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ABSTRACT 

Objective: Although the precise mechanisms are not yet understood, previous studies have suggested 

that chronic fatigue syndrome (CFS) is associated with hypothalamic-pituitary-adrenal (HPA) axis 

dysregulation and trauma in early childhood. Consistent with findings suggesting that early life stress-

induced DNA methylation changes may underlie dysregulation of the HPA axis, we previously found 

evidence for the involvement of glucocorticoid receptor (GR) gene (NR3C1) methylation in whole blood 

of CFS patients. 

Methods: In the current study, we assessed NR3C1-1F region DNA methylation status in peripheral 

blood from a new and independent sample of 80 female CFS patients and 91 female controls. In CFS 

patients, history of childhood trauma subtypes was evaluated using the Childhood Trauma 

Questionnaire short form (CTQ-SF). 

Results: Although absolute methylation differences were small, the present study confirms our 

previous findings of NR3C1-1F DNA hypomethylation at several CpG sites in CFS patients as compared 

to controls. Following multiple testing correction, only CpG_8 remained significant (DNA methylation 

difference: 1.3% versus 1.5%, p<0.001). In addition, we found associations between DNA methylation 

and severity of fatigue as well as with childhood emotional abuse in CFS patients, although these 

findings were not significant after correction for multiple testing. 

Conclusions: In conclusion, we replicated findings of NR3C1-1F DNA hypomethylation in CFS patients 

versus controls. Our results support the hypothesis of HPA axis dysregulation and enhanced GR 

sensitivity in CFS. 
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1. INTRODUCTION 

Chronic fatigue syndrome (CFS) is a highly debilitating syndrome involving severe and long-lasting 

fatigue not due to known medical causes, accompanied by four or more of the following symptoms, 

i.e. impaired memory or concentration, headaches, unrefreshing sleep, post-exertional malaise, sore 

throat, joint and muscle pain [1]. Diagnosis of CFS is disproportionally higher in women than in men 

[2]. Reported CFS prevalence worldwide ranges from 0.2% up to 6.41% [3, 4], while a recent meta-

analysis reports a prevalence of 0.76% for clinically assessed CFS [5]. The disorder is associated with 

extremely high health-care costs, for instance the annual productivity costs of CFS in the UK is 

estimated at approximately £100 million [6]. 

Stress, and in particular chronic stress, may play a role in the etiology and maintenance of CFS [7-10]. 

Indeed, studies have suggested that adverse events may cause dysregulation of the stress system, and 

the hypothalamic-pituitary-adrenal (HPA) axis, ultimately resulting in an altered stress system reponse 

[8, 11, 12]. This is in agreement with the concept of “allostatic load”, as first formulated by McEwen 

and Stellar in 1993 [13]. Allostatic load refers to the effects of the “wear-and-tear” of cumulative life 

stress on the stress system, which can ultimately accelerate disease development [14]. It is suggested 

that over time, chronic stress may lead to a blunted HPA axis response  [15]. There is indeed evidence 

for a lower cortisol response and hypocortisolism in at least a subsample of CFS patients, reflecting a 

loss of adaptability of the main neurobiological stress response system after a prolonged period of 

chronic stress [16-18].  

The glucocorticoid receptor (GR) may be involved in the etiology of CFS, since it plays a key role in the 

HPA axis response by exerting a negative feedback mechanism. More specifically, when cortisol is 

secreted by the HPA axis, its binding to the GR in the hypothalamus and pituitary gland will 

subsequently attenuate the stress response, preventing the cascade from continuing 

disproportionately [19]. Changes in GR sensitivity could therefore alter the stress response and 

potentially influence the susceptibility for stress-related disorders. Enhanced GR sensitivity has been 



described in CFS patients during dexamethasone suppression tests [20-22]. DNA methylation changes 

in the GR gene (NR3C1) exon 1F promoter region may be a potential mechanism. Indeed, NR3C1-1F 

hypomethylation was found in peripheral blood mononuclear cells of combat veterans with 

posttraumatic stress disorder (PTSD), which was additionally associated with cortisol response 

following dexamethasone administration [23]. Moreover, in a previously published study we showed 

that HPA axis response was significantly associated with DNA methylation levels at the NR3C1-1F 

region in a study sample of 76 female CFS patients [24]. Furthermore, this patient population 

presented with significant NR3C1-1F hypomethylation in whole blood compared to healthy female 

controls. An association with childhood trauma within the CFS patient group was not found, although 

DNA methylation in the examined region has previously been linked to early adversity (for Review: 

[25]). For instance, McGowan et al. showed NR3C1-1F DNA methylation differences in hippocampal 

brain tissue of suicide completers who were exposed to childhood abuse, versus suicide completers 

without childhood abuse [26]. An association of childhood trauma history with NR3C1-1F methylation 

was also shown in peripheral tissues, for instance in blood samples from bipolar and depressed 

patients [27] and saliva from depressed patients [28]. 

There is increasing evidence from both cross-sectional [10, 17, 29-33] and prospective studies [34-40] 

that childhood trauma is an important risk factor for CFS. Early life stress exposure may influence DNA 

methylation of HPA axis related genes, subsequently altering HPA reactivity, which in turn may 

represent a risk factor for stress-related disorders, including CFS [41]. 

In the current study, we intended to replicate and extend our previous finding of NR3C1-1F 

hypomethylation in CFS patients by examining the 1F promoter region in more detail, and in a larger 

study sample. Specifically, we investigated the association between NR3C1-1F methylation in whole 

blood and CFS symptom severity in carefully screened CFS patients as compared to a control group, in 

addition to using a well-validated tool to retrospectively assess childhood trauma. 

  



2. MATERIALS AND METHODS 

2.1.  Study participants 

The study was conducted between December 2014 and February 2016. Whole blood samples from 

female patients diagnosed with CFS (n=80) according to the US Centers for Disease Control and 

Prevention (CDC) guidelines [1] were obtained at the CFS reference center of the University Hospitals 

Leuven, Belgium. Alternative medical conditions that might explain fatigue were excluded following a 

full medical screening by an internist including clinical examinations and laboratory tests. For a detailed 

overview, see Kempke et al. [17]. Subsequently, patients received a psychiatric evaluation to exclude 

psychiatric conditions associated with fatigue complaints. The Structured Clinical Interview for 

Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition (DSM-IV), Axis I Disorders (SCID-

I) depression module was administered to exclude all patients with a diagnosis of current depression 

[42]. Patients did not use corticosteroids and did not have thyroid dysfunction. 

Whole blood samples for the female control group (n=91) were derived from voluntary non-

remunerated plasma donors fulfilling Belgian eligibility criteria at the Red Cross donor center in Leuven. 

A blood sample was only taken if the donor did not meet any of the exclusion criteria. The following 

exclusion criteria were examined for the control participants by self-report questionnaire: having (1) a 

non-European parent (given the distribution of genetic variants and possible ethnicity-dependent 

changes in DNA methylation), (2) unremitting fatigue symptoms, (3) unremitting pain symptoms, (4) 

history of CFS or fibromyalgia, (5) current depressive episode, and (6) lifetime psychiatric 

hospitalization.  

All participants, from the patient as well as the control group, were more than 18 years old and were 

not pregnant or breastfeeding. Blood samples were collected from all participants in 10 mL EDTA tubes. 

Informed consent was obtained from all participants and the study was approved by the University 

Hospitals Leuven Medical Ethics Committee (B322201421832). 

2.2. Questionnaires 



CFS symptom severity was examined in the patient group using the Checklist Individual Strength (CIS) 

which consists of four subscales: fatigue, concentration, motivation and physical activity [43]. To assess 

a history of childhood trauma, CFS patients completed the short version of the Childhood Trauma 

Questionnaire (CTQ-SF), which has shown good validity in assessing childhood trauma as compared to 

structured interviews [44]. The CTQ-SF consists of 25 items, assessing exposure to sexual, physical or 

emotional abuse and physical or emotional neglect before the age of 18. Each subscale of the 

questionnaire contains five questions to be answered on a five-point Likert scale. Therefore, the range 

of scores for each trauma domain is situated between 5 and 25, while the total score ranges from 25 

to 125 [44]. For the childhood trauma subtype frequency table, the same cutoffs were used as in Heim 

et al. [45]: a score of 13 or higher for emotional abuse, 10 or higher for physical abuse, 8 or higher for 

sexual abuse, 15 or higher for emotional neglect, and 10 or higher for physical neglect. For correlation 

analyses, CTQ-SF total and subdomain scores were used as continuous variables. Depressive symptoms 

in the patient group were measured using the Hospital Anxiety and Depression Scale (HADS), which is 

a 21 points scale specifically developed to assess depression in medical conditions [46]. CFS patients 

completed questionnaires at home by logging onto a web-based application of the University Hospitals 

Leuven (‘myNEXUZ’). If patients had no access to internet, a paper-and-pencil version of the 

questionnaires was provided. Since we aimed to examine patients diagnosed with CFS in more detail 

regarding childhood trauma, these questionnaires were only administered to the patient group. 

2.3. NR3C1-1F DNA methylation analyses using pyrosequencing and EpiTYPER 

DNA was extracted from peripheral whole blood samples from all participants. From all samples, 1µg 

of DNA was bisulfite treated using the MethylDetector kit (Active Motif, La Hulpe, Belgium) according 

to the suggested long cycling protocol [47]. In order to investigate the previously reported differentially 

methylated CpG sites of NR3C1-1F (CpG_1 until CpG_5) in more detail [24], we carried out 

pyrosequencing for the DNA region spanning CpG_1 until CpG_8. Data for the remaining CpG sites 

within the NR3C1-1F region (from CpG_9 until CpG_47) were generated using the EpiTYPER 



methodology.  More specifically, to investigate DNA methylation at the individual CpG sites from 

CpG_1 until CpG_8, we assessed the DNA methylation status of the NR3C1-1F region that was used by 

Perroud et al. (2011) by pyrosequencing [27]. We amplified a fragment of 403 bp using forward (5’-

TTTGAAGTTTTTTTAGAGGG-3’) and reverse (5'-CCCCCAACTCCCCAAAAA-3', with 5’ biotin) primers (IDT, 

Leuven, Belgium) using a slight adjustment to the conditions of Perroud et al. (2011), i.e. a PCR cycling 

program of 94˚C for 15 minutes, followed by 50 cycles of 94˚C for 1 minute, 58˚C for 1 minute, 72˚C 

for 1 minute and finally an extension step of 10 minutes at 72˚C. Subsequently, pyrosequencing was 

performed using the sequencing primer (5'-AGAAAAGAAATTGGAGAAATT-3') on the Pyromark Q24 

platform (Qiagen, Hilden, Germany) to assess DNA methylation values. 

Additionally, the same bisulfite treated DNA samples were used to carry out the Agena Bioscience 

EpiTYPER methodology for the  NR3C1-1F region spanning CpG_9 until CpG_47, following the 

guidelines (Agena Bioscience, Hamburg, Germany) [24]. The EpiTYPER method is based on base-

specific cleavage followed by mass spectrometry for the sensitive detection of fragment size. The 

EpiTYPER software then converts these measurements to DNA methylation percentages for each 

analyzed CpG unit. Subsequently, quality control was carried out as suggested [48]: CpG units with a 

success rate of less than 75% or a standard deviation between triplicates of more than 0.1 were 

excluded from the analysis. PCR primers and further technical details to analyze the NR3C1-1F region 

were described previously [24]. 

2.4. Statistical analyses 

Average DNA methylation as well as functional DNA methylation was calculated for the analyzed 

NR3C1-1F region for the CFS patient group and the control group separately. More specifically, the 

functional methylation value averages DNA methylation levels only from CpG sites associated with 

gene expression [49], corresponding to CpG_2, CpG_3, CpG_4, CpG_5, CpG_6, CpG_7, CpG_8, 

CpG_12.13, CpG_14 and CpG_19 in the current study. The CpG sites in the NR3C1-1F region 

consistently show low levels of DNA methylation, causing data to be skewed and therefore not 



normally distributed. For this reason, all statistical analyses were performed using non-parametric 

tests. Mann-Whitney U tests were used to compare DNA methylation levels between patient and 

control groups and effect sizes were calculated by dividing the z statistic by the square root of the 

study sample size (i.e. CFS patients and controls combined) [50]. Spearman correlations were used to 

examine correlations between DNA methylation and the CIS-20 scale or the CTQ-SF (sub)scales. Tests 

with a p-value smaller than 0.05 were considered significant. Version 23 of the SPSS statistics software 

(IBM Corp, Armonk, NY) was used for all analyses.  



3. RESULTS 

3.1. Study sample characteristics 

Characteristics of the CFS patient study population can be found in Table 1. The frequency of childhood 

trauma subdomains in the patient group was summarized in Table 2. Participants in both the CFS 

patient and the control group were all female and had comparable ages on average (mean +/- SD): 

41.36 +/- 10.74 and 43.98 +/- 13.91 years old, respectively. 

3.2. Comparison of NR3C1-1F DNA methylation between CFS patients and controls 

When comparing DNA methylation levels of CFS patients with controls, we found hypomethylation at 

CpG_1 (p = 0.010), CpG_4 (p = 0.017), CpG_6 (p = 0.003), CpG_7 (p = 0.006), CpG_8 (p < 0.001) as well 

as the functional DNA methylation (p = 0.003; Table 3). However, when correcting for multiple testing, 

only CpG_8 remained significantly hypomethylated in CFS patients as compared to control 

participants. Absolute DNA methylation differences between both groups remained small, while 

estimated effect sizes were small to moderate and the effect size at CpG_8 was large (r = 0.558). 

3.3. NR3C1-1F DNA methylation associations with CFS symptoms and childhood trauma 

Within the CFS patient group, the CIS-20 total scale was correlated with DNA methylation at CpG_17.18 

(Spearman’s Rho = -0.241, p = 0.034) and CpG_36 (Spearman’s Rho = -0.232, p = 0.041). Examining 

both sites in more detail revealed that CpG_36 was significantly associated with the subscale ‘fatigue 

severity’ (Spearman’s Rho = -0.324, p = 0.004; Supplementary Figure S1). None of the NR3C1-1F CpG 

sites were significantly associated with duration of illness in the CFS patients. 

Regarding childhood trauma by CTQ-SF subscales in the CFS patient group, we found that emotional 

abuse was correlated with DNA methylation at CpG_3 (Spearman’s Rho = 0.260, p = 0.032) and CpG_47 

(Spearman’s Rho = -0.239, p = 0.039; Supplementary Figure S2). These associations were no longer 

significant after Bonferroni correction for multiple testing. The other CTQ subscales did not appear to 

be correlated with NR3C1-1F DNA methylation (Supplementary table S1).  



4. DISCUSSION 

In the current study, we examined the role of NR3C1-1F DNA methylation in CFS and its relation to 

childhood trauma. DNA methylation analyses were performed on DNA extracted from whole blood 

samples in a population of female CFS patients and control participants. Two candidate gene focused 

methods were used to measure DNA methylation in the NR3C1-1F region. As in our previous 

publication [24], we used EpiTYPER since it is able to measure DNA methylation levels at several CpG 

units across a relatively large region, e.g. the NR3C1-1F amplicon is 402 base pairs long. However, a 

disadvantage is that the EpiTYPER technique sometimes cannot discriminate between individual, 

nearby CpG sites, grouping them together into units. In our previous publication studying NR3C1-1F 

methylation in CFS patients, we identified a significant effect especially at the CpG_1.2.3.4.5 unit. In 

addition to mapping DNA methylation in the NR3C1-1F EpiTYPER amplicon, we were determined to 

additionally measure this particular region in more detail using pyrosequencing. Although the latter 

technique is limited in the size of the region it can sequence, it was able to separately measure DNA 

methylation levels at the CpG sites in the region. Furthermore, pyrosequencing could additionally 

detect CpG_6, CpG_7 and CpG_8, which could not be measured by EpiTYPER due to their fragment 

masses not being in range of the mass spectrometer’s detection capacity. In sum, using these 

complementary techniques provides a broad view on DNA methylation in the NR3C1-1F region 

(EpiTYPER) in addition to separately measuring CpG sites 1 until 8 (pyrosequencing). 

Consistent with our previously published findings [24], we found NR3C1-1F hypomethylation in blood 

samples of CFS patients versus controls at the 3’ end of the analyzed NR3C1-1F region (CpG_1 to 

CpG_8). The previous study identified the CpG unit spanning CpG_1 until CpG_5 as significantly 

different between CFS patients and healthy control subjects. Correspondingly, the current study finds 

lower DNA methylation levels in the CFS patient group at CpG_1, CpG_4, CpG_6, CpG_7 and CpG_8. 

Also the functional DNA methylation, which averages methylation values of CpG sites associated with 

NR3C1 exon 1F gene expression [49], was lower in CFS patients, suggesting the involvement of 



functionally relevant CpG sites. However, after correction for multiple testing, only CpG_8 remained 

significant. Furthermore, estimated effect sizes were small to moderate for all CpG sites, while CpG_8 

showed a large effect size. CpG_8 is located within the 1F exon of the NR3C1 gene. There is evidence 

of an association between DNA methylation at this CpG site and further upstream CpG sites (CpG_1 

until CpG_8) and borderline personality disorder (BPD) clinical severity [51]. Previously this region was 

also suggested to be involved in childhood trauma as shown in a population of BPD patients and major 

depressive disorder patients [27]. In addition, two CpG sites were significantly correlated with the CFS 

symptom severity measured by the CIS-20 scale (CpG_17.18 and CpG_36) in the current study. Both 

CpG sites were negatively correlated, consistent with the hypothesis that more severe CFS symptoms 

would correspond to a more pronounced NR3C1-1F hypomethylation. The CpG_17.18 site associated 

with the total CIS-20 score in the current study is located within a putative nerve growth factor-

inducible protein A (NGFI-A) binding site previously associated with childhood abuse [25]. Finally, 

CpG_36, which was additionally associated with the CIS-20 ‘fatigue severity’ subscale, lies in a non-

canonical NGFI-A binding site. In other studies, DNA methylation at this site was associated with post-

traumatic stress syndrome (PTSD) [23] and was predictive of cortisol levels in response to a 

standardized stress task in females [52], indicating the relevance of this particular site in the HPA axis 

response to stress. 

Furthermore, none of the examined NR3C1-1F CpG sites were associated with duration of CFS 

symptoms, i.e. whether a patient has suffered from CFS for a longer or shorter period of time. This 

finding implies that DNA methylation state of this region may not be a consequence of CFS. Combining 

these findings with our previous work, these results would suggest that CFS pathophysiology is 

mediated by a decreased NR3C1-1F DNA methylation, which may lead to a higher gene expression. 

Increased GR gene expression is hypothesized to cause an increased HPA negative feedback resulting 

in hypocortisolism. It has been suggested that CFS patients may have a decreased HPA axis 

responsiveness [15]. Hypocortisolism and HPA axis hyporesponsiveness have also been implicated in 



PTSD, suggesting a similar underlying pathophysiological mechanism of these stress-related disorders 

[53]. 

Studies have indeed shown the involvement of DNA methylation at the NR3C1-1F region in PTSD as 

well as other candidate genes implicated in the stress response system. One such gene is the gene 

encoding for the FK506 binding protein 5 (FKBP5), which is an intracellular inhibitor of GR signaling and 

acts by impeding GR translocation to the nucleus. Interestingly, pre-treatment NR3C1-1F DNA 

methylation may predict treatment response in PTSD patients, whereas FKBP5 methylation is 

associated with recovery in PTSD [54]. Hence future research should focus on FKBP5 as potential gene 

of interest in CFS studies. Indeed, besides NR3C1 there are likely many genes and pathways that 

interact and play an important role in CFS pathology. Recently, two genome-wide DNA methylation 

studies in CFS patients found several significant differentially methylated CpG sites in different genes 

[55, 56]. 

In our previously published study, we did not find a difference in NR3C1-1F DNA methylation between 

CFS patients who had experienced no/mild versus moderate/severe trauma during childhood [24]. 

Regarding types of childhood trauma in the current study, we showed a correlation of NR3C1-1F DNA 

methylation at CpG_3 and CpG_47 with emotional abuse within the CFS patient group. Although the 

opposite signs of the correlation for both CpG sites may argue a false positive result, they may also 

indicate that different regions within the NR3C1 gene are associated differently with certain functions 

and characteristics [25]. Although the results do not remain significant following correction for multiple 

tests, these trends support the assumption that certain types of childhood trauma, such as emotional 

trauma, may be important in the etiology of CFS. Indeed, studies have found elevated levels of 

childhood trauma in population-based as well as in clinical samples of CFS patients [31]. The prevalence 

of emotional trauma has been found to be particularly high in CFS patients [10] and has been 

associated with blunted HPA axis response in CFS patients [17].  



Some limitations of our study should be considered when interpreting the results. To assess CFS 

symptoms and history of childhood trauma, self-report questionnaires were used, which may be 

subject to reporting bias. Yet, studies have provided validity for the CTQ-SF in assessing childhood 

trauma and, if anything, underestimates rather than overestimates the prevalence of trauma [57]. Our 

study design did not allow us to obtain childhood trauma information or depressive symptoms scores 

from the control group. The aim of our study design was to examine NR3C1 DNA methylation 

differences and the association with childhood trauma within the CFS patient group. For this reason, 

we were not able to compare childhood trauma frequencies or depressive symptoms between both 

groups. Furthermore, due to the cross-sectional nature of the study we cannot make any claims on 

causality. Disentangling cause and consequence seems to be an important issue for future research. 

Although the current study lacks biological measurements such as mRNA levels or HPA axis response 

tests to provide evidence for functional significance of our DNA methylation changes, our previously 

published study indicates a link between HPA axis response and the DNA hypomethylation of NR3C1-

1F [24]. The small absolute DNA methylation differences identified in the current study correspond to 

differences found in previous studies examining stress-related disorders [25]. Though small in absolute 

values, our findings at CpG_8 showed a large effect size, while small to moderate effect sizes were 

found at other investigated CpG sites. Furthermore, DNA methylation differences of small magnitude 

can be functionally relevant [58]. Future prospective studies are indeed necessary to elucidate the 

exact biological function of NR3C1-1F DNA methylation in CFS pathophysiology. Finally, it is imperative 

that the associations between methylation, symptom severity and childhood trauma reported in the 

current study should be interpreted with caution, since these correlations did not withstand multiple 

testing correction. The reported NR3C1-1F hypomethylation comprises small changes in absolute DNA 

methylation levels between patients and controls, which we cannot directly link to functional changes 

with the current study design. However, it should be noted that similar small changes in NR3C1-1F DNA 

methylation have previously been reported in several studies [25], while several studies report an 

association with gene expression or functional HPA axis tests [23, 49, 59-63]. Additionally, our 



measures of DNA methylation showed small standard errors indicating that the NR3C1 promoter 

region is tightly regulated. It is therefore suggested that gene transcription can be considerably altered 

by small methylation changes at crucial CpG sites of the NR3C1 promoter region [25]. 

In summary, we replicated our findings of NR3C1-1F DNA hypomethylation in CFS patients. 

Furthermore, there was some evidence for an association between DNA methylation at this region and 

childhood trauma in CFS patients. To our knowledge, only few studies have examined DNA methylation 

in CFS to this date [55, 56]. Hence, there is a need for further prospective research on the interactions 

between exposure to adversity, DNA methylation and CFS pathophysiology. 
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Table 1. Descriptives of the Chronic Fatigue Syndrome (CFS) patient sample (n = 80). 

Age (years) M (range) 

S.D.  

41.36 (18-61) 

10.73 

Duration of illness (months) M (range) 67.13 (3-360) 

 S.D. 73.82 

Level of education 

 

Primary education 

Lower secondary education 

Higher secondary education 

Undergraduate degree 

University degree 

2 (2.5%) 

7 (8.8%) 

28 (35%) 

37 (46.2%) 

6 (7.5%) 

Depressive symptoms (HADS) 

 

M (range) 

S.D. 

8.75 (1-20) 

4.17 

Mean, M; standard deviation, S.D.; Hospital Anxiety and Depression Scale, HADS 

 

  



Table 2. Frequency and valid percent of childhood 
trauma in the CFS patient group (n = 78) 

 
childhood trauma 

emotional neglect 30 (38.5%) 

emotional abuse 27 (34.6%) 

sexual abuse 21 (26.9%) 

physical neglect 13 (16.7%) 

physical abuse 7 (9%) 

Total CTQ 40 (51.3%) 
  



Table 3. NR3C1-1F DNA methylation differences between Chronic Fatigue Syndrome (CFS) patients (n = 80) and controls (n = 91) 

 

Controls CFS 
Percent 

methylation 
difference 

2-tailed P-
value 

 

Mean Std Error Mean Std Error 
Effect 
size 

estimate 

Pyrosequencing        

CpG_1 1.12 0.06 0.96 0.04 -0.16 0.010* 0.206 

CpG_2 1.51 0.02 1.55 0.04 0.04 0.884 0.012 

CpG_3 1.08 0.04 1.09 0.05 0.01 0.580 0.044 

CpG_4 1.50 0.04 1.43 0.04 -0.07 0.017* 0.189 

CpG_5 2.06 0.05 2.01 0.05 -0.05 0.190 0.104 

CpG_6 0.84 0.02 0.77 0.03 -0.08 0.003** 0.240 

CpG_7 2.36 0.04 2.23 0.03 -0.13 0.006** 0.216 

CpG_8 1.51 0.04 1.19 0.03 -0.32 <0.0001** 0.558 

EpiTYPER        

CpG_9 0.77 0.29 0.98 0.31 0.21 0.140 0.118 

CpG_10.11 8.03 0.63 8.29 0.98 0.26 0.267 0.089 

CpG_12.13 2.83 0.09 2.88 0.09 0.04 0.932 0.007 

CpG_14 0.37 0.08 0.22 0.05 -0.15 0.263 0.087 

CpG_17.18 0.83 0.06 0.76 0.05 -0.07 0.455 0.058 

CpG_19 0.60 0.07 0.45 0.04 -0.15 0.261 0.087 

CpG_20.21 2.04 0.11 2.11 0.11 0.07 0.411 0.063 

CpG_36 1.65 0.09 1.76 0.12 0.12 0.606 0.040 

CpG_38.39 1.24 0.08 1.29 0.06 0.06 0.300 0.080 

CpG_47 0.11 0.04 0.14 0.06 0.03 0.531 0.049 

Average NR3C1 1.67 0.04 1.69 0.08 0.02 0.398 0.065 



Functional 
methylation 

1.46 0.03 1.37 0.03 -0.09 0.003** 0.231 

 

NR3C1-1F DNA methylation was assessed using pyrosequencing for the region spanning CpG_1 – CpG_8 and EpiTYPER for the region spanning CpG_9 – 

CpG_47. Mann-Whitney U tests, *: significant p-value < 0.05; **: significant p-value < 0.01 

 

 

 

 

 


