
 
 
 

1 

Molecular and functional variation in iPSC-derived sensory 1 

neurons 2 

Jeremy Schwartzentruber1*, Stefanie Foskolou2, Helena Kilpinen3, Julia Rodrigues1, Kaur 3 
Alasoo1, Andrew Knights1, Minal Patel1, Angela Goncalves1, Rita Ferreira2, Caroline Louise 4 
Benn2, Anna Wilbrey2, Magda Bictash2, Emma Impey2, Lishuang Cao2, Sergio Lainez2, 5 
Alexandre Julien Loucif2, Paul John Whiting2,4, HIPSCI Consortium (www.hipsci.org), Alex 6 
Gutteridge2*, Daniel J. Gaffney1* 7 
 8 
1) Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom 9 
2) Pfizer Neuroscience and Pain Research Unit, Pfizer Ltd., Great Abington, Cambridge, 10 
United Kingdom 11 
3) European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome 12 
Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom 13 
4) AR-UK Drug Discovery Institute, Institute of Neurology, University College London, 14 
London, WC1E 6BT, United Kingdom 15 
 16 
*Corresponding authors: Jeremy Schwartzentruber (js29@sanger.ac.uk), Alex Gutteridge 17 
(alex.x.gutteridge@gsk.com), Daniel Gaffney (dg13@sanger.ac.uk) 18 
 19 

Abstract 20 

Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools 21 
to model biological processes and disease mechanisms, particularly in cell types such as 22 
neurons that are difficult to access from living donors. Here, we present the first map of 23 
regulatory variants in iPSC-derived neurons. We performed 123 differentiations of iPSCs 24 
from 103 unique donors to a sensory neuronal fate, and measured gene expression, 25 
chromatin accessibility, and neuronal excitability. Compared with primary dorsal root 26 
ganglion, gene expression was more variable across iPSC-derived neuronal cultures, 27 
particularly in genes related to differentiation and nervous system development. Single cell 28 
RNA-sequencing revealed that, although the majority of cells are neuronal and express the 29 
expected marker genes, a substantial fraction have a fibroblast-like expression profile. We 30 
found that the fraction of neuronal cells was influenced by the culture conditions of the 31 
iPSCs prior to the start of differentiation. Despite this differentiation-induced variability, 32 
applying an allele-specific method enabled us to detect thousands of quantitative trait loci 33 
influencing gene expression, chromatin accessibility, and RNA splicing. A number of these 34 
overlap with common disease associations, including known causal variants at SNCA for 35 
Parkinson’s disease and TNFRSF1A for multiple sclerosis, as well as new candidates for 36 
Parkinson’s disease and schizophrenia. Finally we show that recall by genotype studies of 37 
specific variants using iPSC-derived cells are likely to require sample sizes of 20-80 38 
individuals to detect the effects of regulatory variants with moderately large (1.5- to 2-fold) 39 
effect sizes.  40 
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Introduction 41 

Cellular disease models are critical for understanding the molecular mechanisms of disease 42 
and for the development of novel therapeutics. In principle, induced pluripotent stem cell 43 
(iPSC) technology enables the development of these models in any human cell type. Initial 44 
uses of iPSCs for disease modelling have focused mostly on highly penetrant, rare coding 45 
variants with large phenotypic effects (Itzhaki et al. 2011; Liu et al. 2011; Wainger et al. 46 
2014; Lee et al. 2009; Cao et al. 2016). However, there is growing interest in using iPSCs to 47 
model the effects of the common genetic variants of modest effect size that drive complex 48 
disease (Warren, Jaquish, et al. 2017). A key question is to what extent variability in directed 49 
differentiation is a barrier to studying the effects of common disease-associated variants in 50 
iPSC-derived cells. In addition, because cultured cells are imperfect models of primary 51 
tissues, not all common disease-associated genetic variants also alter cell phenotypes in 52 
iPSC-derived systems. 53 
 54 
Here, we present the first large-scale study of common genetic effects in a neuronal cell type 55 
differentiated from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Peripheral 56 
sensory nerve fibres innervate the skin and other organs and are brought together at the 57 
dorsal root ganglia (DRG) before synapsing with the spinal cord around the dorsal horn. The 58 
development of efficient protocols to differentiate iPSCs into nociceptive (pain-sensing) 59 
neurons (Young et al. 2014) provides the opportunity to model common genetic effects on 60 
human sensory neuron function, which may underlie individual differences in pain sensitivity 61 
and chronic pain. We investigate how power to detect common genetic effects is affected by 62 
the variability introduced by differentiation and demonstrate how initial iPSC growing 63 
conditions influence cell phenotypes in IPSDSNs. We identify quantitative trait loci (QTLs) 64 
for gene expression, RNA splicing, and chromatin accessibility and identify a number of 65 
overlaps between molecular QTLs and common disease associations. In generating this 66 
gene regulatory map we establish effective techniques for using IPSDSN cells to model 67 
molecular phenotypes relevant to common diseases. 68 

  69 
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Results 70 

Sensory neuron differentiation and characterisation 71 

We obtained 107 IPS cell lines derived from unrelated apparently healthy individuals by the 72 
HIPSCI resource (Kilpinen et al. 2017), and followed an established small molecule protocol 73 
(Young et al. 2014) to differentiate these into sensory neurons of a nociceptor phenotype 74 
(Figure 1a). We performed a total of 123 differentiations; 13 of these were done with an early 75 
version of the protocol (P1) which was subsequently refined (P2) to reduce the number of 76 
differentiation failures and to yield a higher proportion of neuronal cells in the final cultures. 77 
One RNA-seq sample failed sequencing, and four others were outliers based on principal 78 
components analysis and were excluded (Supplementary Figure 1). This left a set of 119 79 
differentiations with gene expression data from 100 unique iPSC donors; all subsequent 80 
analyses focused on the 106 P2 protocol samples, except for QTL calling, where we used all 81 
samples to maximize discovery power. 82 
 83 
We clustered our gene expression data with 239 iPSC samples from the many of same 84 
donors, as well as 28 post-mortem DRG tissue samples from 10 different donors, and 44 85 
primary tissues from the GTEx project (Mele et al. 2015) (Figure 1b). Globally, IPSDSN 86 
samples showed greatest similarity to iPSCs (gene expression correlation Spearman 87 
ρ=0.89), followed by DRG (ρ=0.84), and then brain samples from GTEx. However, because 88 
different gene expression quantitation methods were used in GTEx, we cannot be certain of 89 
relative similarities between GTEx tissues and the samples we uniformly processed 90 
(IPSDSNs, iPSCs, DRG). The similarity to iPSCs may reflect lack of maturity in IPSDSNs, 91 
which is a well-recognized problem with iPSC-derived cells (Soldner et al. 2016; Pashos et 92 
al. 2017; Warren, Sullivan, et al. 2017; Sala, Bellin, and Mummery 2016). We also note that 93 
because the same iPSCs were differentiated to IPSDSNs, both donor genetic background 94 
and cell culture effects may contribute to the observed similarity. Despite this, key sensory 95 
neuronal marker genes were highly expressed in IPSDSNs, while pluripotency genes were 96 
not (Figure 1c). Using Ca2+ flux measurements on a subset of differentiated cultures (n=31) 97 
we confirmed that the cells consistently responded to veratridine (a sodium ion channel 98 
agonist) and tetrodotoxin (a selective sodium ion channel antagonist), as expected 99 
(Supplementary Figure 2). Patch-clamp electrophysiology on 616 individual neurons from 31 100 
donors (Supplementary Figures 3,4) showed that the distribution of rheobases was 101 
comparable to those obtained from primary DRG cells, but showed significant variation 102 
between donors (Supplementary Figure 5). 103 
 104 
 105 
 106 
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 107 
Figure 1  Characterization of molecular phenotypes in iPSC-derived sensory neurons. 108 
(a) Schematic of IPSDSN differentiation and assays. iPSCs were received in Essential 8 (E8) medium 109 
(N=82) or on mouse embryonic fibroblasts (MEFs, N=49), and transferred to KSR-XF medium. Over 110 
11 days, different inhibitor combinations were added (2i, 5i, 3i, see Methods), and N2B27 medium 111 
phased in, followed by transfer to growth factor medium at day 11 for neuronal maturation. (b) PCA 112 
plot projecting IPSDSN, iPSC, and DRG samples onto the first two principal components defined 113 
based on RNA-seq FPKMs in GTEx tissues. Some GTEx tissues are unlabelled due to overlapping 114 
labels. (c) Expression of sensory neuronal marker genes (SCN9A, DRGX) and key iPSC genes 115 
(NANOG, POU5F1). 116 
 117 

Quantifying differentiation variability using single-cell RNA-seq 118 

In previous work we showed that not all individual cells express neuronal marker genes after 119 
differentiation (Young et al. 2014). Samples also appeared to differ visually in the fraction of 120 
cells with a neuronal morphology. To further characterize this heterogeneity, we sequenced 121 
177 IPSDSN cells from one individual and clustered them based on expression profiles 122 
using SC3 (Kiselev et al. 2016). The data were best explained by two clusters (Figure 2a 123 
and Supplementary Figure 6), with 63% of cells forming a tight cluster expressing sensory-124 
neuronal genes (e.g. SCN9A, CHRNB2), and the remaining 37% of cells forming a looser 125 
cluster expressing genes typical of a fibroblastic cell type (e.g. MSN, VIM). The two cell 126 
types also separated cleanly in a principal components plot (Supplementary Figure 7), 127 
indicating that the cells do not fall on a smooth gradient from more neuronal to less, but 128 
rather have differentiated to distinct cell states. Comparing gene expression from each 129 
cluster to other tissues showed that the neuronal cluster was most similar to DRG 130 
(Spearman’s ρ=0.654), followed by iPSCs (ρ=0.609) and GTEx brain (mean ρ=0.599) 131 
(Supplementary Figure 8) while the fibroblast-like cluster was most similar to GTEx 132 
transformed fibroblasts (ρ=0.683), DRG (ρ=0.662), and iPSCs (ρ=0.653). The similarity of 133 
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these cells to GTEx fibroblasts could suggest a general similarity of adherent cultured cells, 134 
although the neuronal cluster had lower similarity to GTEx fibroblasts (ρ=0.579) than many 135 
other tissues. 136 
 137 
Next, we used CIBERSORT (Newman et al. 2015) to estimate the fraction of RNA from 138 
neuronal cells in our bulk RNA-seq samples, using the single cell gene expression counts 139 
with their cluster labels from SC3 as signatures of neuronal or fibroblast-like expression. The 140 
estimated neuronal content was strongly correlated (R2 = 0.75) with the first principal 141 
component of gene expression, and this corresponded well with a visual assessment of 142 
neuronal content from microscopy images (Figure 2b, Supplementary Figures 9,10). 143 
Although a majority of samples appeared by microscopy to have high neuronal content, 144 
CIBERSORT estimated relatively high fibroblast-like content for many samples (mean 49%). 145 
A factor contributing to this may be the greater RNA content (2.3-fold greater; 146 
Supplementary Figure 11) of fibroblast-like cells: indeed when the single cell counts are 147 
pooled, CIBERSORT estimates the fibroblast content of this “sample” as 60%, considerably 148 
higher than the 37% of single cells in the fibroblast-like cluster. A second consideration is 149 
that our scRNA-seq sample was matured for 8 weeks, whereas our bulk RNA-seq samples 150 
were matured for 4 weeks. Although gene expression changes are minor after 4 weeks 151 
maturation (Young et al. 2014), this difference in maturity means that our single cell 152 
reference profiles do not perfectly represent cells in our bulk samples. Despite this, IPSDSN 153 
samples estimated to have high fibroblast content still showed greater similarity in genome-154 
wide gene expression with DRG than with any GTEx tissue, including fibroblast cell lines 155 
(Supplementary Figure 12). Although these similarities are reassuring, we note that technical 156 
factors could contribute to the greater similarity with DRG, as different gene expression 157 
quantification tools were used for GTEx (RNASeQC) and for our iPSC, DRG, and IPSDSN 158 
samples (featureCounts). 159 
 160 

 161 
 162 
Figure 2  Single-cell sequencing of IPSDSN cells. (a) A heatmap of RNA-seq data for ten marker 163 
genes of the two cell clusters identified by SC3. Color scale denotes normalised gene expression levels. 164 
(b) The first two principal components (PCs) of IPSDSN gene expression, with estimated fibroblast-165 
like percentage from CIBERSORT, from samples derived using protocols 1 and 2 (P1 and P2). 166 
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Heterogeneity in IPSDSN gene expression 168 

A central issue for genetic studies in iPSC-derived cells is heterogeneity of cellular 169 
phenotypes. This heterogeneity could arise from donor genetic background, effects of clonal 170 
selection and effects of the cell culture environment during reprogramming and 171 
differentiation. Genome-wide gene expression was highly correlated within lines 172 
differentiated multiple times (median Spearman ρ=0.96) and reduced slightly between 173 
IPSDSNs from different donors (median ρ=0.93) (Supplementary Figure 13). However, 174 
differentiation replicates within donor cell lines did not consistently cluster together 175 
(Supplementary Figure 14), suggesting that variability due to differentiation was at least as 176 
large as that due to donor genetic background and iPSC reprogramming together. Although 177 
marker genes specific to sensory neurons and nociceptors were expressed (FPKM > 1) in 178 
nearly all samples, we observed a high degree of heterogeneity in the level of expression of 179 
some genes compared with DRG (Figure 1c and Supplementary Figure 15), despite the fact 180 
that a cell culture system is theoretically more pure in cell type composition than a complex 181 
tissue. These observations were independent of sample size, and were robust when 182 
comparing with DRG samples from unique donors only, rather than all 28 DRG samples 183 
(Supplementary Figure 16). 184 
 185 
Next, we examined how between-sample variability in global gene expression of IPSDSNs 186 
compared with other somatic tissues and cell lines. The distribution of coefficient of variation 187 
(CV) of gene expression in IPSDSNs fell within the range of most GTEx tissues (Figure 3a). 188 
However, the median CV of gene expression in IPSDSNs (0.37) was considerably higher 189 
than in DRG (0.23), indicating that IPSDSNs have greater between-sample variability in 190 
expression than the primary tissue they are intended to model. Highly variable genes in 191 
IPSDSNs were enriched for function in neuronal differentiation and development 192 
(Supplementary Table 4). Genes that were significantly upregulated between iPSCs and 193 
IPSDSNs, which will include those essential for sensory neuronal function, were also more 194 
variable than remaining genes (Supplementary Figure 17). Importantly, we did not observe 195 
similar levels of expression variability of neuronal or developmental gene groups in DRG, 196 
iPSCs, or GTEx nervous tissues (Supplementary Figure 18). These results highlight that 197 
expression of neuronal genes varies substantially more in IPSDSNs than in somatic nervous 198 
tissue, probably as a result of variability in differentiation. Consistent with this, variance 199 
components analysis (Figure 3b, Supplementary Figure 19) showed that as much or more 200 
variation was explained by differentiation batch (median 24.7%) as donor/iPSC line of origin 201 
(median 23.3%), which would include both donor and reprogramming effects. 202 
 203 
 204 
 205 
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 206 
 207 
Figure 3  Gene expression variability in IPSDSNs is influenced by differentiation conditions. (a) 208 
Density plot of the coefficient of variation of genes across samples, separately for each GTEx tissue, 209 
IPSDSN samples (n=106, P2 protocol only), iPSC (n=200), and DRG (n=28). (b) Violin plot showing, 210 
for each gene, the estimated fraction of total expression variability across samples due to 211 
differentiation batch, donor genetics or iPSC reprogramming, culture conditions (“wasFeeder”: feeder-212 
dependent vs. E8 medium), and gender. (c) Differentially expressed genes (FDR 1%, blue and red 213 
points) between iPSC samples grown on feeders (n=68) vs. E8 medium (n=171). (d) Differentially 214 
expressed genes (FDR 1%) between IPSDSNs from feeder- (n=27) and E8-iPSCs (n=79). Neuronal 215 
differentiation genes, such as RET and L1CAM, are more highly expressed in samples from E8-216 
iPSCs. (e) Left barplot: global gene expression differences between feeder- and E8-iPSCs are 217 
captured in PC1. Right two barplots: selected differentially expressed genes. (f) Left barplot: 218 
estimated neural fraction of samples differs in IPSDSNs derived from feeder- and E8-iPSCs. Right 219 
two barplots: selected differentially expressed genes. 220 
 221 
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iPSC culture conditions influence cell fate 222 

Intriguingly our variance components analysis suggested that, although the cell lines for this 223 
analysis were differentiated using an identical protocol, starting iPSC cell culture conditions 224 
influenced gene expression patterns in the IPSDSNs produced four weeks later (Figure 3). 225 
Of the 106 successful P2 protocol differentiations, 27 were from iPSCs maintained on 226 
mouse embryonic fibroblast (MEF) feeder cells (feeder-iPSCs), while the remaining 79 were 227 
grown in Essential 8 medium (E8-iPSCs). The first principal component (PC) of iPSC gene 228 
expression clearly differentiated feeder- and E8-iPSCs (Figure 3e), indicating that culture 229 
conditions are among the largest global effects on transcription. Similarly, PC1 of gene 230 
expression in IPSDSNs distinguished samples originating from feeder- and E8-iPSCs; 231 
moreover, IPSDSNs from E8-iPSCs had higher neuronal content (Figure 3f, 28% higher for 232 
E8-iPSCs, t-test p=1.84x10-5). A possible technical explanation for these results is that 233 
protocol implementation and batch effects changed subtly over the course of the project. 234 
However, the difference in neuronal content between IPSDSNs derived from E8 or feeder-235 
iPSCs remained when sample derivation date was included as an explanatory covariate 236 
(linear regression p=6.5x10-4, 36% higher for E8-iPSCs, Supplementary Figure 20).  237 
 238 
Next, we determined genes that were differentially expressed between E8- and feeder-239 
iPSCs and IPSDSNs (Figure 3c,d). Genes more highly expressed in feeder-iPSCs were 240 
strongly enriched for mesenchyme development, stem cell differentiation, and Wnt and TGF-241 
β signalling, while genes more highly expressed in E8-iPSCs showed less clear enrichment 242 
(Supplementary Tables 5-7). Notably, inhibition of TGF-β/SMAD signalling is a key step in 243 
sensory neuronal differentiation. Top differentially expressed genes include early 244 
developmental regulators such as EMX1 (15-fold higher in E8-iPSCs), important for specific 245 
neuronal cell fates, and BMP2 (13-fold higher in feeders), which has been shown to 246 
suppress differentiation to sensory cell fates by antagonizing Wnt/beta-catenin (Kléber et al. 247 
2005) (Figure 3e). In addition, SCN9A and TAC1, key markers of sensory neurons, were 248 
expressed at low levels in iPSCs, with 2.2-fold and 2.9-fold higher expression in E8-iPSCs. 249 
We also considered genes differentially expressed between IPSDSNs derived from E8- and 250 
feeder-iPSCs (Figure 3d). Genes more highly expressed in IPSDSN samples from feeder-251 
iPSCs were overrepresented in extracellular matrix components, pattern specification, organ 252 
morphogenesis, and Wnt signalling (Supplementary Tables 8-10), and include FGFR2, 253 
BMP7, and WNT5A (Figure 3f). Genes more highly expressed in IPSDSN samples from E8-254 
iPSCs were overrepresented in ion channel complexes, peripheral nervous system 255 
development, and synapse organisation, and include SCN9A, DRGX, and CACNA1A. These 256 
differences likely reflect the increased neuronal content of samples from E8-iPSCs. Together 257 
these results suggest that iPSCs are primed towards different cell fates depending on the 258 
iPSC culture medium. 259 
 260 
Since iPSC culture conditions influenced differentiation outcomes, we examined gene 261 
expression variability within subsets of IPSDSN samples. IPSDSNs differentiated from 262 
feeder-iPSCs had somewhat higher global gene expression variability, yet those from E8-263 
iPSCs were still highly variable relative to DRG and iPSCs (Supplementary Figure 21), with 264 
neuronal and developmental gene sets enriched for highly variable genes (Supplementary 265 
Table 11). Among the 79 IPSDSNs from E8-iPSCs, samples with high fibroblast content had 266 
somewhat higher variability, but those with low fibroblast content still showed high variability 267 
relative to DRG and iPSCs.   268 
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Genetic variants influence gene expression, splicing and chromatin 269 

accessibility in sensory neurons 270 

Using a linear model (FastQTL (Ongen et al. 2016)), we mapped 1,403 expression 271 
quantitative trait loci (eQTLs) at FDR 10%, of which 746 were expressed at a moderate level 272 
(FPKM > 1). We noted that we discovered many fewer eQTLs than in GTEx tissues of 273 
comparable sample size (Supplementary Figure 23). This suggested that power for eQTL 274 
discovery was lower in IPSDSNs than somatic tissues, possibly due to additional variability 275 
introduced by differentiation. Using an allele-specific method (Kumasaka, Knights, and 276 
Gaffney 2015) we detected 3,778 genes with expression-modifying genetic variants, termed 277 
eGenes, at FDR 10% (Supplementary Table 12), with 2,607 of these expressed at FPKM > 278 
1. Notably, it was only using the additional information from allele specific signals that we 279 
achieved approximately similar statistical power to GTEx tissues with equivalent sample 280 
sizes, and the improvement in power was greatest among genes with high variability across 281 
samples (Supplementary Figures 22,23). 282 
 283 
We next compared our eQTLs with GTEx. When clustering tissues based on the pairwise 284 
correlation in eQTL effect sizes, IPSDSNs clustered most closely with GTEx brain tissues, 285 
while also showing elevated correlation with GTEx fibroblasts (Supplementary Figure 24). 286 
We could not call eQTLs in DRG as the samples were not consented for use of genetic data. 287 
To identify eQTLs that were not already reported in GTEx (v6), we used a protocol described 288 
previously for the HIPSCI project (Kilpinen et al. 2017). Of all 3,778 eGenes, 954 had tissue-289 
specific associations (Supplementary Table 15), including genes with known involvement in 290 
pain or neuropathies, such as SCN9A, GRIN3A, P2RX7, CACNA1H/Cav3.2, and NTRK2. 291 
Because these eQTLs were not seen in any GTEx tissue, this suggests that these are 292 
regulatory variants with IPSDSN-specific function. 293 
 294 
Variants affecting gene splicing (sQTLs) often change either protein structure or context-295 
dependent gene regulation, and may be more enriched for complex trait loci than are eQTLs 296 
(Li et al. 2016). To detect sQTLs we used the annotation-free method LeafCutter (Li, 297 
Knowles, and Pritchard 2016) to define 30,591 clusters of alternatively spliced introns. Using 298 
FastQTL (Ongen et al. 2016) we discovered QTLs for 2,079 alternative splicing clusters at 299 
FDR 10% (Supplementary Table 13). Notably, only 538 (26%) of the lead variants for these 300 
splicing associations were in linkage disequilibrium (LD) r2 >= 0.5 with a lead eQTL variant in 301 
our dataset, indicating that the sQTLs extend our catalog of expression-altering variants and 302 
are not merely proxies for gene-level eQTLs (or vice versa). 303 
  304 
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 Number GWAS 
overlap 

eQTLs 3778 156 

sQTLs 2079 129 

ATAC QTLs 6318 172 

Joint ATAC/eQTLs 177 14 
 305 
Table 1  QTL associations. Columns show the number of associations and the number of unique 306 
overlaps (r2 > 0.8) between lead QTL SNPs and GWAS catalog SNPs after removing duplicates for 307 
each GWAS trait. 308 
 309 
We collected ATAC-seq data for 31 samples (Buenrostro et al. 2013) and used this to 310 
identify active regulatory regions in IPSDSNs and to map 6,318 caQTLs chromatin 311 
accessibility QTLs (caQTLs) at FDR 10% (Supplementary Table 14). To identify transcription 312 
factors in IPSDSNs whose binding is altered by regulatory variants, we used the LOLA 313 
Bioconductor package (Sheffield and Bock 2015) to test for enrichment of our lead QTL 314 
SNPs, relative to GTEx lead SNPs, in ENCODE ChIP-seq peaks and JASPAR transcription 315 
factor motifs (Supplementary Tables 16,17). Tissue-specific eQTLs were highly enriched 316 
within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and 14.1; p < 5x10-5), which are 317 
both members of the neuron-specific chromatin remodeling (nBAF) complex (Lessard et al. 318 
2007). Considering all IPSDSN eQTLs, we found enrichments for ELK1 and ELK4, as well 319 
as c-Fos, a target of ELK1 and ELK4 which is widely expressed but is known to have 320 
specific functions in sensory neurons (Hunt, Pini, and Evan 1987; Kohno et al. 2003). 321 
Notably, DNA sequence motifs for REST, ELK1 and ELK4 are also among the most highly 322 
enriched motifs in our ATAC-seq peaks (Supplementary Table 18). 323 
 324 

Sensory neuron eQTLs and sQTLs overlap with complex trait loci 325 

While we were interested in comparing our set of QTLs with GWAS for pain, the largest 326 
GWAS for pain to date included just 1,308 samples and found no associations at genome-327 
wide significance (Peters et al. 2013). We therefore considered all GWAS catalog 328 
associations with p < 5x10-8 that were in high LD (r2 > 0.8) with a QTL in our dataset, with 329 
two purposes in mind: to determine whether any GWAS traits are enriched overall for 330 
overlap with sensory neuron QTLs, and to find individual cases where a QTL is a strong 331 
candidate as a causal association for the GWAS trait. Overall, IPSDSN eQTLs were 332 
significantly enriched for overlap with GWAS catalog SNPs (p < 0.001) relative to 1000 333 
random sets of SNPs matched for minor allele frequency (MAF), distance to nearest gene, 334 
gene density, and LD (Pers, Timshel, and Hirschhorn 2014), and the overlap was consistent 335 
with that seen for eQTL studies in other tissues (Supplementary Figure 25). Although 336 
nociceptive neurons are specialized for sensing and relaying pain signals, they share 337 
characteristics with other neurons; thus, we might expect enrichment for traits known to 338 
involve the nervous system more generally. However, among the 41 traits with at least 40 339 
GWAS catalog associations, we could not detect any trait with significantly greater overlap 340 
with our QTL catalog than other traits after correcting for multiple testing (Supplementary 341 
Table 19). 342 
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 343 
Across all traits, we found 156 genes with an eQTL overlapping at least one GWAS 344 
association, and similarly 129 sQTLs and 172 caQTLs with GWAS overlap (full catalog in 345 
Supplementary Tables 20-22). We examined individual associations, in conjunction with 346 
ATAC-seq peaks and LD information, to identify candidate causal variants influencing both a 347 
molecular phenotype and a complex trait. For most of these associations we do not expect 348 
that sensory neurons are the most relevant cell type; rather the overlaps may reflect either 349 
general neuronal mechanisms or non-cell-type-specific functions. We thus focused on traits 350 
where neurons are likely to be a relevant cell type. 351 
 352 
Among overlapping associations we found a number that relate to neuronal diseases, such 353 
as Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease. One striking overlap is 354 
between an eQTL for SNCA, encoding alpha synuclein, and Parkinson’s disease, for which 355 
a likely causal variant has recently been identified (Soldner et al. 2016). The lead GWAS 356 
SNP and our lead eQTL are both in perfect LD with rs356168 (1000 genomes MAF 0.39), 357 
which lies in an ATAC-seq peak in an intron of SNCA. Soldner et al. used CRISPR/Cas9 358 
genome editing in iPSC-derived neurons to show that rs356168 alters both SNCA 359 
expression and binding of brain-specific transcription factors (Soldner et al. 2016). In 360 
IPSDSN cells we find that the G allele of rs356168 increases SNCA expression 1.14-fold, in 361 
line with Soldner et al. who reported 1.06- to 1.18-fold increases in neurons and neural 362 
precursors. However, despite residing in a visible ATAC-seq peak in our data, rs356168 is 363 
not detected as a caQTL (SNP p value = 0.22). eQTLs for SNCA have recently been 364 
reported in the latest GTEx release (v6p), but none of the tissue lead SNPs are in LD (r2 > 365 
0.2) with rs356168, suggesting that the effect of this SNP can be more readily detected in 366 
specific cell and tissue types, including IPSDSNs and the frontal cortex tissue and iPSC 367 
derived neurons studied by Soldner et al. 368 
 369 
We also find multiple compelling overlaps between splice QTLs and GWAS associations 370 
(Figure 4). One known example is a strong sQTL for TNFRSF1A (p=9.9x10-29) with the same 371 
lead SNP (rs1800693, MAF 0.30) as a multiple sclerosis association. This likely causal SNP 372 
is located 10 base pairs from the donor splice site downstream of exon 6, and has been 373 
experimentally shown to cause skipping of exon 6, which results in a truncated, soluble form 374 
of TNFR1 that appears to reduce TNF (Gregory et al. 2012). TNFRSF1A is highly expressed 375 
(>15 FPKM) in both IPSDSNs and in DRG. We do not see an effect of this variant on total 376 
expression levels in our cells (p > 0.5), but we observe skipping of exon 6 in about 12% of 377 
transcripts from individuals homozygous for rs1800693 (Figure 4a). Since these transcripts 378 
undergo nonsense-mediated decay, the actual rate of exon skipping is likely to be higher. 379 
Given the broad role of TNF in inflammation and immunity, it is interesting that rs1800693 is 380 
associated with MS but not with other autoimmune disorders, apart from primary biliary 381 
cirrhosis (Gregory et al. 2012). Moreover, whereas TNF inhibitors are effective in many 382 
autoimmune disorders, they exacerbate MS, an effect that is mimicked by the reduction in 383 
TNF signalling produced by the TNFRSF1A splice variant. These observations suggest an 384 
interplay between cells of the CNS and immune system involving TNF signalling. TNF 385 
signalling has been shown to have both inflammatory and neuroprotective effects in the CNS 386 
and, despite a large body of research, the exact mechanisms and cell types responsible for 387 
the genetic risk associated with TNF receptor polymorphisms remain unclear (Probert 2015). 388 
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 389 
 390 
Figure 4   Splicing QTLs overlapping GWAS. (a) An sQTL for TNFRSF1A leads to skipping of exon 6, 391 
and overlaps with a multiple sclerosis association. (b) An sQTL for SIPA1L2 leads to increased 392 
skipping of an unannotated exon between alternative promoters, and overlaps with a Parkinson’s 393 
disease association. (c) An sQTL for APOPT1 alters skipping of exons 2 and 3, and overlaps with a 394 
schizophrenia association. P values are from the beta approximation based on 10,000 permutations 395 
as reported by FastQTL. 396 
 397 
An sQTL for SIPA1L2 (rs16857578, MAF 0.23) is in LD with associations for both 398 
Parkinson’s disease (rs10797576, r2=0.93) and blood pressure (rs11589828, r2=0.94). An 399 
unannotated noncoding exon (chr1:232533490-232533583) between alternative SIPA1L2 400 
promoters is included in nearly 50% of transcripts in individuals with the reference genotype, 401 
but splicing in of the exon is abolished by the variant (Figure 4b). SIPA1L2, also known as 402 
SPAR2, is a Rap GTPase-activating protein expressed in the brain and enriched at synaptic 403 
spines (Spilker and Kreutz 2010). Although its function is not yet clear, expression is seen in 404 
many tissues profiled by GTEx, with highest expression in the peripheral tibial nerve. 405 
Interestingly, the related protein SIPA1L1 exhibits an alternative protein isoform with an N-406 
terminal extension that is regulated post-translationally to influence neurite outgrowth 407 
(Jordan et al. 2005). 408 
 409 
A complex sQTL for APOPT1 (rs4906337, MAF 0.22) is in near-perfect LD with a 410 
schizophrenia association (rs12887734). The splicing events involve skipping either of exon 411 
3 only or both exons 2 and 3 (Figure 4c). At least 20 variants are in high LD (r2 > 0.9), 412 
including rs4906337 which is 40 bp from the exon 3 acceptor splice site, and rs2403197 413 
which is 63 bp from the exon 4 donor splice site. No sQTL is reported in GTEx, and although 414 
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eQTLs are reported for APOPT1, only the thyroid-specific eQTL (rs35496194) is in LD (r2 = 415 
0.94) with the schizophrenia-associated SNP rs12887734. APOPT1 is localized to 416 
mitochondria and is broadly expressed. Homozygous loss-of-function mutations in this gene 417 
lead to Cytochrome c oxidase deficiency and a distinctive brain MRI pattern showing 418 
cavitating leukodystrophy in the posterior region of the cerebral hemispheres, with affected 419 
individuals having variable motor and cognitive impairments and peripheral neuropathy 420 
(Melchionda et al. 2014). 421 
 422 

Recall by genotype studies in iPSC-derived cells will require large 423 

sample sizes 424 

One attractive future use of iPSCs is to experimentally characterise GWAS loci using a 425 
“recall by genotype” approach. Here, iPSC lines with specific genotypes are chosen from a 426 
large bank and differentiated into target cell types (for example, see (Warren, Sullivan, et al. 427 
2017)). Our observations suggested that, for certain protocols, the additional cellular 428 
heterogeneity introduced by differentiation could impact the power of these studies to detect 429 
the effects of common genetic variants. Importantly, our large set of differentiations gave us 430 
accurate genome-wide estimates of effect size and expression variability in an IPS-derived 431 
cell type, for use as a benchmark “ground truth”.  We investigated the performance of iPSC-432 
based recall by genotype studies by bootstrap resampling from a stringent (FDR 1%) 433 
IPSDSN eQTL call set. For each eQTL gene we sampled expression counts from an equal 434 
number of major and minor homozygotes for the lead SNP, sampling with replacement to 435 
achieve a specific sample size. We then estimated power as the fraction of 100 bootstrap 436 
replicates where we found a significant difference (p < 0.05, Wilcoxon rank sum test) in 437 
expression between the homozygotes. 438 
 439 
Our results illustrate important trends. First, recall by genotype studies in IPS-derived cells 440 
are likely to require relatively large sample sizes, typically 20-80 unrelated individuals, for 441 
variants with a 1.5-2-fold effect size (Figure 5a). Second, as expected, highly variable genes 442 
are more challenging (Figure 5b) with power below 40% in a sample size of 20 for even 443 
moderately variable genes (CV 0.5 - 0.75). While expression noise will not typically be 444 
known accurately a priori, an estimate of effect size may be available from previous eQTL 445 
studies in specific tissues. This could enable estimating the number of samples needed to 446 
achieve a desired power (Figure 5a). 447 
 448 
Note that these power estimates assume that a single gene is being tested, which is only 449 
likely to be the case when there is a very strong prior belief in the causal gene and few 450 
genes in the region. Where multiple genes are tested, power will be lower. These results 451 
also suggest that large sample sizes will be required when using genome editing to identify 452 
causal GWAS-associated variants: although genetic background can be controlled in such 453 
an experiment, differentiation noise will continue to be a major contributor to gene 454 
expression variability. 455 
 456 
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 457 
 458 
Figure 5  Power to detect a genetic effect in a single-variant single-gene test depends on sample 459 
size, allelic effect size, and gene expression variability. (a) TPR as a function of allelic fold change for 460 
five different numbers of replicates (half the total sample size). (b) TPR as a function of CV for five 461 
bins of allelic fold change, with 10 samples of each genotype. 462 

Discussion 463 

iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant 464 
human cell types, including those which are inaccessible as primary tissue samples. 465 
Because the effect sizes of common disease-associated risk alleles tend to be small, 466 
observing their effects in cellular models is challenging (Soldner et al. 2016; Pashos et al. 467 
2017). In an iPSC-based system, this difficulty is compounded by variability between 468 
samples in the success of differentiation, as described for hepatocytes (Dianat et al. 2013), 469 
hematopoietic progenitors (Smith et al. 2013), and neurons (Handel et al. 2016; Hu et al. 470 
2010). 471 
 472 
Our study is the first that we are aware of to perform iPSC differentiation to a neuronal cell 473 
type and functionally characterise the resulting cells at scale. Sample-to-sample variability in 474 
gene expression in the iPSC-derived cells was greater than in DRGs, with highly variable 475 
genes enriched in processes relating to neuronal differentiation and development. This 476 
highlights that genes likely to be of particular interest and relevance for the function of these 477 
cells are also among the most variable, a challenge which may be broadly true of iPSC-478 
derived cells. Despite the observed sample-to-sample variability in gene expression, we 479 
detected thousands of eQTLs, sQTLs, and caQTLs in IPSDSNs, most of which were 480 
discovered only with a model that statistically combines both allele-specific and between 481 
individual differences in expression to improve power for association mapping. Some of these 482 
overlap known expression-modifying variants that are associated with disease, such as an 483 
eQTL for SNCA associated with Parkinson’s disease. However, for most of these disease 484 
overlaps the causal variants are not known. This QTL map is thus a starting point for in-depth 485 
dissection of individual loci in iPSC-derived neurons where we have shown that a genetic 486 
effect is present. 487 
 488 
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Although our study highlights the potential power of IPSC derived cells as model systems for 489 
studying human genetic variation, our results also illustrate the limitations of this approach. 490 
First, despite expressing key marker genes and exhibiting neuronal morphology and 491 
electrophysiology, it is clear from our data that IPSDSNs are transcriptionally distinct from their 492 
primary counterparts, DRGs. This reflects a limitation of existing in vitro differentiation 493 
protocols, which produce cells that are not as functionally or transcriptionally mature as 494 
primary tissues. Second, our differentiations did not produce pure populations of neurons, nor 495 
could we measure the purity of the resulting cultures precisely. A portion of the sample-to-496 
sample variability that we observed is likely due to this mixture of cell types, which varied 497 
across differentiations. Although mature neurons can be labeled for marker genes, they are 498 
not easily sorted by automated systems, which limits the high-throughput options available for 499 
purifying neuronal populations. As a result, the eQTLs that we discovered do not represent 500 
those of a pure sensory neuronal cell type. For many cell types, sorting is more feasible, and 501 
could provide one solution to the variable maturity and heterogeneity of differentiated cell 502 
populations. 503 
 504 
We used single-cell RNA-seq from three differentiation batches to characterise IPSDSN 505 
heterogeneity, which showed that they cluster into neuronal cells and cells with more 506 
fibroblast-like gene expression. Using reference profiles from these clusters enabled us to 507 
estimate a proxy measure of neuronal cell purity in our bulk RNA-seq samples, and these 508 
estimates qualitatively agreed with the neuronal content in images from the cell cultures. Our 509 
method is similar to a deconvolution approach described recently using bulk and single-cell 510 
sequencing of primary human and mouse pancreas (Baron et al. 2016). 511 
 512 
The similarity of the fibroblast-like single cells to DRG raises the important question of 513 
whether these cells are immature sensory neurons. Single-cell sequencing at multiple time 514 
points during MYOD-mediated myogenic reprogramming has suggested that some individual 515 
cells traverse a desired course, while others terminate at incomplete or aberrant 516 
reprogramming outcomes (Cacchiarelli et al. 2017). Such an approach in IPSDSNs could 517 
reveal determinants of neuronal differentiation trajectories, and may yield useful insights for 518 
protocol changes to improve the purity of differentiated neurons, or to specify more precise 519 
neuronal subtypes. More generally, replacing bulk RNA-seq with single cell sequencing 520 
across many samples could enable in silico sorting of cells based on their transcriptome, 521 
and better characterisation of the sources of variation within a differentiated population of 522 
cells. Further, culturing cells from multiple donors in a pool, along with an scRNA-seq 523 
readout, could reduce differentiation-related batch effects while retaining the ability to 524 
identify donor-specific genetic effects on gene expression. These advantages suggest to us 525 
that a move towards scRNA-seq will be extremely useful in iPSC-derived cell models. 526 
 527 
For iPSC models of common disease associated variants to be used effectively, it is critical 528 
to know which candidate disease associated variants exhibit a detectable cellular phenotype 529 
in an in vitro model. We used in silico resampling to estimate the sample sizes needed to 530 
detect the effects of noncoding regulatory variants in iPSC-derived cells using a recall by 531 
genotype design. Power above 80% is only achieved with surprisingly large (40+) samples, 532 
even for alleles with a fold change of 1.5 to 2. Further, the power we report may be 533 
overestimated, due to ascertainment bias in defining a set of eQTLs as “true positives”, 534 
which fails to include true genetic effects that we did not discover in our samples. Even 535 
larger samples will be needed when multiple genes, for example in a single GWAS interval, 536 
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are to be tested. These observations are consistent with a recent genome-editing 537 
experiment that required 136 differentiations in hepatocyte-like cells to discover an effect of 538 
rs12740374 on SORT1 gene expression (Warren, Sullivan, et al. 2017). Notably, the modest 539 
effect of this variant on expression in hepatocyte-like cells (1.3-fold increase) stands in 540 
contrast to the large effect of the variant (4- to 12-fold increase) observed previously in 541 
primary liver (Musunuru et al. 2010). Where it is possible to use a coding SNP to assess the 542 
allele-specific effect of a genome edit, as done for SNCA (Soldner et al. 2016), this may 543 
prove a more efficient approach to detecting causal effects of individual regulatory variants. 544 
 545 
In summary, we have measured multiple molecular phenotypes in a large panel of iPSC-546 
derived neurons. The catalog of QTLs we provide reveals a large set of common variants 547 
and target genes with detectable effects in IPSDSNs. These associations provide promising 548 
targets for functional studies to fine-map causal disease-associated alleles, such as by 549 
allelic replacement using CRISPR-Cas9, and our study describes the importance of 550 
considering differentiation-induced variability when planning these studies in iPSC-derived 551 
cells. 552 

URLs 553 

OpenTargets, www.targetvalidation.org. 554 
CIBERSORT, cibersort.stanford.edu. 555 
ENCODE, www.encodeproject.org. 556 
GTEx, www.gtexportal.org. 557 
HIPSCI, www.hipsci.org. 558 
 559 

Data Availability 560 

Code used for processing and analysing data is available at https://github.org/js29/ipsdsn. RNA-seq 561 
and ATAC-seq data for open access samples are deposited in the European Nucleotide Archive 562 
under accession ERP020576. These data for managed access samples are deposited in the 563 
European Genome Archive under accession EGAD00001003145. Summary statistics and gene 564 
expression counts are available at https://www.ebi.ac.uk/biostudies/studies/S-BSST16. Sample 565 
genotypes and accession numbers are available at http://www.hipsci.org/data. 566 
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Online methods 589 

IPS cell lines 590 

A summary of iPSC lines used is available in Supplementary Table 2, and details of processes and 591 
assays for these iPSCs generated by the HIPSCI project are available at www.hipsci.org. Briefly, 107 592 
human induced pluripotent stem cells (iPSCs) from 103 healthy donors were obtained from the 593 
HIPSCI resource (Kilpinen et al. 2017). We reproduce an abridged version of their methods here: 594 

For each donor, primary human fibroblasts were derived from 2 mm skin punch biopsies. 595 
Dissected biopsy fragments were cultured in fibroblast growth medium until fibroblast 596 
outgrowths appeared, which took 14 days on average. Fibroblasts were then transduced 597 
using Sendai vectors expressing hOCT3/4, hSOX2, hKLF4, and hc-MYC (CytoTuneTM, Life 598 
Technologies, Cat. no. A1377801). Transduced cells were cultured on an irradiated mouse 599 
embryonic fibroblast (MEF-CF1) feeder layer in iPSC medium consisting of Advanced DMEM 600 
(Life technologies, UK) supplemented with 10% Knockout Serum Replacement (KOSR, Life 601 
technologies, UK), 2 mM L-glutamine (Life technologies, UK), 0.007% 2-mercaptoethanol 602 
(Sigma-Aldrich, UK), 4 ng/mL of recombinant Zebrafish Fibroblast Growth Factor-2 (CSCR, 603 
University of Cambridge), and 1% Pen/Strep (Life technologies, UK). Cells with an iPSC 604 
morphology appeared approximately 25 to 30 days post-transduction. The undifferentiated 605 
colonies (6 per donor) were picked between days 30-40, transferred onto 12-well MEF-CF1 606 
feeder plates and cultured in iPSC medium with daily media change until ready to passage. 607 
 608 
Between passages 4 to 8, selected feeder-dependent iPSC lines were transferred to feeder-609 
free culture, while other lines continued to be cultured on MEF-CF1 feeder plates. Feeder-610 
free lines were cultured in Essential 8 (E8) medium on tissue culture dishes coated with 10 611 
µg/ml Vitronectin XF (StemCell Technologies, UK, 07180). E8 complete medium consists of 612 
basal medium DMEM/F-12(HAM) 1:1(Life technologies, UK, A1517001) supplemented with 613 
E8 supplement (50X) (Life technologies, UK, A1517001) and 1% Pen/Strep (Life 614 
technologies, UK, 15140122).  615 

 616 
Of the 107 lines, 38 were initially grown in feeder-dependent medium and the remainder were grown 617 
in feeder-free E8 medium.  All HIPSCI samples were collected from consented research volunteers 618 
recruited from the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.uk). Samples 619 
were collected initially under existing Cambridge BioResource ethics for iPSC derivation (REC Ref: 620 
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09/H0304/77, V2 04/01/2013), with later samples collected under a revised consent (REC Ref: 621 
09/H0304/77, V3 15/03/2013).  622 
 623 

Sensory neuron differentiation 624 

All differentiations in this study were performed by a single individual, and a summary of the IPSDSN 625 
cell lines is in Supplementary Table 1. Two differentiation protocols were used, named P1 (13 626 
differentiations) and P2 (110 differentiations). Note that P1 protocol samples were used only for QTL 627 
calling, and other analyses used P2 protocol samples exclusively. The P1 protocol (described in detail 628 
in (Young et al. 2014)) was developed prior to this study using a small number of cell lines. It involved 629 
the addition of “2i” inhibitors (LDN193189 and SB-431542) for 5 days, followed by “5i” inhibitors 630 
(LDN193189, SB-431542, CHIR99021, DAPT, SU5402) for a further 6 days. When applying this 631 
protocol to a larger number of samples we observed an excessive rate of cell death prior to obtaining 632 
neural progenitors (days 9-12). A separate study was undertaken to optimise the robustness of the 633 
protocol. We altered the protocol to make it more similar to that of Chambers et al. (Chambers et al. 634 
2012), and differentiated 17 replicates using both the new P2 protocol and the P1 protocol (these 635 
samples are not used for this manuscript). All 17 replicates successfully differentiated with the P2 636 
protocol, whereas only 7 of 17 (41%) were successful with the P1 protocol. 637 
The P2 protocol differed by: 638 

• using E8 rather than mTeSR1 media when maintaining iPSCs prior to differentiation;  639 
• phasing in neurobasal media beginning at day 4, and gradually increasing this to 100% by 640 

day 11, to support neurons during differentiation; 641 
• beginning addition of inhibitors 5i two days earlier (day 3 rather than day 5); 642 
• stopping addition of small molecule inhibitors LDN193189 (1µmol/l) and SB-431542 (10 643 

µmol/l) beginning at day 7 (rather than day 11), referred to as “3i” in the main text for the 3 644 
inhibitors that continued to be added. 645 

We measured cell culture endpoints, including: 646 
• Total cell numbers at multiple points during differentiation 647 
• Population doubling time 648 
• Viability using Trypan blue staining 649 

 650 
Functional assays (Ca2+ flux, response to Veratridine) confirmed that response of the sensory 651 
neurons produced by each protocol was equivalent; however, the P2 protocol performed more 652 
consistently across cell lines and culture parameters. 653 
 654 
In general, for each differentiation from iPSCs of a given donor multiple flasks were cultured in 655 
parallel. The first successful flask was used for RNA-seq. Subsequent flasks were used for 656 
electrophysiology measurements, Ca flux or pharmacological measurements. If an additional flask 657 
was available then it was used for ATAC-seq. 658 
 659 
P2 protocol details 660 
Clump passaged iPSCs were single cell seeded in E8 media (Life Technologies) on growth factor-661 
reduced Matrigel (BD Biosciences, San Jose, CA) 48 hours prior to neural induction (day 0). KSR 662 
Media was prepared as 500ml DMEM-KO (Life Technologies 10829-018), 130 ml Knockout Serum 663 
Replacement Xeno-Free (Life Technologies 12618-013), 1x NEAA (Life Technologies 11140-068), 1x 664 
Glutamax (Life Technologies 35050-087), 0.01 mM β-mercaptoethanol (Sigma M6250-100ml). KSR 665 
media containing small molecule inhibitors LDN193189 (100 nM) and SB-431542 (10 µM) was added 666 
to cells from day 0 to 3 to drive anterior neuroectoderm specification. From day 3, CHIR99021 (3 µM), 667 
DAPT (10 µM) and SU5402 (10 µM) were also added to further enable the emergence of neural crest 668 
phenotypes. N2B27 media was progressively phased in every two days from D4. N2B27 Media was 669 
prepared as 500 ml Neurobasal medium (Life Technologies 21103-049), 5 ml N2 supplement (Life 670 
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Technologies 17502-048), 10 ml B27 supplement without vitamin A (Life Technologies 12587-010), 671 
0.01mM β-mercaptoethanol (Sigma M6250-100 ml) and 1x Glutamax (Life Technologies 35050-087). 672 
On day 7, inhibitors LDN193189 and SB-431542 were no longer used, while CHIR99021, DAPT, and 673 
SU5402 continued to be added. On day 11 cells were harvested and reseeded at 150,000 cells/cm2 674 
in maturation media containing N2B27 media with human-b-NGF (25 ng/ml), BDNF (25 ng/ml), NT3 675 
(25 ng/ml) and GDNF (25 ng/ml). Mitomycin C treatment (1 µg/ml) was used once at day 14 for 2 hrs 676 
to reduce the non-neuronal population. Cells were differentiated in T25 flasks for RNA and nuclei 677 
isolation, and onto coverslips and 96 well plates for electrophysiology and Ca2+ flux assays. 678 
 679 
P1 protocol details 680 
All media and inhibitors and concentrations used were identical to the P2 protocol described above; 681 
the difference was timing of addition. Clump passaged iPSCs were single cell seeded in mTeSR1 682 
iPSC (StemCell Technologies, Vancouver) media on growth factor-reduced Matrigel (BD Biosciences, 683 
San Jose, CA) 48 hours prior to neural induction (day 0). KSR media containing LDN193189 and SB-684 
431542 was added to cells from day 0 to 5. From day 5, CHIR99021, DAPT and SU5402 were also 685 
added. On day 11 cells were harvested and reseeded at 150,000 cells/cm2 in maturation media 686 
containing N2B27 media with human-b-NGF, BDNF, NT3 and GDNF. Mitomycin C treatment (1 687 
µg/ml) was used once at day 14 for 2 hrs to reduce the non-neuronal population. 688 

Single-cell RNA sequencing 689 

Blood-derived iPSCs from a single individual, who was not a HIPSCI donor, were differentiated to 690 
sensory neurons in 3 separate batches using the P2 protocol. These samples were matured for 8 691 
weeks, whereas the RNA-seq samples were matured 4 weeks. Previous work showed only minor 692 
changes in gene expression between 4 and 8 weeks maturation (Young et al. 2014). Each batch of 693 
dissociated cells was loaded onto a Fluidigm C1 system for automatic cell separation, reverse 694 
transcription and amplification.  Libraries were only prepared from C1 chambers that contained single 695 
cells, using the Illumina Nextera XT kit as per the Fluidigm C1 protocol.  These were quantified with 696 
the Qubit dsDNA HS assay (Thermo Fisher) and KAPA Library Quantification Kit (KAPA Biosystems) 697 
and size-checked with the Agilent Bioanalyser DNA 1000 assay (Agilent), as per manufacturers’ 698 
recommendations.  Libraries were 96-way multiplexed and sequenced paired end on an Illumina 699 
Nextseq500 (75bp reads). Reads for each cell were aligned to GRCh38 and Ensembl 80 transcript 700 
annotations using STAR v2.4.0d with default parameters. 701 
 702 
We had gene expression counts for ~56,000 genes (including noncoding RNAs) for 186 cells, 703 
although many of these were zeros. We excluded 9 cells expressing fewer than 20% of the quantified 704 
genes, and then used SC3 (Kiselev et al. 2016) to cluster the remaining 177 cells based on 705 
expression counts. Note that when clustering cells from complex tissues there is often a hierarchy of 706 
clusters, and no specific number of clusters can be considered correct. Allowing that the same could 707 
be true of IPS-derived cells, we examined alternative numbers of clusters from k=2 to 5 708 
(Supplementary Figure 6), specifying k (the number of clusters) ranging from 2 to 5. With two clusters, 709 
the marker genes reported by SC3 clearly identified one cluster (111 cells) as neuronal, whereas the 710 
other cluster (66 cells) had high expression of extracellular matrix genes reminiscent of fibroblasts. 711 
With 3 and 4 clusters, the sensory-neuronal cell cluster remained unchanged, and the fibroblast-like 712 
cluster became further subdivided. This suggests that a majority of the cells in this sample were 713 
terminally differentiated into sensory neurons, whereas the remaining cells were more heterogeneous 714 
in their gene expression. 715 
 716 
To display marker gene expression we selected 5 neuronal and 5 fibroblast marker genes based on 717 
the literature. After DESeq2’s variance stabilizing transformation, we used R’s “scale” function to 718 
mean-center and normalize expression values across cells for these genes, and plotted the result 719 
using the pheatmap R package. 720 
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 721 
To compare gene expression between single cell clusters and bulk RNA-seq samples, we computed 722 
the mean FPKM expression for each gene separately in single neurons and fibroblast-like cells. We 723 
subsetted to genes with nonzero expression in at least one GTEx tissue and in at least one of our 724 
tissues (iPSC, DRG, IPSDSN bulk, IPSDSN single cells), and computed the Spearman correlation 725 
between each pair of tissues for the remaining genes. 726 

Genotypes 727 

We obtained imputed genotypes for all of the samples from the HIPSCI project. We used CrossMap 728 
(http://crossmap.sourceforge.net/) to convert variant coordinates from GRCh37 reference genome to 729 
GRCh38. We then used bcftools (http://samtools.github.io/bcftools/) to retain only bi-allelic variants 730 
(SNPs and indels) with INFO score > 0.8 and MAF > 0.05 in the 97 samples used for QTL calling. 731 
This filtered VCF file was used for all subsequent analyses. 732 

RNA sequencing 733 

Cells growing in T25 flasks were washed twice with PBS followed by addition of 600 mL of RLTPlus 734 
buffer. Cells were gently lifted from the flask and transferred to 1.5 ml tubes. Lysates were transferred 735 
to 1.5 mL tubes. RNA and gDNA were isolated using AllPrep DNA/RNA Minikit (Qiagen). RNA was 736 
eluted in 33 uL of DNAse free water and DNA eluted in 53 uL EB buffer. 737 
 738 
RNA libraries were prepared using the Illumina TruSeq strand-specific protocol, and were sequenced 739 
with paired-end reads (2x75) on Illumina Hiseq with V4 chemistry. There were 131 RNA samples, 740 
which corresponded with 103 unique HIPSCI cell lines, as some of the samples were differentiation 741 
replicates or RNA-extraction replicates. One sample failed in sequencing and was excluded.  742 
 743 
Two sets of analyses were done with different genome builds: 744 

• QTL analyses and GWAS overlaps were done with reads aligned to GRCh38; 745 
• all other analyses, including comparisons with GTEx, iPSCs, and DRG, and expression 746 

variability, were done with reads aligned to GRCh37. This was so that comparisons were 747 
done with identical alignment and counting methods. 748 

For QTL analyses, reads for each sample were aligned to GRCh38 and Ensembl 79 transcript 749 
annotations using STAR v2.4.0j with default parameters. We used VerifyBamID v1.1.2 (Jun et al. 750 
2012) to check that RNA-seq sample BAM files matched the corresponding sample genotypes in the 751 
core HIPSCI VCF files. This revealed 5 mislabeled RNA samples, for which the correctly matching 752 
sample genotypes could be easily determined and corrected, as well as two samples for which no 753 
match could be found in HIPSCI genotype data and which were thus excluded (these had been 754 
labeled as problematic samples in HIPSCI). For comparisons among tissues, reads for each sample 755 
were aligned to the 1000 Genomes GRCh37 reference genome with human decoy sequence 37d5 756 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembl 757 
y_sequence/hs37d5.fa.gz), and with Gencode v19 transcript annotations 758 
(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz) 759 
using STAR 2.5.3a. 760 

Gene expression quantification, quality control and exclusions 761 

Gene expression counts for QTL calling 762 
GTF files for the Gencode Basic transcript annotations, GRCh38 release 79, were downloaded from 763 
www.gencodegenes.org. Gene expression counts were determined using the featureCounts tool of 764 
the subread package v1.5.0 (Liao, Smyth, and Shi 2014) with options (-s 2 -p -C -D 2000 -d 25); only 765 
uniquely mapping reads were counted. A median of 45 million reads were generated per sample, with 766 
median 32.8 million reads (72%) uniquely mapping and assigned to genes. We subsequently 767 
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excluded short RNAs, pseudogenes, and genes not mapping to chromosomes 1-22, X, Y, or MT, 768 
leaving 35,033 unique genes. Expression counts were normalised using conditional quantile 769 
normalisation with the R package cqn v5.0.2 (Hansen, Irizarry, and Wu 2012). We defined expressed 770 
genes as the 14,215 genes with mean CQN-normalised expression across samples > 1.  771 
 772 
We determined pairwise correlation between samples using normalized counts for expressed genes 773 
and plotted these as a heatmap. We also plotted the first five principal components of gene 774 
expression against each other. These plots identified four outlier samples, which were excluded from 775 
subsequent analyses (Supplementary Figure 1). After all exclusions and corrected sample labels, we 776 
retained 126 samples from 99 unique donors. For gene expression quantification for QTL calling (both 777 
eQTL and sQTL), replicate BAM files from same donor were merged together using samtools. 778 
Because genotypes were not available from HIPSCI for two donors, we retained gene expression 779 
data for 97 donors for QTL calling. 780 
 781 
Gene expression counts for sample comparisons 782 
For all between-tissue comparisons, gene expression counts were determined using featureCounts, 783 
as for QTL calling, except that GTF files for Gencode v19 transcript annotations were used, along with 784 
BAM files with reads aligned to GRCh37 as described above. 131 sensory neuron samples, 28 DRG 785 
samples, and 239 iPSC samples were quantified in this way. 786 
 787 
Assessing gene expression replicability 788 
We used R with ggplot2 to plot the CQN-normalized expression for pairs of sample replicates. We 789 
excluded 13 samples differentiated using the first version protocol (P1), as most samples (110) were 790 
differentiated with the second version (P2), which gave us sufficient samples to consider variability 791 
between differentiations without including protocol effects. We determined the spearman correlation 792 
coefficient across all genes for (a) extraction replicates, (b) differentiation replicates, and (c) all 793 
possible pairs of samples from different donors. The histogram of correlation coefficients for these 794 
categories is shown in Supplementary Figure 13. 795 

Dorsal root ganglion samples and sequencing 796 

Human tissue acquisition and handling was performed at Pfizer Neuroscience and Pain Research 797 
Unit in accordance with regulatory guidelines and ethical board approval. Postmortem human dorsal 798 
root ganglia (DRG) were obtained in dissected form from Anabios or as an encapsulated sheath 799 
together with sensory/afferent axons from National Disease Research Interchange which were 800 
subsequently dissected to isolate the cell-body rich ganglion. The tissue was homogenised in an 801 
appropriate volume QIAzol Lysis Reagent according to weight and processed according to the 802 
manufacturer's instructions for the Qiagen RNeasy Plus lipid-rich kit. RNAseq library preparation and 803 
sequencing was performed using the Illumina TruSeq Stranded mRNA Library Prep Kit and an 804 
Illumina HiSeq 2500 generating 2 x 100 bp reads by Aros Inc. according to the manufacturer's 805 
instructions. Sequencing reads were aligned to the GRCh37 reference human genome using STAR 806 
and gene counts and FPKMs obtained using featureCounts and Ensembl v75 gene annotations. 807 

ATAC library preparation and sequencing 808 

Nuclei isolation 809 
Media was removed from T25 flasks and washed twice with 10 mL of room temperature D-PBS 810 
without calcium and magnesium. The adherent neuronal cultures were lifted by treating with 3 mL of 811 
Accutase (Millipore – SCR005) at room temperature for four minutes. The Accutase was quenched by 812 
adding 6 mL of 2% foetal bovine serum in D-PBS. The cells were transferred to a 15 mL conical tube 813 
and centrifuged at 300 g for 5 minutes at 4 °C. The cell pellet was resuspended in 1 mL of ice-cold 814 
sucrose buffer (10 mM tris-Cl pH 7.5, 3 mM CaCl2, 2 mM MgCl2 and 320 mM sucrose) and pipetted 815 



 
 
 

22 

briefly to break up the large clumps before incubating on ice for 12 minutes. 50 µL of 10% Triton-X 816 
100 was added to the sucrose-treated cells and mixed briefly before incubating on ice for a further 6 817 
minutes. Nuclei were released by performing 30 strokes with a tight dounce homogeniser on ice. 818 
Approximately 1 x 105 nuclei were transferred to a 1.5 mL microfuge tube and centrifuged at 300 g for 819 
5 minutes at 4 °C. All traces of the lysis buffer were removed from the nuclei pellet.  820 
 821 
Tagmentation, PCR amplification and size selection 822 
The tagmentation and PCR methods used here are in principle the same as that described in 823 
Buenrostro et al., 2013, but with some modifications as described in Kumasaka et al., 2016. The 824 
nuclei pellet was resuspended in 50 µL of Nextera tagmentation master mix (Illumina FC-121-1030) 825 
(25 µL 2x Tagment DNA buffer, 20 µL nuclease-free water and 5 µL Tagment DNA Enzyme 1) and 826 
incubated at 37 °C for 30 minutes. The tagmentation reaction was stopped by the addition of 500 µL 827 
Buffer PB (Qiagen) and purified using the MinElute PCR purification kit (Qiagen 28004), according to 828 
the manufacturer’s instructions and eluting in 10 µL of Buffer EB (Qiagen). 10 µL of the tagmented 829 
chromatin was mixed with 2.5 µL Nextera PCR primer cocktail and 7.5 µL Nextera PCR mastermix 830 
(Illumina FC-121-1030) in a 0.2 mL low-bind PCR tube. The indexing primers used for amplification 831 
were from the Nextera Index kit (Illumina FC-121-1011), using 2.5 µL of an i5 primer and 2.5 µL of an 832 
i7 primer per PCR, totalling 25 µL. PCR amplification was performed as follows: 72 °C for 3 minutes 833 
and 98 °C for 30 seconds, followed by 12 cycles of 98 °C for 10 seconds, 63 °C for 30 seconds and 834 
72 °C for 3 minutes.  To remove the excess of unincorporated primers, dNTPS and primer dimers, 835 
Agencourt AMPure XP magnetic beads (Beckman Coulter A63880) were used at a ratio of 1.2 836 
AMPure beads:1 PCR sample (v/v), according the manufacturer’s instructions, eluting in 20 µL of 837 
Buffer EB (Qiagen). Finally, size selection was performed by 1 % agarose TAE gel electrophoresis, 838 
selecting library fragments from 120 bp to 1 kb. Gel slices were extracted with the MinElute Gel 839 
Extraction kit (Qiagen 28604), eluting in 20 µL of Buffer EB. 840 
 841 
Illumina sequencing 842 
A total of 31 ATAC-seq libraries each prepared with a unique Nextera i5 and i7 tag combination were 843 
pooled. Index tag ratios were assessed by a single MiSeq run and were balanced before being 844 
sequenced at two per lane with paired-end reads (2x75) on a HiSeq with V4 chemistry. However, 845 
rebalancing did not appear to work correctly, as the number of reads varied greatly between samples, 846 
from a minimum of 17 million to a maximum of 987 million. However, 22 samples had over 100 million 847 
reads, and 30 samples had over 40 million reads. Across samples, a median of 56% of reads mapped 848 
to mitochondrial DNA. For calling ATAC QTLs we used all sample counts as-is. 849 
 850 
Read alignment 851 
We aligned reads to GRCh38 human reference genome using bwa mem v0.7.12 . Reads mapping to 852 
the mitochondrial genome and alternative contigs were excluded from all downstream analysis. As for 853 
RNA-seq data, we used VerifyBamID v1.1.2 (Jun et al. 2012) to detect sample swaps. This revealed 854 
one mislabeled sample, which we then corrected. We used Picard v1.134 MarkDuplicates 855 
(https://broadinstitute.github.io/picard/) to mark duplicate fragments. We constructed fragment 856 
coverage BigWig files using bedtools v2.21.0 (Quinlan and Hall 2010). 857 
 858 
Peak calling 859 
We used MACS2 v2.1.1 (Zhang et al. 2008) to call ATAC-seq peaks individually on sample BAM files 860 
with parameters ‘--nomodel --shift -25 --extsize 50 -q 0.01’. We then constructed a consensus set of 861 
peaks by determining regions in which peaks overlapped in at least 3 samples. At regions of overlap, 862 
the consensus peak was defined as the union of overlapping peaks. This resulted in 381,323 peaks, 863 
with 98% of peaks ranging in size from 82 - 1191 base pairs.  864 
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PCA plot clustering samples with GTEx tissues 865 

We downloaded the GTEx v6 gene RPKM file (GTEx_Analysis_v6_RNA-seq_RNA-866 
SeQCv1.1.8_gene_rpkm.gct.gz) as well as sample metadata 867 
(GTEx_Data_V6_Annotations_SampleAttributesDS.txt) from the GTEx web portal 868 
(http://www.gtexportal.org/home/datasets). We computed RPKMs for all genes for the 28 DRG 869 
samples, the 119 sensory neuron samples (5 outliers removed), and 239 HIPSCI IPS samples. We 870 
used genes that were quantified in all of these sample sets, and where at least 50 GTEx samples had 871 
RPKM > 0.1. We passed log2(RPKM + 1) for 8553 GTEx samples to the bigpca R package to 872 
compute the first 5 PCs using the SVD method. We the determined sample loadings for each PC 873 
using the PC weights and log2(RPKM + 1) values for GTEx samples as well as for our in-house 874 
samples, and plotted sample PC1 vs. PC2 values as Figure 1b. 875 

Highly variable genes in IPSDSNs and GTEx 876 

We obtained GTEx v6 RPKM files for all genes as described above. For each of the 44 tissues, as 877 
well as IPSDSNs, DRG, and HIPSCI iPSCs, we calculated the coefficient of variation (CV) of each 878 
gene among samples with the same detailed tissue type (SMTSD in GTEx sample metadata). We 879 
then subsetted the genes considered in each tissue to those expressed at RPKM > 1 in that tissue. 880 
We plotted the distribution of CVs across all genes for each tissue as a density plot (Figure 3a).  881 
 882 
We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set over-representation analysis 883 
for the top 1000 most highly variable genes in IPSDSNs by CV, which are included in Supplementary 884 
Table 4. Similarly, gene set over-representation analysis in E8-IPSDSN subsets was done using 885 
Genetrail2 and the top 1000 most variable genes with RPKM > 1 (Supplementary Table 11). 886 

Variance components analysis 887 

For Figure 3b, we selected the 106 P2 protocol IPSDSN samples after QC exclusions, and used 888 
DESeq2 to get FPKM values for each gene after size factor normalization. We included all genes with 889 
mean FPKM > 1, and input log2-transformed counts per sample into the variancePartition 890 
Bioconductor R package, with design formula ~ (1|donor) + (1|differentiation) + (1|gender) + 891 
(1|wasFeeder). We used ggplot2 to plot the distribution of variance explained for each gene across 892 
the four above factors, with unexplained variance shown as “residuals”. For Supplementary figure 893 
19a, we included 119 QC-passed samples, and used variancePartition as above, but with protocol in 894 
the design formula: ~ (1|donor) + (1|differentiation) + (1|gender) + (1|wasFeeder) + (1|protocol). For 895 
Supplementary Figure 19b, we used 18 samples, for which we had 3 differentiation replicates from 896 
each of 6 donor cell lines; all 6 iPSC lines were from females and had been cultured in E8 medium. 897 
We therefore included only donor and differentiation in the design formula. 898 

Estimation of neuronal purity 899 

We used CIBERSORT (Newman et al. 2015) to estimate the fraction of RNA from neuronal cells in 900 
our bulk RNA-seq samples. We used the 14,786 genes whose CQN expression in bulk RNA samples 901 
was greater than zero, and retrieved raw counts for these genes in our single cell RNA-seq data. We 902 
labeled the single cells as “neuron” or “fibroblast-like” as determined based on the SC3 clustering, 903 
and specified these single cell counts as the reference samples for CIBERSORT to generate a 904 
custom signature genes file during its analysis. We used raw expression counts for the same genes 905 
for our 126 bulk RNA-seq samples as the mixture file for CIBERSORT to use in estimating the relative 906 
fractions of neuron and fibroblast-like cell RNA. 907 
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Electrophysiological recordings 908 

Six coverslips per line were placed singularly into a 12-well plate and washed 1x with 1 ml DPBS 909 
(+/+).  After removal of DPBS, the coverslips were coated with 1 ml of 0.33 mg/ml growth factor 910 
reduced matrigel for > 3 hr at room temperature. D14 cells were prepared at a suspension of 1.6e6/ml 911 
in 15 ml media. The cells were then diluted in NB media to create a 0.3e6/ml suspension. The 912 
coverslips were transferred into a clean 12-well plate and 1 ml of the cell suspension was added. 913 
Plates were incubated at 37°C (5% CO2) in a cell culture incubator for 24hrs, after which the 914 
coverslips were transferred into a clean 12-well plate containing 2 ml media. Cells were then treated 915 
with Mitomycin C (0.001 mg/ml for 2hr hours at 37°C) post plating on day 4 and day 10. Media was 916 
changed twice weekly. 917 
 918 
Patch-clamp experiments were performed in whole-cell configuration using a patch-clamp amplifier 919 
200B for voltage clamp and Multiclamp 700A or 700B for current clamp controlled by Pclamp 10 920 
software (Molecular Devices). Experiments were performed at 35°C or 40°C as noted controlled by an 921 
in-line solution heating system (CL-100 from Warner Instruments). Temperature was calibrated at the 922 
outlet of the in-line heater daily before the experiments. Patch pipettes had resistances between 1.5 923 
and 2 MΩ. Basic extracellular solution contained (mM) 135 NaCl, 4.7 KCl, 1 CaCl2, 1 MgCl2, 10 924 
HEPES and 10 glucose; pH was adjusted to 7.4 with NaOH. The intracellular (pipette) solution for 925 
voltage clamp contained (mM) 100 CsF, 45 CsCl, 10 NaCl, 1 MgCl2, 10 HEPES, and 5 EGTA; pH 926 
was adjusted to 7.3 with CsOH. For current clamp the intracellular (pipette) solution contained (mM) 927 
130 KCl, 1 MgCl2, 5 MgATP, 10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with KOH. The 928 
osmolarity of solutions was maintained at 320 mOsm/L for extracellular solution and 300 mOsm/L for 929 
intracellular solutions. All chemicals were purchased from Sigma. Currents were sampled at 20 kHz 930 
and filtered at 5 kHz. Between 80% and 90% of the series resistance was compensated to reduce 931 
voltage errors. The voltage protocol used for the compounds testing on voltage gated sodium 932 
channels consisted of steps from a holding potential of -110 mV to -70 mV for 5 seconds, followed by 933 
step to -110 mV for 100 millisecond then currents were measured at step to 0 mV for 20 milliseconds. 934 
Intersweep intervals were 15 seconds. Rheobase was measured in current clamp mode by injecting 935 
increasing 30 milliseconds current steps until a single action potential was evoked. Intersweep 936 
intervals were 2 seconds. Membrane potential was set at either free-resting or held at -70 mV as 937 
noted.  Current clamp data was analyzed using Spike2 software (Cambridge Electronic Device, UK) 938 
and Origin 9.1 software (Originlab). 939 

Correlation of iPSC and IPSDSN gene expression with cell culture 940 

conditions 941 

We selected the 106 IPSDSN samples differentiated with the P2 protocol, as well as the 87 942 
iPSC samples these were derived from and for which we had RNA-seq data, and we used DESeq2’s 943 
variance stabilising transformation on the raw gene expression counts. We computed the first 5 944 
principal components of gene expression separately in iPSC and IPSDSNs with Bioconductor’s 945 
pcaMethods package, and used corrplot to compute pairwise correlations among these PCs and 946 
sample metadata of interest: gender, iPSC passage number, iPSC culture conditions (wasFeeder), 947 
iPSC PluriTest score, IPSDSN fibroblast content, and IPSDSN processing date. 948 
 949 
We determined differentially expressed genes between feeder-iPSCs and E8-iPSCs using DESeq2, 950 
using gene expression counts for all genes with median expression > 0.1 FPKM across iPSC samples 951 
(Supplementary Table 5). We removed associations driven by outliers, defined as a maximum Cook’s 952 
distance >= 5. Similarly, we determined differentially expressed genes in IPSDSNs derived from 953 
either feeder-iPSCs or E8-iPSCs (Supplementary Table 8), again for genes with median expression > 954 
0.1 FPKM across samples. We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set 955 
over-representation analysis for the 717 genes with expression at least 2-fold higher in feeder-iPSCs 956 



 
 
 

25 

relative to E8-iPSCs, and similarly for the 631 genes at least 2-fold higher in E8-iPSCs 957 
(Supplementary Tables 6, 7). We did an equivalent gene set over-representation analysis for the 1159 958 
genes with expression at least 2-fold higher in IPSDSNs differentiation from feeder-iPSCs, and also 959 
for the 958 genes at least 2-fold higher in IPSDSNs from E8-iPSCs (Supplementary Tables 9, 10). 960 
 961 
To determine genes upregulated on differentiation from iPSCs to IPSDSNs, we first selected the 962 
19,658 genes with expression FPKM > 1 in at least two samples (iPSC or IPSDSN). We used 963 
DESeq2 as before, removing genes with maximum Cook’s distance > 5, and identifying 4246 964 
differentially expressed genes at FDR <= 1%. 965 

QTL calling 966 

Expression QTLs 967 
To call cis-eQTLs we used RASQUAL (Kumasaka, Knights, and Gaffney 2015), which leverages 968 
allele-specific reads in heterozygous individuals to improve power for QTL discovery, while 969 
accounting for reference mapping bias and a number of other potential artifacts. With RASQUAL a 970 
feature is defined by a set of start and end coordinates; for calling a gene eQTL these are the start 971 
and end coordinates for exons, whereas for an ATAC-seq peak these are the peak coordinates. 972 
RASQUAL requires as input the allele-specific read counts at each SNP within a feature. We used the 973 
Genome Analysis Toolkit (GATK) program ASEReadCounter (Castel et al. 2015) with options ‘-U 974 
ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10 -rf MateSameStrand’ to count allele-975 
specific reads at SNPs (and not indels). We then annotated the AS read counts in the INFO field of 976 
the VCF used as input for RASQUAL. We used custom scripts to determine the number of feature 977 
SNPs in gene exons. 978 
 979 
We used RASQUAL’s makeCovariates.R script to determine principal components (PCs) to use as 980 
covariates, which determined 12 PCs as appropriate from the expression count data. We ran 981 
RASQUAL separately for each of 35,033 genes (19,796 protein-coding genes and 15,237 noncoding 982 
RNAs), passing in VCF lines for all SNPs and indels (MAF > 0.05, INFO > 0.8) within 500 kb of the 983 
gene transcription start site. We used the --no-posterior-update option in RASQUAL, as we found that 984 
not doing so led to some genes having miniscule p values, even with permuted data. To correct for 985 
multiple testing we used permutations; however, because RASQUAL is computationally intensive, it 986 
would not be possible to run a thousand or more permutations for every gene. Therefore we used an 987 
approach to balance power and computational time. To correct for the number of SNPs tested per 988 
gene, we used EigenMT (Davis et al. 2016) to estimate the number of independent tests per gene, 989 
and then performed Bonferroni correction on a gene-by-gene basis. To estimate the false discovery 990 
rate (FDR) across genes, we used the --random-permutation option of RASQUAL and re-ran it once 991 
for every gene, saving the minimum p value (after eigenMT correction) of the SNPs tested for each 992 
gene. This gave a distribution of minimum p values across genes for the permuted data. To determine 993 
the FDR for eQTL discovery at a given gene, we use R to compute (#permuted data min pvalues < p) 994 
/ (#real data min p values < p), where p is the minimum p value among SNPs for the gene in question. 995 
With this procedure we obtained 3,586 genes with a cis-eQTL at FDR 10% (2,628 at FDR 5%). 996 
 997 
For QTL calling with FastQTL, we first computed principal components from the CQN-transformed 998 
gene expression matrix (cqn v5.0.2 (Hansen, Irizarry, and Wu 2012)). We ran FastQTL with 999 
permutations 31 separate times, in each run including the first N principal components (N=0...30) as 1000 
covariates. For each run we used a cis-window of 500 kb, and included SNPs and indels with MAF > 1001 
0.05, INFO > 0.8, as we did for RASQUAL. We plotted the number of eGenes found in each of these 1002 
runs, which plateaued and remained relatively stable at ~1,400 eGenes (FDR 10%) when anywhere 1003 
from 16 to 30 PCs were used. We arbitrarily chose to use the FastQTL run with 20 PCs in 1004 
downstream analyses. 1005 
 1006 
ATAC QTLs 1007 
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As we did for gene expression, we used featureCounts v1.5.0 to count fragments overlapping 1008 
consensus ATAC-seq peaks and ASEReadCounter to count allele-specific reads at SNPs (and not 1009 
indels) within peaks. We ran RASQUAL separately for each of 381,323 peaks, passing in VCF lines 1010 
for SNPs and indels (MAF > 0.05, INFO > 0.8) within 1 kb of the center of the peak. Since >99.9% of 1011 
peaks were less than 2 kb in size, this meant that we tested effectively all SNPs within peaks. As we 1012 
did when calling eQTLs, we ran RASQUAL with the --random-permutation option for every gene, and 1013 
determined FDR as described above. Note that in this case we used Bonferroni correction based on 1014 
the number of SNPs tested, without using EigenMT, due to the small size of the windows tested. With 1015 
this procedure we obtained 6,318 ATAC peaks with a cis-QTL at FDR 10%. 1016 
 1017 
Splice QTLs 1018 
We downloaded LeafCutter from Github (https://github.com/davidaknowles/leafcutter) on April 17, 1019 
2016. We used the LeafCutter bam2junc.sh script to determine junction counts for each sample, 1020 
followed by leafcutter_cluster.py. This resulted in 254,057 junctions in 59,736 clusters. To focus on 1021 
splicing events likely to be significant, we applied a number of filters, including: (a) removing junctions 1022 
accounting for less than 2% of the cluster reads, (b) removing introns used (i.e. having at least 1 1023 
supporting read) in fewer than 5 samples, (c) retaining only clusters where at least 10 samples had 20 1024 
or more reads in the cluster. This yielded a filtered set of 95,786 junctions in 30,591 clusters. We first 1025 
determined the read proportions for all junctions within alternatively excised clusters. We then Z-score 1026 
standardised each junction read proportion across samples, and then quantile-normalised across 1027 
introns. We used this as our phenotype matrix for input to FastQTL to test for associations between 1028 
intron usage and variants within 15 kb of the center of each intron. We chose a cis-window size of 30 1029 
kb (2 x 15 kb) because >91% of introns are < 30 kb in size, and so this tests variants near exon/intron 1030 
boundaries for the great majority of introns, while maximising power. 1031 
 1032 
We ran FastQTL in nominal pass mode 31 times specifying the first 0 to 30 principal components as 1033 
covariates, and examined the number of intron QTLs with minimum SNP p value < 10-5. This showed 1034 
that the number of QTLs plateaued when 5 PCs were used, and so we used 5 PCs in subsequent 1035 
runs. We next ran FastQTL with 10,000 permutations to determine empirical p values for each 1036 
alternatively excised intron. To correct for the number of introns tested per cluster, we used 1037 
Bonferroni correction on the most significant intron p value per cluster. We then used the Benjamini-1038 
Hochberg method to estimate FDR across tested clusters. This yielded 2,079 significant SNP 1039 
associations for intron usage (sQTLs) at FDR 10%. 1040 
 1041 
For significant sQTLs we used bedtools closest with GRCh38 release 84 to annotate the gene(s) 1042 
nearest the lead SNP for the association. To ensure we had relevant genes, we filtered the annotation 1043 
to include only genes where one of the exon boundaries matched the intron boundary for the sQTL. 1044 

Similarity of eQTLs with GTEx 1045 

Both GTEx samples and IPSDSNs had QTLs called using FastQTL. We selected lead eQTL variants 1046 
in IPSDSNs for genes with expression >= 1 FPKM. We identified effect sizes for the same variants in 1047 
each GTEx tissue, where these were available. Because only genes passing certain expression 1048 
cutoffs were tested in GTEx, each tissue had a different number of values obtained. We next 1049 
determined the pairwise similarity between tissues in effect sizes for these variants (in R, cor() with 1050 
option “pairwise.complete.obs”). IPSDSNs were a significant outlier, having lower pairwise similarity 1051 
with all GTEx tissues than they had with each other. Although FastQTL was used for all tissues, 1052 
different expression quantification methods used; therefore, a significant batch effect is expected. 1053 
Therefore we used the relative similarity across tissues by Z-scaling each row of the tissue correlation 1054 
matrix, and plotted the result in Supplementary Figure 24. IPSDSNs are relatively more similar to 1055 
GTEx brain in their effect sizes than to other GTEx tissues. 1056 
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Identifying tissue-specific eQTLs 1057 

We determined the set of tissue-specific eQTLs using the same procedure and code as in the HIPSCI 1058 
project (Kilpinen et al. 2017). Briefly, we considered the full cis eQTL output of sensory neuron eQTLs 1059 
and 44 tissues analyzed by the GTEx Project (Consortium et al. 2015). To enable comparison, lead 1060 
SNP positions for sensory neuron eQTLs were first lifted back from GRCh38 to GRCh37 using 1061 
Crossmap (Zhao et al. 2014). For each discovery tissue (including sensory neurons), we tested for 1062 
the replication of all lead eQTL - target eGene pairs reported at FDR 5%. If the lead eQTL variant was 1063 
not reported in the comparison tissue, then the best high-LD proxy of the lead variant (r2 > 0.8 in the 1064 
UK10k European reference panel) was used as the query variant. Replication was defined as the 1065 
query variant having a nominal eQTL p < 2.2x10-4 (corresponding to p = 0.01 / 45, where 45 refers to 1066 
the total number of tissues tested) for the same eGene. We then extracted eGenes for which the lead 1067 
eQTL did not show evidence of replication in any other tissue (p > 2.2x10-4) or could not be tested (i.e. 1068 
was not measured or reported as expressed in any other tissue). 1069 
 1070 
This analysis gave 954 eGenes where the eQTL is specific to sensory neurons (Supplementary Table 1071 
15). We note that some of these “tissue-specific” eGenes could be due to the difference in QTL-1072 
calling methods used, notably that we used RASQUAL, a method incorporating both allele-specific 1073 
and population-level expression variation. Therefore, some of the tissue-specific eGenes we report 1074 
may actually be present more broadly in GTEx tissues but missed by the linear QTL model used in 1075 
GTEx. Among the 1403 eGenes called by FastQTL, 208 were tissue-specific to IPSDSNs. 1076 

Pain-associated genes 1077 

We identified a set of pain-associated genes by searching for the term “pain” in the OpenTargets web 1078 
site (https://www.targetvalidation.org/) on August 22, 2016, and downloading the reported gene 1079 
associations and scores. We chose a score cutoff of 0.05 to designate a gene as pain-associated, 1080 
which resulted in 617 genes. 1081 

Motif enrichment analyses 1082 

We used the R Bioconductor package LOLA (Sheffield and Bock 2015) to identify enrichments in 1083 
transcription factor binding sites (TFBS) and motifs. We defined three sets of loci to consider for 1084 
enrichment: 1) tissue-specific eQTL SNPs with a window of 50 bp (+/- 25) around the SNP position, 2) 1085 
all eQTL SNPs (50 bp window), and 3) all ATAC-seq peaks. For the QTLs we used all GTEx eQTL 1086 
lead SNPs as the “universe” set against which we were testing TFBS for enrichment. For this we 1087 
downloaded all GTEx QTL files (*_Analysis.snpgenes), loaded them in R and used the liftOver 1088 
function from the rtracklayer package to convert their coordinates to the GRCh38 genome version. 1089 
We tested for enrichment against the LOLA core database but considered only ENCODE TFBS 1090 
enrichments. These enrichments are reported in Supplementary Tables 16 and 17. We also tested for 1091 
enrichment against the LOLA extension database and considered JASPAR motif enrichments. No 1092 
motif enrichments were found for IPSDSN eQTLs relative to GTEx eQTLs. We also tested ATAC-seq 1093 
peaks for enrichment relative to DNase hypersensitive sites for many tissues from Sheffield et al. 1094 
(Sheffield et al. 2013), which are available in the LOLA catalog. Many of the same TFBS enrichments 1095 
were seen for ATAC-seq peaks as for eQTLs (data not shown), although with a skew towards general 1096 
transcription factors (e.g. CTCF, ATF3, MYC, JUN) as might be expected. Motif enrichments in 1097 
ATAC-seq peaks are reported in Supplementary Table 18. 1098 

Power simulations 1099 

Gene expression values were normalized to counts per million. We selected the 544 eGenes 1100 
discovered by RASQUAL at FDR 1% which met the following criteria: 1101 

• at least 10 P2-protocol samples homozygous for each allele of the lead eQTL variant, 1102 
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• mean expression among homozygous carriers was consistent with RASQUAL’s reported 1103 
direction of effect, and 1104 

• CV < 2 (this filter removed only 8 eGenes) 1105 
For each gene we resampled the normalized expression values, with replacement, from IPSDSN 1106 
samples to achieve a specified number N of samples (N ∈ {4,6,10,20,40}) with each homozygous 1107 
genotype category. From 100 such resamplings, we defined the power (true positive rate, TPR) to 1108 
discover a given variant’s effect as the fraction of cases with p < 0.05 from a Wilcoxon rank sum test 1109 
comparing mean expression in each genotype category. A minimum sample size of 4 in each group is 1110 
needed for the Wilcoxon rank sum test, as otherwise no difference can be significant at p < 0.05. Note 1111 
that we did the same resampling procedure using Student’s t-test, and the results were nearly 1112 
identical. We determined the allelic fold change between genotypes using RASQUAL’s effect size (pi), 1113 
as: 1114 

fold change = max( pi / (1-pi), (1-pi) / pi) 1115 
We used ggplot2 with geom_smooth to display the 95% confidence interval around the fitted mean 1116 
TPR at each parameter combination. As can be seen on the plots, the deviation about this mean for 1117 
individual genes is larger than the standard error of the mean. 1118 

QTL overlap with GWAS catalog 1119 

The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ on 2016-5-08. To determine 1120 
overlap between variants in the GWAS catalog and our lead QTLs, we first extracted all lead variants 1121 
(both QTLs and GWAS catalog variants) from the full VCF file. We used vcftools v0.1.14 (Danecek et 1122 
al. 2011) to compute the correlation R2 between all lead variants within 500 kb of each other among 1123 
our samples. We determined overlap separately for eQTLs, sQTLs, and ATAC QTLs, and retained 1124 
only overlaps with R2 > 0.8 between lead variants. Note that a given GWAS variant may be in LD with 1125 
an eQTL for more than one gene, and vice versa, an eQTL for a single gene may be in LD with more 1126 
than one GWAS catalog entry. 1127 
 1128 
We used QTL-GWAS overlap for two purposes: first, to find individual cases where a QTL is a strong 1129 
candidate as a causal association for the GWAS trait, and second, to determine whether any GWAS 1130 
catalog traits are enriched overall for overlap with sensory neuron QTLs. For the first goal, we 1131 
considered all overlaps with GWAS catalog associations having p < 5x10-8, i.e. did not filter any 1132 
redundant overlaps. These overlaps are reported in Supplementary Tables 20 (for eQTLs), 21 (for 1133 
sQTLs), and 22 (for ATAC QTLs). 1134 
 1135 
To determine whether our QTL overlaps were enriched in any specific GWAS catalog traits relative to 1136 
other traits, we computed overlap with all GWAS catalog SNPs (p < 5x10-8) but sought to eliminate 1137 
redundant overlaps. For traits that were reported with differing names (e.g. “Alzheimer's disease 1138 
(cognitive decline)” and “Alzheimer's disease in APOE e4- carriers”), we grouped these into a single 1139 
trait name (e.g. “Alzheimer's disease”). We then sorted overlaps by decreasing LD R2, and kept the 1140 
single overlapping QTL with the highest R2 for each GWAS catalog entry. Similarly, we removed 1141 
duplicates with the same reported GWAS catalog SNP and trait, such as when successive GWAS of 1142 
the same trait report the same SNP association. We counted the number of such unique GWAS-QTL 1143 
overlaps separately for eQTLs, sQTLs, and caQTLs, and we report these in Table 1. To avoid bias 1144 
due to correlation between GWAS power and LD patterns, we restricted our analysis to the 41 traits 1145 
with at least 40 GWAS catalog associations. We then considered the binomial probability of the 1146 
observed overlap with each trait, with the expected overlap frequency being the proportion of QTL 1147 
overlaps among all trait associations (6.2%). After correcting for multiple testing, no traits showed 1148 
significantly greater overlap with our QTL catalog than other traits. 1149 
 1150 
To test for overall enrichment of QTL overlapping with GWAS catalog SNPs, we downloaded the 1151 
1000 genomes VCF files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and subsetted 1152 
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these to the EUR samples. We used vcftools to identify all SNPs in LD R2 > 0.8 with a GWAS catalog 1153 
SNP and removed duplicate SNPs. We used our IPSDSN eQTL lead SNPs as input to SNPsnap 1154 
(https://data.broadinstitute.org/mpg/snpsnap/), and computed 1000 random sets of SNPs using 1155 
default parameters to match for LD partners, MAF, gene density, and distance to nearest gene. We 1156 
determined the number of occurrences of eQTL lead SNPs in the GWAS catalog SNP + LD partners, 1157 
and did the same for the 1000 matched SNP sets. The IPSDSN eQTL lead SNPs had more overlaps 1158 
(92) than any of the matched sets (median: 58, range 37-87). Note that this number of overlaps is 1159 
fewer than the number we report in Supplementary Table 20; this is because we detect more overlaps 1160 
when using LD from our own samples than when using 1000 genomes LD patterns, which is expected 1161 
since 1000 genomes EUR LD does not perfectly reflect LD in our data. We performed the same 1162 
overlapping process for lead eQTL SNPs from each GTEx tissue, and plotted the number of overlaps 1163 
per tissue in Supplementary Figure 25. 1164 
 1165 
 1166 
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