ganglion samples. The authors gratefully acknowledge Natsuhiko Kumasaka for help with
- 575 RASQUAL. We thank Florian Merkle for comments on the manuscript. JS gratefully acknowledges
- 576 support from the Wellcome Trust for his PhD studentship.

## 577 Author contributions

578 JS analyzed data, and JS and DJG wrote the manuscript. SF performed all differentiations. AGu

analyzed data; AGu, DJG, and PJW conceived and supervised the project. HK compared eQTLs with

580 GTEx and identified tissue-specific eQTLs. JR and MP cultured iPSC samples. AJK performed all

581 ATAC-seq. KA and AGon assisted with data analysis. AW performed single cell RNA work and

assisted with data analysis. RF and CLB performed RNA extraction and quantification. EI performed

583 cell culture and  $Ca^{2+}$  flux assays. MB assisted with experimental design and  $Ca^{2+}$  flux assays. LC, SL, 584 and AJL performed electrophysiology measurements. All authors reviewed the manuscript.

## 585 Conflicts of Interest

586 SF, RF, CB, AW, MB, EI, LC, SL, AJL, PJW and AGu were all employees of Pfizer at the time the 587 experiments were performed.

588

## 589 Online methods

#### 590 IPS cell lines

591 A summary of iPSC lines used is available in Supplementary Table 2, and details of processes and 592 assays for these iPSCs generated by the HIPSCI project are available at www.hipsci.org. Briefly, 107 593 human induced pluripotent stem cells (iPSCs) from 103 healthy donors were obtained from the 594 HIPSCI resource (Kilpinen et al. 2017). We reproduce an abridged version of their methods here: 595 For each donor, primary human fibroblasts were derived from 2 mm skin punch biopsies. 596 Dissected biopsy fragments were cultured in fibroblast growth medium until fibroblast 597 outgrowths appeared, which took 14 days on average. Fibroblasts were then transduced 598 using Sendai vectors expressing hOCT3/4, hSOX2, hKLF4, and hc-MYC (CytoTuneTM, Life 599 Technologies, Cat. no. A1377801). Transduced cells were cultured on an irradiated mouse 600 embryonic fibroblast (MEF-CF1) feeder layer in iPSC medium consisting of Advanced DMEM 601 (Life technologies, UK) supplemented with 10% Knockout Serum Replacement (KOSR, Life 602 technologies, UK), 2 mM L-glutamine (Life technologies, UK), 0.007% 2-mercaptoethanol 603 (Sigma-Aldrich, UK), 4 ng/mL of recombinant Zebrafish Fibroblast Growth Factor-2 (CSCR, 604 University of Cambridge), and 1% Pen/Strep (Life technologies, UK). Cells with an iPSC 605 morphology appeared approximately 25 to 30 days post-transduction. The undifferentiated 606 colonies (6 per donor) were picked between days 30-40, transferred onto 12-well MEF-CF1 607 feeder plates and cultured in iPSC medium with daily media change until ready to passage. 608

609Between passages 4 to 8, selected feeder-dependent iPSC lines were transferred to feeder-610free culture, while other lines continued to be cultured on MEF-CF1 feeder plates. Feeder-611free lines were cultured in Essential 8 (E8) medium on tissue culture dishes coated with 10612µg/ml Vitronectin XF (StemCell Technologies, UK, 07180). E8 complete medium consists of613basal medium DMEM/F-12(HAM) 1:1(Life technologies, UK, A1517001) supplemented with614E8 supplement (50X) (Life technologies, UK, A1517001) and 1% Pen/Strep (Life615technologies, UK, 15140122).

616

Of the 107 lines, 38 were initially grown in feeder-dependent medium and the remainder were grown
 in feeder-free E8 medium. All HIPSCI samples were collected from consented research volunteers
 recruited from the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.uk). Samples

620 were collected initially under existing Cambridge BioResource ethics for iPSC derivation (REC Ref:

621 09/H0304/77, V2 04/01/2013), with later samples collected under a revised consent (REC Ref:
622 09/H0304/77, V3 15/03/2013).

623

### 624 Sensory neuron differentiation

625 All differentiations in this study were performed by a single individual, and a summary of the IPSDSN 626 cell lines is in Supplementary Table 1. Two differentiation protocols were used, named P1 (13 627 differentiations) and P2 (110 differentiations). Note that P1 protocol samples were used only for QTL 628 calling, and other analyses used P2 protocol samples exclusively. The P1 protocol (described in detail 629 in (Young et al. 2014)) was developed prior to this study using a small number of cell lines. It involved 630 the addition of "2i" inhibitors (LDN193189 and SB-431542) for 5 days, followed by "5i" inhibitors 631 (LDN193189, SB-431542, CHIR99021, DAPT, SU5402) for a further 6 days. When applying this 632 protocol to a larger number of samples we observed an excessive rate of cell death prior to obtaining 633 neural progenitors (days 9-12). A separate study was undertaken to optimise the robustness of the 634 protocol. We altered the protocol to make it more similar to that of Chambers et al. (Chambers et al. 635 2012), and differentiated 17 replicates using both the new P2 protocol and the P1 protocol (these 636 samples are not used for this manuscript). All 17 replicates successfully differentiated with the P2 637 protocol, whereas only 7 of 17 (41%) were successful with the P1 protocol.

- 638 The P2 protocol differed by:639 using E8 rather than mTeS
  - using E8 rather than mTeSR1 media when maintaining iPSCs prior to differentiation;
  - phasing in neurobasal media beginning at day 4, and gradually increasing this to 100% by day 11, to support neurons during differentiation;
- beginning addition of inhibitors 5i two days earlier (day 3 rather than day 5);
- stopping addition of small molecule inhibitors LDN193189 (1µmol/l) and SB-431542 (10 µmol/l) beginning at day 7 (rather than day 11), referred to as "3i" in the main text for the 3 inhibitors that continued to be added.
- 646 We measured cell culture endpoints, including:
  - Total cell numbers at multiple points during differentiation
    - Population doubling time
    - Viability using Trypan blue staining
- 649 650

654

647

648

640

641

Functional assays (Ca<sup>2+</sup> flux, response to Veratridine) confirmed that response of the sensory
 neurons produced by each protocol was equivalent; however, the P2 protocol performed more
 consistently across cell lines and culture parameters.

In general, for each differentiation from iPSCs of a given donor multiple flasks were cultured in
parallel. The first successful flask was used for RNA-seq. Subsequent flasks were used for
electrophysiology measurements, Ca flux or pharmacological measurements. If an additional flask
was available then it was used for ATAC-seq.

#### 659

#### 660 P2 protocol details

661 Clump passaged iPSCs were single cell seeded in E8 media (Life Technologies) on growth factor662 reduced Matrigel (BD Biosciences, San Jose, CA) 48 hours prior to neural induction (day 0). KSR
663 Media was prepared as 500ml DMEM-KO (Life Technologies 10829-018), 130 ml Knockout Serum
664 Replacement Xeno-Free (Life Technologies 12618-013), 1x NEAA (Life Technologies 11140-068), 1x
665 Glutamax (Life Technologies 35050-087), 0.01 mM β-mercaptoethanol (Sigma M6250-100ml). KSR
666 media containing small molecule inhibitors LDN193189 (100 nM) and SB-431542 (10 µM) was added

- 666 media containing small molecule innibitors LDN 193189 (100 nm) and SB-431542 (10 μm) was added
- to cells from day 0 to 3 to drive anterior neuroectoderm specification. From day 3, CHIR99021 (3  $\mu$ M),
- DAPT (10 μM) and SU5402 (10 μM) were also added to further enable the emergence of neural crest
   phenotypes. N2B27 media was progressively phased in every two days from D4. N2B27 Media was
- 670 prepared as 500 ml Neurobasal medium (Life Technologies 21103-049), 5 ml N2 supplement (Life

- Technologies 17502-048), 10 ml B27 supplement without vitamin A (Life Technologies 12587-010),
- 672 0.01mM  $\beta$ -mercaptoethanol (Sigma M6250-100 ml) and 1x Glutamax (Life Technologies 35050-087).
- 673 On day 7, inhibitors LDN193189 and SB-431542 were no longer used, while CHIR99021, DAPT, and
- 674 SU5402 continued to be added. On day 11 cells were harvested and reseeded at 150,000 cells/cm2
- 675 in maturation media containing N2B27 media with human-b-NGF (25 ng/ml), BDNF (25 ng/ml), NT3
- 676 (25 ng/ml) and GDNF (25 ng/ml). Mitomycin C treatment (1 μg/ml) was used once at day 14 for 2 hrs
   677 to reduce the non-neuronal population. Cells were differentiated in T25 flasks for RNA and nuclei
- 678 isolation, and onto coverslips and 96 well plates for electrophysiology and Ca2+ flux assays.
- 679

### 680 P1 protocol details

681 All media and inhibitors and concentrations used were identical to the P2 protocol described above; 682 the difference was timing of addition. Clump passaged iPSCs were single cell seeded in mTeSR1 683 iPSC (StemCell Technologies, Vancouver) media on growth factor-reduced Matrigel (BD Biosciences, 684 San Jose, CA) 48 hours prior to neural induction (day 0). KSR media containing LDN193189 and SB-685 431542 was added to cells from day 0 to 5. From day 5, CHIR99021, DAPT and SU5402 were also added. On day 11 cells were harvested and reseeded at 150,000 cells/cm<sup>2</sup> in maturation media 686 687 containing N2B27 media with human-b-NGF, BDNF, NT3 and GDNF. Mitomycin C treatment (1 688 µg/ml) was used once at day 14 for 2 hrs to reduce the non-neuronal population.

## 689 Single-cell RNA sequencing

- 690 Blood-derived iPSCs from a single individual, who was not a HIPSCI donor, were differentiated to 691 sensory neurons in 3 separate batches using the P2 protocol. These samples were matured for 8 692 weeks, whereas the RNA-seq samples were matured 4 weeks. Previous work showed only minor 693 changes in gene expression between 4 and 8 weeks maturation (Young et al. 2014). Each batch of 694 dissociated cells was loaded onto a Fluidigm C1 system for automatic cell separation, reverse 695 transcription and amplification. Libraries were only prepared from C1 chambers that contained single 696 cells, using the Illumina Nextera XT kit as per the Fluidigm C1 protocol. These were quantified with 697 the Qubit dsDNA HS assay (Thermo Fisher) and KAPA Library Quantification Kit (KAPA Biosystems) 698 and size-checked with the Agilent Bioanalyser DNA 1000 assay (Agilent), as per manufacturers' 699 recommendations. Libraries were 96-way multiplexed and sequenced paired end on an Illumina 700 Nextseq500 (75bp reads). Reads for each cell were aligned to GRCh38 and Ensembl 80 transcript 701 annotations using STAR v2.4.0d with default parameters.
- 702

We had gene expression counts for ~56,000 genes (including noncoding RNAs) for 186 cells,
 although many of these were zeros. We excluded 9 cells expressing fewer than 20% of the quantified

- genes, and then used SC3 (Kiselev et al. 2016) to cluster the remaining 177 cells based on
- 706 expression counts. Note that when clustering cells from complex tissues there is often a hierarchy of
- 707 clusters, and no specific number of clusters can be considered correct. Allowing that the same could
- be true of IPS-derived cells, we examined alternative numbers of clusters from k=2 to 5
- 709 (Supplementary Figure 6), specifying k (the number of clusters) ranging from 2 to 5. With two clusters,
- the marker genes reported by SC3 clearly identified one cluster (111 cells) as neuronal, whereas the
- 711 other cluster (66 cells) had high expression of extracellular matrix genes reminiscent of fibroblasts.
- With 3 and 4 clusters, the sensory-neuronal cell cluster remained unchanged, and the fibroblast-likecluster became further subdivided. This suggests that a majority of the cells in this sample were
- 714 terminally differentiated into sensory neurons, whereas the remaining cells were more heterogeneous
- 715 in their gene expression.
- 716

To display marker gene expression we selected 5 neuronal and 5 fibroblast marker genes based on

- 718 the literature. After DESeq2's variance stabilizing transformation, we used R's "scale" function to 719 mean-center and normalize expression values across cells for these genes, and plotted the result
- vi rate with the state of the s

- 721
- 722 To compare gene expression between single cell clusters and bulk RNA-seq samples, we computed
- the mean FPKM expression for each gene separately in single neurons and fibroblast-like cells. We
- subsetted to genes with nonzero expression in at least one GTEx tissue and in at least one of our
- tissues (iPSC, DRG, IPSDSN bulk, IPSDSN single cells), and computed the Spearman correlation
- between each pair of tissues for the remaining genes.

## 727 Genotypes

728 We obtained imputed genotypes for all of the samples from the HIPSCI project. We used CrossMap

- 729 (http://crossmap.sourceforge.net/) to convert variant coordinates from GRCh37 reference genome to
- 730 GRCh38. We then used bcftools (http://samtools.github.io/bcftools/) to retain only bi-allelic variants
- (SNPs and indels) with INFO score > 0.8 and MAF > 0.05 in the 97 samples used for QTL calling.
- 732 This filtered VCF file was used for all subsequent analyses.

## 733 RNA sequencing

Cells growing in T25 flasks were washed twice with PBS followed by addition of 600 mL of RLTPlus
buffer. Cells were gently lifted from the flask and transferred to 1.5 ml tubes. Lysates were transferred
to 1.5 mL tubes. RNA and gDNA were isolated using AllPrep DNA/RNA Minikit (Qiagen). RNA was
eluted in 33 uL of DNAse free water and DNA eluted in 53 uL EB buffer.

738

745

746

747

RNA libraries were prepared using the Illumina TruSeq strand-specific protocol, and were sequenced
with paired-end reads (2x75) on Illumina Hiseq with V4 chemistry. There were 131 RNA samples,
which corresponded with 103 unique HIPSCI cell lines, as some of the samples were differentiation
replicates or RNA-extraction replicates. One sample failed in sequencing and was excluded.

- 743744 Two sets of analyses were done with different genome builds:
  - QTL analyses and GWAS overlaps were done with reads aligned to GRCh38;
  - all other analyses, including comparisons with GTEx, iPSCs, and DRG, and expression variability, were done with reads aligned to GRCh37. This was so that comparisons were done with identical alignment and counting methods.
- 748 749 For QTL analyses, reads for each sample were aligned to GRCh38 and Ensembl 79 transcript 750 annotations using STAR v2.4.0j with default parameters. We used VerifyBamID v1.1.2 (Jun et al. 751 2012) to check that RNA-seg sample BAM files matched the corresponding sample genotypes in the 752 core HIPSCI VCF files. This revealed 5 mislabeled RNA samples, for which the correctly matching 753 sample genotypes could be easily determined and corrected, as well as two samples for which no 754 match could be found in HIPSCI genotype data and which were thus excluded (these had been 755 labeled as problematic samples in HIPSCI). For comparisons among tissues, reads for each sample 756 were aligned to the 1000 Genomes GRCh37 reference genome with human decoy sequence 37d5 757 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2 reference assembl
- 758 y\_sequence/hs37d5.fa.gz), and with Gencode v19 transcript annotations
- 759 (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode\_human/release\_19/gencode.v19.annotation.gtf.gz)
   760 using STAR 2.5.3a.
- 760 using STAR 2.5.3a.

## 761 Gene expression quantification, quality control and exclusions

## 762 Gene expression counts for QTL calling

763 GTF files for the Gencode Basic transcript annotations, GRCh38 release 79, were downloaded from

- 764 www.gencodegenes.org. Gene expression counts were determined using the featureCounts tool of
- the subread package v1.5.0 (Liao, Smyth, and Shi 2014) with options (-s 2 -p -C -D 2000 -d 25); only
- uniquely mapping reads were counted. A median of 45 million reads were generated per sample, with
- 767 median 32.8 million reads (72%) uniquely mapping and assigned to genes. We subsequently

- rescluded short RNAs, pseudogenes, and genes not mapping to chromosomes 1-22, X, Y, or MT,
- 769 leaving 35,033 unique genes. Expression counts were normalised using conditional quantile
- normalisation with the R package cqn v5.0.2 (Hansen, Irizarry, and Wu 2012). We defined expressed
- genes as the 14,215 genes with mean CQN-normalised expression across samples > 1.
- 772
- 773 We determined pairwise correlation between samples using normalized counts for expressed genes
- and plotted these as a heatmap. We also plotted the first five principal components of gene
- expression against each other. These plots identified four outlier samples, which were excluded from
- subsequent analyses (Supplementary Figure 1). After all exclusions and corrected sample labels, we
- retained 126 samples from 99 unique donors. For gene expression quantification for QTL calling (both
   eQTL and sQTL), replicate BAM files from same donor were merged together using samtools.
- 779 Because genotypes were not available from HIPSCI for two donors, we retained gene expression
- 780 data for 97 donors for QTL calling.
- 781

#### 782 Gene expression counts for sample comparisons

For all between-tissue comparisons, gene expression counts were determined using featureCounts,
as for QTL calling, except that GTF files for Gencode v19 transcript annotations were used, along with
BAM files with reads aligned to GRCh37 as described above. 131 sensory neuron samples, 28 DRG
samples, and 239 iPSC samples were quantified in this way.

787

#### 788 Assessing gene expression replicability

789 We used R with ggplot2 to plot the CQN-normalized expression for pairs of sample replicates. We 790 excluded 13 samples differentiated using the first version protocol (P1), as most samples (110) were

- excluded 13 samples differentiated using the first version protocol (P1), as most samples (110) were
   differentiated with the second version (P2), which gave us sufficient samples to consider variability
- between differentiations without including protocol effects. We determined the spearman correlation
- 793 coefficient across all genes for (a) extraction replicates, (b) differentiation replicates, and (c) all
- possible pairs of samples from different donors. The histogram of correlation coefficients for these
- 795 categories is shown in Supplementary Figure 13.

## 796 Dorsal root ganglion samples and sequencing

797 Human tissue acquisition and handling was performed at Pfizer Neuroscience and Pain Research

- 798 Unit in accordance with regulatory guidelines and ethical board approval. Postmortem human dorsal
- root ganglia (DRG) were obtained in dissected form from Anabios or as an encapsulated sheath
- 800 together with sensory/afferent axons from National Disease Research Interchange which were
- 801 subsequently dissected to isolate the cell-body rich ganglion. The tissue was homogenised in an
- 802 appropriate volume QIAzol Lysis Reagent according to weight and processed according to the
- 803 manufacturer's instructions for the Qiagen RNeasy Plus lipid-rich kit. RNAseq library preparation and 804 sequencing was performed using the Illumina TruSeg Stranded mRNA Library Prep Kit and an
- sequencing was performed using the Illumina TruSeq Stranded mRNA Library Prep Kit and an
   Illumina HiSeq 2500 generating 2 x 100 bp reads by Aros Inc. according to the manufacturer's
- instructions. Sequencing reads were aligned to the GRCh37 reference human genome using STAR
- 807 and gene counts and FPKMs obtained using featureCounts and Ensembl v75 gene annotations.

## 808 ATAC library preparation and sequencing

### 809 Nuclei isolation

- 810 Media was removed from T25 flasks and washed twice with 10 mL of room temperature D-PBS
- 811 without calcium and magnesium. The adherent neuronal cultures were lifted by treating with 3 mL of
- 812 Accutase (Millipore SCR005) at room temperature for four minutes. The Accutase was quenched by
- adding 6 mL of 2% foetal bovine serum in D-PBS. The cells were transferred to a 15 mL conical tube
- and centrifuged at 300 g for 5 minutes at 4 °C. The cell pellet was resuspended in 1 mL of ice-cold
- 815 sucrose buffer (10 mM tris-Cl pH 7.5, 3 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub> and 320 mM sucrose) and pipetted

- briefly to break up the large clumps before incubating on ice for 12 minutes. 50 µL of 10% Triton-X
- 817 100 was added to the sucrose-treated cells and mixed briefly before incubating on ice for a further 6
- 818 minutes. Nuclei were released by performing 30 strokes with a tight dounce homogeniser on ice.
- Approximately  $1 \times 10^5$  nuclei were transferred to a 1.5 mL microfuge tube and centrifuged at 300 g for
- 5 minutes at 4 °C. All traces of the lysis buffer were removed from the nuclei pellet.
- 821

#### 822 Tagmentation, PCR amplification and size selection

823 The tagmentation and PCR methods used here are in principle the same as that described in 824 Buenrostro et al., 2013, but with some modifications as described in Kumasaka et al., 2016. The 825 nuclei pellet was resuspended in 50 µL of Nextera tagmentation master mix (Illumina FC-121-1030) 826 (25 µL 2x Tagment DNA buffer, 20 µL nuclease-free water and 5 µL Tagment DNA Enzyme 1) and 827 incubated at 37 °C for 30 minutes. The tagmentation reaction was stopped by the addition of 500 µL 828 Buffer PB (Qiagen) and purified using the MinElute PCR purification kit (Qiagen 28004), according to 829 the manufacturer's instructions and eluting in 10 µL of Buffer EB (Qiagen). 10 µL of the tagmented 830 chromatin was mixed with 2.5 µL Nextera PCR primer cocktail and 7.5 µL Nextera PCR mastermix 831 (Illumina FC-121-1030) in a 0.2 mL low-bind PCR tube. The indexing primers used for amplification 832 were from the Nextera Index kit (Illumina FC-121-1011), using 2.5 µL of an i5 primer and 2.5 µL of an 833 i7 primer per PCR, totalling 25 µL. PCR amplification was performed as follows: 72 °C for 3 minutes 834 and 98 °C for 30 seconds, followed by 12 cycles of 98 °C for 10 seconds, 63 °C for 30 seconds and 835 72 °C for 3 minutes. To remove the excess of unincorporated primers, dNTPS and primer dimers, 836 Agencourt AMPure XP magnetic beads (Beckman Coulter A63880) were used at a ratio of 1.2 837 AMPure beads:1 PCR sample (v/v), according the manufacturer's instructions, eluting in 20 µL of 838 Buffer EB (Qiagen). Finally, size selection was performed by 1 % agarose TAE gel electrophoresis, 839 selecting library fragments from 120 bp to 1 kb. Gel slices were extracted with the MinElute Gel 840 Extraction kit (Qiagen 28604), eluting in 20 µL of Buffer EB.

841

#### 842 Illumina sequencing

- A total of 31 ATAC-seq libraries each prepared with a unique Nextera i5 and i7 tag combination were
  pooled. Index tag ratios were assessed by a single MiSeq run and were balanced before being
  sequenced at two per lane with paired-end reads (2x75) on a HiSeq with V4 chemistry. However,
- sequenced at two per lane with paired-end reads (2x75) on a HiSeq with V4 chemistry. However,
  rebalancing did not appear to work correctly, as the number of reads varied greatly between sample
- rebalancing did not appear to work correctly, as the number of reads varied greatly between samples, from a minimum of 17 million to a maximum of 987 million. However, 22 samples had over 100 million
- from a minimum of 17 million to a maximum of 987 million. However, 22 samples had over 100 million reads, and 30 samples had over 40 million reads. Across samples, a median of 56% of reads mapped
- to mitochondrial DNA. For calling ATAC QTLs we used all sample counts as-is.
- 850

#### 851 Read alignment

- 852 We aligned reads to GRCh38 human reference genome using bwa mem v0.7.12. Reads mapping to
- the mitochondrial genome and alternative contigs were excluded from all downstream analysis. As for
- 854 RNA-seq data, we used VerifyBamID v1.1.2 (Jun et al. 2012) to detect sample swaps. This revealed
- 855 one mislabeled sample, which we then corrected. We used Picard v1.134 MarkDuplicates
- 856 (https://broadinstitute.github.io/picard/) to mark duplicate fragments. We constructed fragment
- coverage BigWig files using bedtools v2.21.0 (Quinlan and Hall 2010).

#### 859 Peak calling

- 860 We used MACS2 v2.1.1 (Zhang et al. 2008) to call ATAC-seq peaks individually on sample BAM files
- 861 with parameters '--nomodel --shift -25 --extsize 50 -q 0.01'. We then constructed a consensus set of
- 862 peaks by determining regions in which peaks overlapped in at least 3 samples. At regions of overlap,
- the consensus peak was defined as the union of overlapping peaks. This resulted in 381,323 peaks,
- 864 with 98% of peaks ranging in size from 82 1191 base pairs.

## 865 PCA plot clustering samples with GTEx tissues

- 866 We downloaded the GTEx v6 gene RPKM file (GTEx\_Analysis\_v6\_RNA-seq\_RNA-
- 867 SeQCv1.1.8\_gene\_rpkm.gct.gz) as well as sample metadata
- 868 (GTEx\_Data\_V6\_Annotations\_SampleAttributesDS.txt) from the GTEx web portal
- 869 (http://www.gtexportal.org/home/datasets). We computed RPKMs for all genes for the 28 DRG
- samples, the 119 sensory neuron samples (5 outliers removed), and 239 HIPSCI IPS samples. We
- 871 used genes that were quantified in all of these sample sets, and where at least 50 GTEx samples had
- 872 RPKM > 0.1. We passed log2(RPKM + 1) for 8553 GTEx samples to the bigpca R package to
- 873 compute the first 5 PCs using the SVD method. We the determined sample loadings for each PC
- using the PC weights and log2(RPKM + 1) values for GTEx samples as well as for our in-house
- 875 samples, and plotted sample PC1 vs. PC2 values as Figure 1b.

## 876 Highly variable genes in IPSDSNs and GTEx

877 We obtained GTEx v6 RPKM files for all genes as described above. For each of the 44 tissues, as

878 well as IPSDSNs, DRG, and HIPSCI iPSCs, we calculated the coefficient of variation (CV) of each

gene among samples with the same detailed tissue type (SMTSD in GTEx sample metadata). We

then subsetted the genes considered in each tissue to those expressed at RPKM > 1 in that tissue.

881 We plotted the distribution of CVs across all genes for each tissue as a density plot (Figure 3a).

882

883 We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set over-representation analysis

for the top 1000 most highly variable genes in IPSDSNs by CV, which are included in Supplementary

- 885 Table 4. Similarly, gene set over-representation analysis in E8-IPSDSN subsets was done using
- 886 Genetrail2 and the top 1000 most variable genes with RPKM > 1 (Supplementary Table 11).

#### 887 Variance components analysis

888 For Figure 3b, we selected the 106 P2 protocol IPSDSN samples after QC exclusions, and used 889 DESeq2 to get FPKM values for each gene after size factor normalization. We included all genes with 890 mean FPKM > 1, and input log2-transformed counts per sample into the variancePartition 891 Bioconductor R package, with design formula ~ (1|donor) + (1|differentiation) + (1|gender) + 892 (1)wasFeeder). We used ggplot2 to plot the distribution of variance explained for each gene across 893 the four above factors, with unexplained variance shown as "residuals". For Supplementary figure 894 19a, we included 119 QC-passed samples, and used variancePartition as above, but with protocol in 895 the design formula: ~ (1|donor) + (1|differentiation) + (1|gender) + (1|wasFeeder) + (1|protocol). For 896 Supplementary Figure 19b, we used 18 samples, for which we had 3 differentiation replicates from 897 each of 6 donor cell lines; all 6 iPSC lines were from females and had been cultured in E8 medium. 898 We therefore included only donor and differentiation in the design formula.

## 899 Estimation of neuronal purity

900 We used CIBERSORT (Newman et al. 2015) to estimate the fraction of RNA from neuronal cells in 901 our bulk RNA-seq samples. We used the 14,786 genes whose CQN expression in bulk RNA samples 902 was greater than zero, and retrieved raw counts for these genes in our single cell RNA-seq data. We 903 labeled the single cells as "neuron" or "fibroblast-like" as determined based on the SC3 clustering, 904 and specified these single cell counts as the reference samples for CIBERSORT to generate a 905 custom signature genes file during its analysis. We used raw expression counts for the same genes 906 for our 126 bulk RNA-seq samples as the mixture file for CIBERSORT to use in estimating the relative 907 fractions of neuron and fibroblast-like cell RNA.

### 908 Electrophysiological recordings

Six coverslips per line were placed singularly into a 12-well plate and washed 1x with 1 ml DPBS

910 (+/+). After removal of DPBS, the coverslips were coated with 1 ml of 0.33 mg/ml growth factor

911 reduced matrigel for > 3 hr at room temperature. D14 cells were prepared at a suspension of 1.6e6/ml
 912 in 15 ml media. The cells were then diluted in NB media to create a 0.3e6/ml suspension. The

- 913 coverslips were transferred into a clean 12-well plate and 1 ml of the cell suspension was added.
- 914 Plates were incubated at 37°C (5% CO2) in a cell culture incubator for 24hrs, after which the
- 915 coverslips were transferred into a clean 12-well plate containing 2 ml media. Cells were then treated
- 916 with Mitomycin C (0.001 mg/ml for 2hr hours at 37°C) post plating on day 4 and day 10. Media was
- 917 changed twice weekly.
- 918

919 Patch-clamp experiments were performed in whole-cell configuration using a patch-clamp amplifier 920 200B for voltage clamp and Multiclamp 700A or 700B for current clamp controlled by Pclamp 10 921 software (Molecular Devices). Experiments were performed at 35°C or 40°C as noted controlled by an 922 in-line solution heating system (CL-100 from Warner Instruments). Temperature was calibrated at the 923 outlet of the in-line heater daily before the experiments. Patch pipettes had resistances between 1.5 924 and 2 MΩ. Basic extracellular solution contained (mM) 135 NaCl, 4.7 KCl, 1 CaCl<sub>2</sub>, 1 MgCl<sub>2</sub>, 10 925 HEPES and 10 glucose; pH was adjusted to 7.4 with NaOH. The intracellular (pipette) solution for 926 voltage clamp contained (mM) 100 CsF, 45 CsCl, 10 NaCl, 1 MgCl<sub>2</sub>, 10 HEPES, and 5 EGTA; pH 927 was adjusted to 7.3 with CsOH. For current clamp the intracellular (pipette) solution contained (mM) 928 130 KCl, 1 MgCl<sub>2</sub>, 5 MgATP, 10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with KOH. The 929 osmolarity of solutions was maintained at 320 mOsm/L for extracellular solution and 300 mOsm/L for 930 intracellular solutions. All chemicals were purchased from Sigma. Currents were sampled at 20 kHz 931 and filtered at 5 kHz. Between 80% and 90% of the series resistance was compensated to reduce 932 voltage errors. The voltage protocol used for the compounds testing on voltage gated sodium 933 channels consisted of steps from a holding potential of -110 mV to -70 mV for 5 seconds, followed by 934 step to -110 mV for 100 millisecond then currents were measured at step to 0 mV for 20 milliseconds. 935 Intersweep intervals were 15 seconds. Rheobase was measured in current clamp mode by injecting 936 increasing 30 milliseconds current steps until a single action potential was evoked. Intersweep 937 intervals were 2 seconds. Membrane potential was set at either free-resting or held at -70 mV as 938 noted. Current clamp data was analyzed using Spike2 software (Cambridge Electronic Device, UK) 939 and Origin 9.1 software (Originlab).

## 940 Correlation of iPSC and IPSDSN gene expression with cell culture

### 941 conditions

We selected the 106 IPSDSN samples differentiated with the P2 protocol, as well as the 87
iPSC samples these were derived from and for which we had RNA-seq data, and we used DESeq2's
variance stabilising transformation on the raw gene expression counts. We computed the first 5
principal components of gene expression separately in iPSC and IPSDSNs with Bioconductor's
pcaMethods package, and used corrplot to compute pairwise correlations among these PCs and
sample metadata of interest: gender, iPSC passage number, iPSC culture conditions (wasFeeder),
iPSC PluriTest score, IPSDSN fibroblast content, and IPSDSN processing date.

949

We determined differentially expressed genes between feeder-iPSCs and E8-iPSCs using DESeq2,
using gene expression counts for all genes with median expression > 0.1 FPKM across iPSC samples
(Supplementary Table 5). We removed associations driven by outliers, defined as a maximum Cook's
distance >= 5. Similarly, we determined differentially expressed genes in IPSDSNs derived from
either feeder-iPSCs or E8-iPSCs (Supplementary Table 8), again for genes with median expression >
0.1 FPKM across samples. We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set
over-representation analysis for the 717 genes with expression at least 2-fold higher in feeder-iPSCs

- 957 relative to E8-iPSCs, and similarly for the 631 genes at least 2-fold higher in E8-iPSCs
- 958 (Supplementary Tables 6, 7). We did an equivalent gene set over-representation analysis for the 1159
- genes with expression at least 2-fold higher in IPSDSNs differentiation from feeder-iPSCs, and also 959 for the 958 genes at least 2-fold higher in IPSDSNs from E8-iPSCs (Supplementary Tables 9, 10).
- 960
- 961
- 962 To determine genes upregulated on differentiation from iPSCs to IPSDSNs, we first selected the
- 963 19,658 genes with expression FPKM > 1 in at least two samples (iPSC or IPSDSN). We used
- 964 DESeq2 as before, removing genes with maximum Cook's distance > 5, and identifying 4246 965 differentially expressed genes at FDR <= 1%.
- QTL calling 966

#### 967 **Expression QTLs**

968 To call cis-eQTLs we used RASQUAL (Kumasaka, Knights, and Gaffney 2015), which leverages 969 allele-specific reads in heterozygous individuals to improve power for QTL discovery, while 970 accounting for reference mapping bias and a number of other potential artifacts. With RASQUAL a 971 feature is defined by a set of start and end coordinates; for calling a gene eQTL these are the start 972 and end coordinates for exons, whereas for an ATAC-seq peak these are the peak coordinates. 973 RASQUAL requires as input the allele-specific read counts at each SNP within a feature. We used the 974 Genome Analysis Toolkit (GATK) program ASEReadCounter (Castel et al. 2015) with options '-U 975 ALLOW N CIGAR READS -dt NONE --minMappingQuality 10 -rf MateSameStrand' to count allele-976 specific reads at SNPs (and not indels). We then annotated the AS read counts in the INFO field of 977 the VCF used as input for RASQUAL. We used custom scripts to determine the number of feature

- 978 SNPs in gene exons.
- 979

980 We used RASQUAL's makeCovariates.R script to determine principal components (PCs) to use as 981 covariates, which determined 12 PCs as appropriate from the expression count data. We ran 982 RASQUAL separately for each of 35,033 genes (19,796 protein-coding genes and 15,237 noncoding 983 RNAs), passing in VCF lines for all SNPs and indels (MAF > 0.05, INFO > 0.8) within 500 kb of the 984 gene transcription start site. We used the --no-posterior-update option in RASQUAL, as we found that 985 not doing so led to some genes having miniscule p values, even with permuted data. To correct for 986 multiple testing we used permutations; however, because RASQUAL is computationally intensive, it 987 would not be possible to run a thousand or more permutations for every gene. Therefore we used an 988 approach to balance power and computational time. To correct for the number of SNPs tested per 989 gene, we used EigenMT (Davis et al. 2016) to estimate the number of independent tests per gene, 990 and then performed Bonferroni correction on a gene-by-gene basis. To estimate the false discovery 991 rate (FDR) across genes, we used the --random-permutation option of RASQUAL and re-ran it once 992 for every gene, saving the minimum p value (after eigenMT correction) of the SNPs tested for each 993 gene. This gave a distribution of minimum p values across genes for the permuted data. To determine 994 the FDR for eQTL discovery at a given gene, we use R to compute (#permuted data min pvalues < p) 995 / (#real data min p values < p), where p is the minimum p value among SNPs for the gene in question. 996 With this procedure we obtained 3,586 genes with a cis-eQTL at FDR 10% (2,628 at FDR 5%). 997

- 998 For QTL calling with FastQTL, we first computed principal components from the CQN-transformed 999 gene expression matrix (cqn v5.0.2 (Hansen, Irizarry, and Wu 2012)). We ran FastQTL with 1000 permutations 31 separate times, in each run including the first N principal components (N=0...30) as 1001 covariates. For each run we used a cis-window of 500 kb, and included SNPs and indels with MAF > 1002 0.05, INFO > 0.8, as we did for RASQUAL. We plotted the number of eGenes found in each of these 1003 runs, which plateaued and remained relatively stable at ~1,400 eGenes (FDR 10%) when anywhere
- 1004 from 16 to 30 PCs were used. We arbitrarily chose to use the FastQTL run with 20 PCs in 1005 downstream analyses.
- 1006
- 1007 **ATAC QTLs**

- As we did for gene expression, we used featureCounts v1.5.0 to count fragments overlapping
- 1009 consensus ATAC-seq peaks and ASEReadCounter to count allele-specific reads at SNPs (and not
- 1010 indels) within peaks. We ran RASQUAL separately for each of 381,323 peaks, passing in VCF lines
- for SNPs and indels (MAF > 0.05, INFO > 0.8) within 1 kb of the center of the peak. Since >99.9% of
- 1012 peaks were less than 2 kb in size, this meant that we tested effectively all SNPs within peaks. As we 1013 did when calling eQTLs, we ran RASQUAL with the --random-permutation option for every gene, and
- 1013 did when calling eQTLs, we ran RASQUAL with the --random-permutation option for every gene, and 1014 determined FDR as described above. Note that in this case we used Bonferroni correction based on
- 1015 the number of SNPs tested, without using EigenMT, due to the small size of the windows tested. With
- 1016 this procedure we obtained 6,318 ATAC peaks with a cis-QTL at FDR 10%.

- 1018 Splice QTLs
- 1019 We downloaded LeafCutter from Github (https://github.com/davidaknowles/leafcutter) on April 17, 1020 2016. We used the LeafCutter bam2junc.sh script to determine junction counts for each sample, 1021 followed by leafcutter cluster.py. This resulted in 254,057 junctions in 59,736 clusters. To focus on 1022 splicing events likely to be significant, we applied a number of filters, including: (a) removing junctions 1023 accounting for less than 2% of the cluster reads, (b) removing introns used (i.e. having at least 1 1024 supporting read) in fewer than 5 samples, (c) retaining only clusters where at least 10 samples had 20 1025 or more reads in the cluster. This yielded a filtered set of 95,786 junctions in 30,591 clusters. We first 1026 determined the read proportions for all junctions within alternatively excised clusters. We then Z-score 1027 standardised each junction read proportion across samples, and then quantile-normalised across 1028 introns. We used this as our phenotype matrix for input to FastQTL to test for associations between 1029 intron usage and variants within 15 kb of the center of each intron. We chose a cis-window size of 30 1030 kb (2 x 15 kb) because >91% of introns are < 30 kb in size, and so this tests variants near exon/intron 1031 boundaries for the great majority of introns, while maximising power.
- 1032

1033 We ran FastQTL in nominal pass mode 31 times specifying the first 0 to 30 principal components as 1034 covariates, and examined the number of intron QTLs with minimum SNP p value  $< 10^{-5}$ . This showed 1035 that the number of QTLs plateaued when 5 PCs were used, and so we used 5 PCs in subsequent 1036 runs. We next ran FastQTL with 10,000 permutations to determine empirical p values for each 1037 alternatively excised intron. To correct for the number of introns tested per cluster, we used 1038 Bonferroni correction on the most significant intron p value per cluster. We then used the Benjamini-1039 Hochberg method to estimate FDR across tested clusters. This yielded 2,079 significant SNP 1040 associations for intron usage (sQTLs) at FDR 10%.

1041

1042 For significant sQTLs we used bedtools closest with GRCh38 release 84 to annotate the gene(s)

- 1043 nearest the lead SNP for the association. To ensure we had relevant genes, we filtered the annotation
- 1044 to include only genes where one of the exon boundaries matched the intron boundary for the sQTL.

## 1045 Similarity of eQTLs with GTEx

1046 Both GTEx samples and IPSDSNs had QTLs called using FastQTL. We selected lead eQTL variants 1047 in IPSDSNs for genes with expression >= 1 FPKM. We identified effect sizes for the same variants in 1048 each GTEx tissue, where these were available. Because only genes passing certain expression 1049 cutoffs were tested in GTEx, each tissue had a different number of values obtained. We next 1050 determined the pairwise similarity between tissues in effect sizes for these variants (in R, cor() with 1051 option "pairwise.complete.obs"). IPSDSNs were a significant outlier, having lower pairwise similarity 1052 with all GTEx tissues than they had with each other. Although FastQTL was used for all tissues, 1053 different expression quantification methods used; therefore, a significant batch effect is expected. 1054 Therefore we used the relative similarity across tissues by Z-scaling each row of the tissue correlation 1055 matrix, and plotted the result in Supplementary Figure 24. IPSDSNs are relatively more similar to 1056 GTEx brain in their effect sizes than to other GTEx tissues.

## 1057 Identifying tissue-specific eQTLs

1058 We determined the set of tissue-specific eQTLs using the same procedure and code as in the HIPSCI 1059 project (Kilpinen et al. 2017). Briefly, we considered the full cis eQTL output of sensory neuron eQTLs 1060 and 44 tissues analyzed by the GTEx Project (Consortium et al. 2015). To enable comparison, lead 1061 SNP positions for sensory neuron eQTLs were first lifted back from GRCh38 to GRCh37 using 1062 Crossmap (Zhao et al. 2014). For each discovery tissue (including sensory neurons), we tested for 1063 the replication of all lead eQTL - target eGene pairs reported at FDR 5%. If the lead eQTL variant was not reported in the comparison tissue, then the best high-LD proxy of the lead variant ( $r^2 > 0.8$  in the 1064 UK10k European reference panel) was used as the guery variant. Replication was defined as the 1065 guery variant having a nominal eQTL  $p < 2.2 \times 10^{-4}$  (corresponding to p = 0.01 / 45, where 45 refers to 1066 1067 the total number of tissues tested) for the same eGene. We then extracted eGenes for which the lead 1068 eQTL did not show evidence of replication in any other tissue ( $p > 2.2x10^{-4}$ ) or could not be tested (i.e. 1069 was not measured or reported as expressed in any other tissue).

1070

1071 This analysis gave 954 eGenes where the eQTL is specific to sensory neurons (Supplementary Table

1072 15). We note that some of these "tissue-specific" eGenes could be due to the difference in QTL1073 calling methods used, notably that we used RASQUAL, a method incorporating both allele-specific

1074 and population-level expression variation. Therefore, some of the tissue-specific eGenes we report

1075 may actually be present more broadly in GTEx tissues but missed by the linear QTL model used in

1076 GTEx. Among the 1403 eGenes called by FastQTL, 208 were tissue-specific to IPSDSNs.

## 1077 Pain-associated genes

1078 We identified a set of pain-associated genes by searching for the term "pain" in the OpenTargets web
1079 site (https://www.targetvalidation.org/) on August 22, 2016, and downloading the reported gene
1080 associations and scores. We chose a score cutoff of 0.05 to designate a gene as pain-associated,
1081 which resulted in 617 genes.

## 1082 Motif enrichment analyses

1083 We used the R Bioconductor package LOLA (Sheffield and Bock 2015) to identify enrichments in 1084 transcription factor binding sites (TFBS) and motifs. We defined three sets of loci to consider for 1085 enrichment: 1) tissue-specific eQTL SNPs with a window of 50 bp (+/- 25) around the SNP position, 2) 1086 all eQTL SNPs (50 bp window), and 3) all ATAC-seq peaks. For the QTLs we used all GTEx eQTL 1087 lead SNPs as the "universe" set against which we were testing TFBS for enrichment. For this we 1088 downloaded all GTEx QTL files (\* Analysis.snpgenes), loaded them in R and used the liftOver 1089 function from the rtracklayer package to convert their coordinates to the GRCh38 genome version. 1090 We tested for enrichment against the LOLA core database but considered only ENCODE TFBS 1091 enrichments. These enrichments are reported in Supplementary Tables 16 and 17. We also tested for 1092 enrichment against the LOLA extension database and considered JASPAR motif enrichments. No 1093 motif enrichments were found for IPSDSN eQTLs relative to GTEx eQTLs. We also tested ATAC-seq 1094 peaks for enrichment relative to DNase hypersensitive sites for many tissues from Sheffield et al. 1095 (Sheffield et al. 2013), which are available in the LOLA catalog. Many of the same TFBS enrichments 1096 were seen for ATAC-seq peaks as for eQTLs (data not shown), although with a skew towards general 1097 transcription factors (e.g. CTCF, ATF3, MYC, JUN) as might be expected. Motif enrichments in 1098 ATAC-seq peaks are reported in Supplementary Table 18.

### 1099 Power simulations

1100 Gene expression values were normalized to counts per million. We selected the 544 eGenes

- discovered by RASQUAL at FDR 1% which met the following criteria:
- at least 10 P2-protocol samples homozygous for each allele of the lead eQTL variant,

1105 CV < 2 (this filter removed only 8 eGenes) •

1106 For each gene we resampled the normalized expression values, with replacement, from IPSDSN 1107 samples to achieve a specified number N of samples (N  $\in$  {4,6,10,20,40}) with each homozygous 1108 genotype category. From 100 such resamplings, we defined the power (true positive rate, TPR) to 1109 discover a given variant's effect as the fraction of cases with p < 0.05 from a Wilcoxon rank sum test 1110 comparing mean expression in each genotype category. A minimum sample size of 4 in each group is 1111 needed for the Wilcoxon rank sum test, as otherwise no difference can be significant at p < 0.05. Note 1112 that we did the same resampling procedure using Student's t-test, and the results were nearly 1113 identical. We determined the allelic fold change between genotypes using RASQUAL's effect size (pi), 1114 as: 1115

fold change = max( pi / (1-pi), (1-pi) / pi)

1116 We used ggplot2 with geom\_smooth to display the 95% confidence interval around the fitted mean 1117 TPR at each parameter combination. As can be seen on the plots, the deviation about this mean for 1118 individual genes is larger than the standard error of the mean.

#### QTL overlap with GWAS catalog 1119

1120 The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ on 2016-5-08. To determine 1121 overlap between variants in the GWAS catalog and our lead QTLs, we first extracted all lead variants 1122 (both QTLs and GWAS catalog variants) from the full VCF file. We used vcftools v0.1.14 (Danecek et 1123 al. 2011) to compute the correlation R<sup>2</sup> between all lead variants within 500 kb of each other among 1124 our samples. We determined overlap separately for eQTLs, sQTLs, and ATAC QTLs, and retained only overlaps with  $R^2 > 0.8$  between lead variants. Note that a given GWAS variant may be in LD with 1125 1126 an eQTL for more than one gene, and vice versa, an eQTL for a single gene may be in LD with more 1127 than one GWAS catalog entry.

1128

1129 We used QTL-GWAS overlap for two purposes: first, to find individual cases where a QTL is a strong 1130 candidate as a causal association for the GWAS trait, and second, to determine whether any GWAS 1131 catalog traits are enriched overall for overlap with sensory neuron QTLs. For the first goal, we 1132 considered all overlaps with GWAS catalog associations having  $p < 5x10^{-8}$ , i.e. did not filter any 1133 redundant overlaps. These overlaps are reported in Supplementary Tables 20 (for eQTLs), 21 (for 1134 sQTLs), and 22 (for ATAC QTLs).

1135

1136 To determine whether our QTL overlaps were enriched in any specific GWAS catalog traits relative to 1137 other traits, we computed overlap with all GWAS catalog SNPs ( $p < 5x10^{-8}$ ) but sought to eliminate 1138 redundant overlaps. For traits that were reported with differing names (e.g. "Alzheimer's disease 1139 (cognitive decline)" and "Alzheimer's disease in APOE e4- carriers"), we grouped these into a single 1140 trait name (e.g. "Alzheimer's disease"). We then sorted overlaps by decreasing LD R<sup>2</sup>, and kept the single overlapping QTL with the highest R<sup>2</sup> for each GWAS catalog entry. Similarly, we removed 1141 1142 duplicates with the same reported GWAS catalog SNP and trait, such as when successive GWAS of 1143 the same trait report the same SNP association. We counted the number of such unique GWAS-QTL 1144 overlaps separately for eQTLs, sQTLs, and caQTLs, and we report these in Table 1. To avoid bias 1145 due to correlation between GWAS power and LD patterns, we restricted our analysis to the 41 traits 1146 with at least 40 GWAS catalog associations. We then considered the binomial probability of the 1147 observed overlap with each trait, with the expected overlap frequency being the proportion of QTL 1148 overlaps among all trait associations (6.2%). After correcting for multiple testing, no traits showed 1149 significantly greater overlap with our QTL catalog than other traits. 1150

1151 To test for overall enrichment of QTL overlapping with GWAS catalog SNPs, we downloaded the 1152 1000 genomes VCF files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and subsetted

these to the EUR samples. We used vcftools to identify all SNPs in LD  $R^2 > 0.8$  with a GWAS catalog 1153 1154 SNP and removed duplicate SNPs. We used our IPSDSN eQTL lead SNPs as input to SNPsnap 1155 (https://data.broadinstitute.org/mpg/snpsnap/), and computed 1000 random sets of SNPs using default parameters to match for LD partners, MAF, gene density, and distance to nearest gene. We 1156 1157 determined the number of occurrences of eQTL lead SNPs in the GWAS catalog SNP + LD partners, 1158 and did the same for the 1000 matched SNP sets. The IPSDSN eQTL lead SNPs had more overlaps 1159 (92) than any of the matched sets (median: 58, range 37-87). Note that this number of overlaps is 1160 fewer than the number we report in Supplementary Table 20; this is because we detect more overlaps 1161 when using LD from our own samples than when using 1000 genomes LD patterns, which is expected 1162 since 1000 genomes EUR LD does not perfectly reflect LD in our data. We performed the same 1163 overlapping process for lead eQTL SNPs from each GTEx tissue, and plotted the number of overlaps 1164 per tissue in Supplementary Figure 25.

1165 1166

## 1167 References

- Baron, Maayan, Adrian Veres, Samuel L. Wolock, Aubrey L. Faust, Renaud Gaujoux, Amedeo
  Vetere, Jennifer Hyoje Ryu, et al. 2016. "A Single-Cell Transcriptomic Map of the Human and
  Mouse Pancreas Reveals Inter- and Intra-Cell Population Structure." *Cell Systems* 3 (4): 346–
  do. doi:10.1016/j.cels.2016.08.011.
- Buenrostro, Jason D, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J Greenleaf. 2013.
  "Transposition of Native Chromatin for Fast and Sensitive Epigenomic Profiling of Open Chromatin, DNA-Binding Proteins and Nucleosome Position." *Nature Methods* 10 (12). Nature Publishing Group: 1213–18. doi:10.1038/nmeth.2688.
- Cacchiarelli, Davide, Xiaojie Qiu, Sanjay Srivatsan, Michael Ziller, Eliah Overbey, Tarjei Mikkelsen,
   Regenerative Biology, Cellular Biology Program, and South San Francisco. 2017. "Aligning
   Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants
   of Reprogramming Outcome."
- Cao, Lishuang, Aoibhinn McDonnell, Anja Nitzsche, Aristos Alexandrou, Pierre-philippe Saintot,
  Alexandre J C Loucif, Adam R Brown, et al. 2016. "Pharmacological Reversal of a Pain
  Phenotype in iPSC-Derived Sensory Neurons and Patients with Inherited Erythromelalgia." *Science Translational Medicine* 8 (335): 335ra56. doi:10.1126/scitranslmed.aad7653.
- 1184 Castel, Stephane E., Ami Levy-Moonshine, Pejman Mohammadi, Eric Banks, and Tuuli Lappalainen.
  2015. "Tools and Best Practices for Data Processing in Allelic Expression Analysis." *Genome* Biology 16 (1): 195. doi:10.1186/s13059-015-0762-6.
- Chambers, Stuart M, Yuchen Qi, Yvonne Mica, Gabsang Lee, Xin-jun Zhang, Lei Niu, James Bilsland, et al. 2012. "Combined Small-Molecule Inhibition Accelerates Developmental Timing and Converts Human Pluripotent Stem Cells into Nociceptors." *Nature Biotechnology* 30 (7). Nature Publishing Group: 715–20. doi:10.1038/nbt.2249.
- 1191 Consortium, The GtEx, Kristin G. Ardlie, David S. Deluca, Ayellet V. Segrè, Timothy J. Sullivan,
  1192 Taylor R. Young, Ellen T. Gelfand, et al. 2015. "The Genotype-Tissue Expression (GTEx) Pilot
  1193 Analysis: Multitissue Gene Regulation in Humans." *Science* 348 (6235): 648–60.
  1194 doi:10.1126/science.1262110.
- 1195 Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo,
   1196 Robert E. Handsaker, et al. 2011. "The Variant Call Format and VCFtools." *Bioinformatics* 27
   (15): 2156–58. doi:10.1093/bioinformatics/btr330.
- Dianat, Noushin, Clara Steichen, Ludovic Vallier, Anne Weber, and Anne Dubart-Kupperschmitt.
   2013. "Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy."
   *Current Gene Therapy* 13 (2): 120–32. doi:10.2174/1566523211313020006.
- Gregory, Adam P, Calliope A Dendrou, Kathrine E Attfield, Aiden Haghikia, Dionysia K Xifara, Falk
  Butter, Gereon Poschmann, et al. 2012. "TNF Receptor 1 Genetic Risk Mirrors Outcome of Anti-TNF Therapy in Multiple Sclerosis." *Nature* 488 (7412): 508–11. doi:10.1038/nature11307.
  Handel, Adam E., Satyan Chintawar, Tatjana Lalic, Emma Whiteley, Jane Vowles, Alice Giustacchini, Karene Argoud, et al. 2016. "Assessing Similarity to Primary Tissue and Cortical Layer Identity
- in Induced Pluripotent Stem Cell-Derived Cortical Neurons through Single-Cell Transcriptomics."
   *Human Molecular Genetics* 25 (5): 989–1000. doi:10.1093/hmg/ddv637.

- Hansen, Kasper D., Rafael A. Irizarry, and Zhijin Wu. 2012. "Removing Technical Variability in RNASeq Data Using Conditional Quantile Normalization." *Biostatistics* 13 (2): 204–16.
  doi:10.1093/biostatistics/kxr054.
- Hu, Bao-Yang, Jason P Weick, Junying Yu, Li-Xiang Ma, Xiao-Qing Zhang, James a Thomson, and
  Su-Chun Zhang. 2010. "Neural Differentiation of Human Induced Pluripotent Stem Cells Follows
  Developmental Principles but with Variable Potency." *Proceedings of the National Academy of Sciences of the United States of America* 107 (9): 4335–40. doi:10.1073/pnas.0910012107.
- Hunt, S P, A Pini, and G Evan. 1987. "Induction of c-Fos-like Protein in Spinal Cord Neurons
  Following Sensory Stimulation." *Nature* 328 (6131): 632–34. doi:10.1038/328632a0.
- 1217 Itzhaki, Ilanit, Leonid Maizels, Irit Huber, Limor Zwi-Dantsis, Oren Caspi, Aaron Winterstern, Oren
   1218 Feldman, et al. 2011. "Modelling the Long QT Syndrome with Induced Pluripotent Stem Cells."
   1219 Nature 471 (7337): 225–29. doi:10.1038/nature09747.
- Jordan, J. Dedrick, John Cijiang He, Narat J. Eungdamrong, Ivone Gomes, Wasif Ali, Tracy Nguyen, Trever G. Bivona, Mark R. Philips, Lakshmi A. Devi, and Ravi Iyengar. 2005. "Cannabinoid Receptor-Induced Neurite Outgrowth Is Mediated by Rap1 Activation through Gαo/i-Triggered Proteasomal Degradation of Rap1GAPII." *Journal of Biological Chemistry* 280 (12): 11413–21. doi:10.1074/jbc.M411521200.
- Jun, Goo, Matthew Flickinger, Kurt N. Hetrick, Jane M. Romm, Kimberly F. Doheny, Gonçalo R.
  Abecasis, Michael Boehnke, and Hyun Min Kang. 2012. "Detecting and Estimating
  Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data." *American Journal of Human Genetics* 91 (5): 839–48. doi:10.1016/j.ajhg.2012.09.004.
- Kilpinen, Helena, Angela Goncalves, Andreas Leha, Vackar Afzal, Sofie Ashford, Sendu Bala, Dalila
   Bensaddek, et al. 2017. "Common Genetic Variation Drives Molecular Heterogeneity in Human
   iPSCs." *Nature*. Nature Publishing Group, 55160. doi:10.1101/055160.
- Kiselev, Vladimir Yu., Kristina Kirschner, Michael T. Schaub, Tallulah Andrews, Tamir Chandra, Kedar
  N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green, and Martin Hemberg. 2016. "SC3
   Consensus Clustering of Single Cell RNA Seq Data." *Bioarxiv*.
  doi:http://dx.doi.org/10.1101/036558.
- Kohno, Tatsuro, Kimberly a Moore, Hiroshi Baba, and Clifford J Woolf. 2003. "Peripheral Nerve Injury
   Alters Excitatory Synaptic Transmission in Lamina II of the Rat Dorsal Horn." *The Journal of Physiology* 548 (Pt 1): 131–38. doi:10.1113/jphysiol.2002.036186.
- 1239 Kumasaka, Natsuhiko, Andrew Knights, and Daniel Gaffney. 2015. "Fine-Mapping Cellular QTLs with 1240 RASQUAL and ATAC-Seq." *bioRxiv* 48 (2): 18788. doi:10.1101/018788.
- Lee, G, E P Papapetrou, H Kim, S M Chambers, M J Tomishima, C A Fasano, Y M Ganat, et al.
  2009. "Modelling Pathogenesis and Treatment of Familial Dysautonomia Using Patient-Specific iPSCs." *Nature* 461 (7262): 402–6. doi:10.1038/nature08320.
- Lessard, Julie, Jiang I. Wu, Jeffrey A. Ranish, Mimi Wan, Monte M. Winslow, Brett T. Staahl, Hai Wu,
  Ruedi Aebersold, Isabella A. Graef, and Gerald R. Crabtree. 2007. "An Essential Switch in
  Subunit Composition of a Chromatin Remodeling Complex during Neural Development." *Neuron*55 (2): 201–15. doi:10.1016/j.neuron.2007.06.019.
- Li, Yang I, Bryce van de Geijn, Anil Raj, David A Knowles, Allegra A Petti, David Golan, Yoav Gilad,
  and Jonathan K Pritchard. 2016. "RNA Splicing Is a Primary Link between Genetic Variation and
  Disease." *Science (New York, N.Y.)* 352 (6285): 600–604. doi:10.1126/science.aad9417.
- 1251 Li, Yang I, David A Knowles, and Jonathan K Pritchard. 2016. "LeafCutter: Annotation-Free 1252 Quantification of RNA Splicing." *bioRxiv*, 44107. doi:10.1101/044107.
- Liao, Yang, Gordon K. Smyth, and Wei Shi. 2014. "FeatureCounts: An Efficient General Purpose
  Program for Assigning Sequence Reads to Genomic Features." *Bioinformatics* 30 (7): 923–30.
  doi:10.1093/bioinformatics/btt656.
- Liu, Guang-Hui, Basam Z. Barkho, Sergio Ruiz, Dinh Diep, Jing Qu, Sheng-Lian Yang, Athanasia D.
   Panopoulos, et al. 2011. "Recapitulation of Premature Ageing with iPSCs from Hutchinson–
   Gilford Progeria Syndrome." *Nature* 472 (7342): 221–25. doi:10.1038/nature09879.
- Melchionda, Laura, Tobias B. Haack, Steven Hardy, Truus E M Abbink, Erika Fernandez-Vizarra,
  Eleonora Lamantea, Silvia Marchet, et al. 2014. "Mutations in APOPT1, Encoding a
  Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase
  Deficiency." *American Journal of Human Genetics* 95 (3): 315–25.
  doi:10.1016/j.ajhg.2014.08.003.
- Mele, M., P. G. Ferreira, F. Reverter, D. S. DeLuca, J. Monlong, M. Sammeth, T. R. Young, et al.
  2015. "The Human Transcriptome across Tissues and Individuals." *Science* 348 (6235): 660–65.
  doi:10.1126/science.aaa0355.
- 1267 Musunuru, Kiran, Alanna Strong, Maria Frank-Kamenetsky, Noemi E Lee, Tim Ahfeldt, Katherine V

1271 Chuong D Hoang, Maximilian Diehn, and Ash a Alizadeh. 2015. "Robust Enumeration of Cell 1272 Subsets from Tissue Expression Profiles." Nature Methods 12 (5): 1-10. 1273 doi:10.1038/nmeth.3337. 1274 Ongen, Halit, Alfonso Buil, Andrew Anand Brown, Emmanouil T. Dermitzakis, and Olivier Delaneau. 1275 2016. "Fast and Efficient QTL Mapper for Thousands of Molecular Phenotypes." Bioinformatics 1276 32 (10): 1479-85. doi:10.1093/bioinformatics/btv722. 1277 Pashos, Evanthia E, Yoson Park, Xiao Wang, Daniel J Rader, Christopher D Brown, and Kiran 1278 Musunuru. 2017. "Large, Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like 1279 Cells Reveal Functional Genetic Variation at Blood Lipid-Associated Loci Resource Large, 1280 Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional 1281 Gen." Stem Cell 20 (4). Elsevier Inc.: 558–570.e10. doi:10.1016/j.stem.2017.03.017. 1282 Pers, Tune H., Pascal Timshel, and Joel N. Hirschhorn, 2014, "SNPsnap: A Web-Based Tool for 1283 Identification and Annotation of Matched SNPs." Bioinformatics 31 (3): 418-20. 1284 doi:10.1093/bioinformatics/btu655. 1285 Peters, Marjolein J, Linda Broer, Hanneke L D M Willemen, Gudny Eiriksdottir, Lynne J Hocking, Kate 1286 L Holliday, Michael A Horan, et al. 2013. "Genome-Wide Association Study Meta-Analysis of 1287 Chronic Widespread Pain: Evidence for Involvement of the 5p15.2 Region." Annals of the 1288 Rheumatic Diseases 72 (3): 427–36. doi:10.1136/annrheumdis-2012-201742. Probert, L. 2015. "TNF and Its Receptors in the CNS: The Essential, the Desirable and the 1289 1290 Deleterious Effects." Neuroscience. doi:10.1016/j.neuroscience.2015.06.038. 1291 Quinlan, Aaron R, and Ira M Hall. 2010. "BEDTools: A Flexible Suite of Utilities for Comparing 1292 Genomic Features." Bioinformatics (Oxford, England) 26 (6): 841-42. 1293 doi:10.1093/bioinformatics/btg033. 1294 Sala, Luca, Milena Bellin, and Christine L. Mummery. 2016. "Integrating Cardiomyocytes from Human 1295 Pluripotent Stem Cells in Safety Pharmacology: Has the Time Come?" British Journal of 1296 Pharmacology, 1-17. doi:10.1111/bph.13577. 1297 Sheffield, Nathan C., and Christoph Bock. 2015. "LOLA: Enrichment Analysis for Genomic Region 1298 Sets and Regulatory Elements in R and Bioconductor." Bioinformatics 32 (4): 587-89. 1299 doi:10.1093/bioinformatics/btv612. 1300 Sheffield, Nathan C., Robert E. Thurman, Lingyun Song, Alexias Safi, John A. Stamatoyannopoulos, 1301 Boris Lenhard, Gregory E. Crawford, and Terrence S. Furey. 2013. "Patterns of Regulatory 1302 Activity across Diverse Human Cell Types Predict Tissue Identity, Transcription Factor Binding, 1303 and Long-Range Interactions." Genome Research 23 (5): 777-88. doi:10.1101/gr.152140.112. 1304 Smith, Brenden W., Sarah S. Rozelle, Amy Leung, Jessalyn Ubellacker, Ashley Parks, Shirley K. 1305 Nah, Deborah French, et al. 2013. "The Aryl Hydrocarbon Receptor Directs Hematopoietic 1306 Progenitor Cell Expansion and Differentiation." Blood 122 (3): 376-85. doi:10.1182/blood-2012-11-466722. 1307 1308 Soldner, Frank, Yonatan Stelzer, Chikdu S. Shivalila, Brian J. Abraham, Jeanne C. Latourelle, M. 1309 Inmaculada Barrasa, Johanna Goldmann, Richard H. Myers, Richard A. Young, and Rudolf 1310 Jaenisch. 2016. "Parkinson-Associated Risk Variant in Distal Enhancer of α-Synuclein

Sachs, Xiaoyu Li, et al. 2010. "From Noncoding Variant to Phenotype via SORT1 at the 1p13

Newman, Aaron M, Chih Long Liu, Michael R Green, Andrew J Gentles, Weiguo Feng, Yue Xu,

Cholesterol Locus." Nature 466 (7307): 714-19. doi:10.1038/nature09266.

1268

1269

1270

- 1311Modulates Target Gene Expression." Nature 533 (7601). Nature Publishing Group: 1–20.1312doi:10.1038/nature17939.
- Spilker, Christina, and Michael R. Kreutz. 2010. "RapGAPs in Brain: Multipurpose Players in Neuronal Rap Signalling." *European Journal of Neuroscience*. doi:10.1111/j.1460-9568.2010.07273.x.
- Wainger, Brian J., Evangelos Kiskinis, Cassidy Mellin, Ole Wiskow, Steve S W Han, Jackson Sandoe,
  Numa P. Perez, et al. 2014. "Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral
  Sclerosis Patient-Derived Motor Neurons." *Cell Reports* 7 (1): 1–11.
  doi:10.1016/j.celrep.2014.03.019.
- Warren, Curtis R., Cashell E. Jaquish, Chad A. Cowan, C.E. Becker, X. Zhang, P. Liu, Y.
  Wakabayashi, et al. 2017. "The NextGen Genetic Association Studies Consortium: A Foray into In Vitro Population Genetics." *Cell Stem Cell* 20 (4). Elsevier Inc.: 431–33. doi:10.1016/j.stem.2017.03.021.
- Warren, Curtis R, John F O Sullivan, Max Friesen, Ramachandran S Vasan, Christopher J O Donnell, Chad A Cowan, Curtis R Warren, et al. 2017. "Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Resource Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease." *Stem Cell* 20 (4). Elsevier Inc.: 547–557.e7. doi:10.1016/j.stem.2017.01.010.

- Young, Gareth T, Alex Gutteridge, Heather D E Fox, Anna L Wilbrey, Lishuang Cao, Lily T Cho,
  Adam R Brown, et al. 2014. "Characterizing Human Stem Cell-Derived Sensory Neurons at the
  Single-Cell Level Reveals Their Ion Channel Expression and Utility in Pain Research." *Molecular Therapy : The Journal of the American Society of Gene Therapy* 22 (8): 1530–43.
  doi:10.1038/mt.2014.86.
- 1333 Zhang, Yong, Tao Liu, Clifford a Meyer, Jérôme Eeckhoute, David S Johnson, Bradley E Bernstein,
   1334 Chad Nusbaum, et al. 2008. "Model-Based Analysis of ChIP-Seq (MACS)." *Genome Biology* 9
   1335 (9): R137. doi:10.1186/gb-2008-9-9-r137.
- 1336 Zhao, Hao, Zhifu Sun, Jing Wang, Haojie Huang, Jean Pierre Kocher, and Liguo Wang. 2014.
  1337 "CrossMap: A Versatile Tool for Coordinate Conversion between Genome Assemblies." 1338 Bioinformatics 30 (7): 1006–7. doi:10.1093/bioinformatics/btt730.
- 1339