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Abstract In this paper a new methodology to simulate1

saturated soils subjected to dynamic loadings under2

large deformation regime (locally up to 40% in equiva-3

lent plastic strain) is presented. The coupling between4

solid and fluid phases is solved through the complete5

formulation of the Biot’s equations. The additional nov-6

elty lies in the employment of an explicit time integra-7

tion scheme of the u − w (solid displacement – rela-8

tive fluid displacement) formulation which enables us9

to take advantage of such explicit schemes. Shape func-10

tions based on the principle of maximum entropy im-11

plemented in the framework of Optimal Transportation12

Meshfree schemes are utilized to solve both elastic and13

plastic problems.14

Keywords Biot’s equation · Complete formulation ·15

Meshfree · Explicit approach · Large strains16

1 Introduction17

Modeling saturated soils under dynamic loads is an in-18

teresting issue, particularly when dynamic consolida-19

tion or quick settlements of soils under large defor-20

mations are concerned. However, the research focused21
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on this aspect is scant, the literature being even more22

limited when finite deformations are involved. This is23

mainly due to the fact that, on the one hand, the u −24

pw (solid displacement – fluid pressure) formulation is25

widely used in dynamics to solve the coupled problem26

due to its simplicity (e.g. [10,32,33]), and on the other27

hand, since fluid accelerations are neglected in this for-28

mulation, this makes it impossible to capture high fre-29

quency movements when the coupling between soil and30

water needs to be dealt with [34].31

Along the years, depending on the employed formu-32

lation for coupled problems (either simplified or com-33

plete), on the assumptions (if the accelerations are con-34

sidered or not) and on the way that the equations are35

solved (explicit or implicit), different techniques to solve36

the coupled problem have been developed. The govern-37

ing equations of the coupled problem were first intro-38

duced by Biot [4], then reviewed by Zienkiewicz and39

co-workers [33–35,32]. There were two alternatives to40

achieve the same set of equations: one by Zienkiewicz,41

Chang and Bettes [34], or Zienkiewicz and Shiomi [35,42

32] applied at macroscopic scale, the other by Lewis43

and Schrefler [16] within the Hybrid Mixture Theory44

starting from the microscopic scale. Both showed that45

an accurate enough solution can be achieved for low fre-46

quency dynamic problems by neglecting the convective47

and acceleration terms in the complete formulation, de-48

riving the u− pw formulation.49

Regarding the application of u−pw formulation un-50

der large deformation regime, the first works were car-51

ried out by Diebels and Ehlers [13], Borja et al. [7,8]52

and Armero [1] who tested their models by simulating53

the constitutive behavior of the the solid phases with54

linear elastic, Cam-Clay and Drucker-Prager theories55

respectively. Around the same period of time, Ehlers56

and Eipper [14] applied a new Neo-Hookean constitu-57
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tive model to represent the compaction of the soil up to58

the solid compaction point. All of these researches were59

solved using implicit schemes where the linearization of60

the derivatives of the u − pw equations was necessary.61

This linearization was also made by Sanavia et al.[27]62

who considered several neglected terms of the previous63

works and extended the methodology to unsaturated64

soils [29].65

By contrast, the complete formulation valid for all66

frequencies movements is known to be essential for solv-67

ing dynamic problems [15,25]. Nevertheless, the formu-68

lation employing the total displacement of the water,69

U , as a nodal unknown is unstable when large defor-70

mations of the fluid phase occur. As an alternative, the71

employment of the relative water displacements, w, has72

been proved to be successful [19,21]. Traditional man-73

ner to solve the complete formulation is the utilization74

of implicit schemes [7,8,1,14] except the recent work of75

Ye et al. [31]. Thus, the current work represents the first76

one that solves the complete formulation with relative77

water displacements, u − w, using an explicit scheme.78

Since there is no necessity in formulating the tangent79

stiffness matrix in an explicit procedure, the complex80

process of linearization of the governing equations is81

avoided. In addition, as no matrix inversion is involved,82

the computational effort is minimized and code paral-83

lelization is facilitated.84

Moreover, it bears emphasis that the proposed method-85

ology, as it is thought for the finite strain regime, is86

carried out within a meshfree scheme due to its numer-87

ous advantages when large deformations are involved.88

In particular, the shape functions developed by Arroyo89

and Ortiz [2] based on the principle of maximum en-90

tropy [24] are employed. The spacial domain has been91

discretized into nodes and material points following the92

Optimal Transportation Meshfree (OTM) scheme of Li93

et al. [17]. The Drucker-Prager yield criterion, the good94

performance of which has been demonstrated for large95

deformation problems [23], is herein adopted.96

In contrast to the work of Bandara and Soga [3] or97

Ceccato and Simonini [11], who made use of two ma-98

terial sets for solid and water phases in their Material99

Point Method (MPM) schemes, a single set of materi-100

als for the coupling between water and solid phases is101

employed in this work since the relative water displace-102

ment is considered. This leads to significant savings on103

the computational effort. In addition, this formulation104

is stronger than some others such as the Smooth Parti-105

cle Hydrodynamics (SPH) since the pore pressure is also106

computed in the material points. The SPH formulation107

presents a tensile instability since only one nodal set is108

employed to contain displacement and stress fields.109

The rest of the paper is organized as follows. The110

Biot’s equations are presented next. The constitutive111

models employed to model the solid behavior are sum-112

marized in Section 3. The explicit methodology im-113

plemented is elucidated in Section 4. Applications to114

various problems are illustrated in Section 5. Relevant115

conclusions are drawn in Section 6. The definitions of116

all symbols used in the equations are provided in the117

nomenclature appendix.118

2 Biot’s equations: u-w-pw formulation119

The Biot’s equations [5] are based on formulating the120

mechanical behavior of a solid-fluid mixture, the cou-121

pling between different phases, and the continuity of122

flux through a differential domain of saturated porous123

media. Here the balance equations will be derived from124

Lewis and Schrefler [16] in the spatial setting (see [16]125

or [28,29] for the kinematic equations).126

As far as the notations are concerned, bold symbols

are employed herein for vectors and matrices, and reg-

ular letters for scalar variables, are used. Let u and U

represent the displacement vector of the solid skeleton

and the absolute displacement of the fluid phase re-

spectively. Because in porous media theory is common

to describe the fluid motion with respect to the solid,

the relative displacement of the fluid phase with respect

to the solid one, w, is introduced and expressed as [20]

w = nSw (U − u), (1)

where Sw is the degree of water saturation and n the soil

porosity. Note that (U − u) is usually termed as uws

in the literature [16]. Let ρ, ρw and ρs respectively rep-

resent the mixture, fluid phase and solid particle densi-

ties, the mixture density can be defined as function of

the porosity:

ρ = nSwρw + (1− n)ρs. (2)

In the above equations, the porosity, n, is the ratio be-

tween the voids volume, Vv, and the total volume, VT :

n =
Vv
VT

=
Vv

Vv + Vs
, (3)

where Vs is the volume of the solid grains.127

In the current work, the soil is assumed to be to-

tally saturated, i.e. Vv coincides with the water vol-

ume, which results Sw equals to one. Meanwhile, the

volumetric compressibility of the mixture, Q [33] is cal-

culated as

Q =

[
1− n
Ks

+
n

Kw

]−1
, (4)
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whereKs is the bulk modulus of the solid grains, whereas

Kw is the compressive modulus of the fluid phase (usu-

ally water). In addition, by assuming tensile stresses

(except pore pressure pw, which is positive for com-

pression) and strains as positive, the Terzaghi’s effec-

tive stress [30] is defined as follows

σ = σ′ − pwI, (5)

where σ′ and σ are the respective effective and total128

Cauchy stress tensors (positive in tension), whereas I is129

the second order unit tensor.130

Next, we first explain in detail the derivation of mass131

balance and linear momentum equations for a fluid sat-132

urated multiphase media. Then the final u− w formu-133

lation is presented.134

2.1 Derivation of the mass balance equation135

The general mass balance equation in a multiphase me-136

dia for compressible grains given by Lewis and Schre-137

fler [16] is presented next. Let pw, pg represent the wa-138

ter and gas pressures respectively, T , the temperature,139

then this general mass balance equation is written as140

follows,141

(
α− n
Ks

S2
w +

nSw
Kw

)
Dspw
Dt

+
α− n
Ks

SwSg
Dspg
Dt
−

βsw
DsT

Dt
+

(
α− n
Ks

Swpw −
α− n
Ks

Swpg + n

)
DsSw
Dt

+

αSwdiv vs +
1

ρw
div (nSwρwv

ws) = −nSwew,(6)

where the right hand side term represents the quan-

tity of water lost through evaporation for unit time and

volume. The thermal expansion coefficient of the solid-

fluid mixture, βsw, is a combination of that of the solid,

βs, and the fluid, βw:

βsw = Sw[(α− n)βs + nβw]. (7)

In addition, α is the Biot’s coefficient:

α = 1− KT

Ks
. (8)

where KT denotes the bulk modulus of the solid skele-142

ton. α is usually assumed equal to one in soils as the143

grains are much more rigid than the mixture. Ds/Dt144

denotes the material time derivative with respect to145

the solid.146

The relative velocity of the fluid, vws, in Eq. (6) is

defined through the generalized Darcy law as [16]

nSwv
ws =

krwk

µw
[−grad pw + ρw(g − as − aws)] , (9)

where g represents the gravity acceleration vector, as

and aws are the solid acceleration and the relative wa-

ter acceleration with respect to the solid respectively, k,

the intrinsic permeability tensor of the porous matrix in

water saturated condition, krw is the water relative per-

meability parameter (a dimensionless parameter vary-

ing from zero to one) and µw is the dynamic viscosity of

the water [Pa · s]. For the case of isotropic permeability,

the intrinsic permeability, expressed in [m2], is related

with the notion of hydraulic conductivity, κ [m/s], by

the following equation

k

µw
=

κ

ρwg
. (10)

As we consider a totally saturated, iso-thermal mul-

tiphase media, DsT/Dt = 0, Sg = 0, Sw = 1, krw = 1,

ew = 0, consequently, DsSw/Dt = 0. If additionally the

fluid density variation is neglected, Eq. (6) is simplified

as,(
1− n
Ks

+
n

Kw

)
Dspw
Dt

+ div vs + div (nvws) = 0. (11)

Taking into consideration Eq. (4), the mass balance

equation is written as follows:

1

Q

Dspw
Dt

+ div u̇+ div ẇ = 0, (12)

where the relationships u̇ ≡ vs and ẇ ≈ nvws have147

been introduced. The latter equation has been derived148

from Eq. (1) computing the material time derivative of149

w with respect to the solid and neglecting the material150

time derivative of the porosity with respect to the solid151

for simplicity. This assumption can be justified by the152

small time step value usually adopted in dynamics at153

high frequencies.154

When accelerations of the solid and the fluid are

negligible, as in the quasi-static u−pw formulation [28,

29], and the solid grain and the fluid can be considered

incompressible, substituting Darcy’s law into Eq. (12)

we have the mass equation expressed as

div vs + div

[
k

µw
(−grad pw + ρwg)

]
= 0. (13)

2.2 Linear momentum balance equations155

On the one hand, the linear momentum balance equa-

tion for the fluid phase was presented in Eq. (9). By

rearranging different terms, the following expression is

obtained:

−grad pw −
µw
k
ẇ + ρw

(
g − ü− ẅ

n

)
= 0, (14)
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where the relationships ü ≡ as and ẅ ≈ naws have

been introduced (neglecting, similarly to the derivation

of Eq. (12), the material time derivative of the porosity

with respect to the solid). On the other hand, accord-

ing to Lewis and Schrefler [16], the linear momentum

balance equation for the multiphase system can also be

expressed as the summation of the dynamic equations

for the individual constituents relative to the solid as,

i.e.,

−ρas − nSwρwaws − nSgρgags + div σ + ρg = 0, (15)

where the convective terms related to aws and ags have

been neglected. Since in the present research there is

no gassy phase as the soil will be considered as totally

saturated, Sg = 0; nSwρwa
ws = ρwẅ, plug Eq. (5) into

Eq. (15), the linear momentum equation can be written

as follows

div [σ′ − pw I]− ρü− ρwẅ + ρg = 0. (16)

2.3 The u− w formulation156

The u−w formulation starts from the assumption that157

Eq. (12) can be integrated over time, i.e.,158

pw = −Q (div u+ div w) + pw0. (17)

Consequently, substituting Eq. (17) into Eq. (14)159

and Eq. (16) the governing equations for the u − w160

formulation are obtained as follows161

div [σ′ +Q (div u+ div w) I]

−ρü− ρwẅ + ρg = 0, (18)

Q grad [div u+ divw]− µw
k
ẇ

+ρw

(
g − ü− ẅ

n

)
= 0. (19)

3 Constitutive models for the solid phase162

In this Section, we describe the two types of material163

models implemented to assess the performance of the164

formulation presented in Section 2. One is for elastic be-165

havior, the other one involves plastic deformation which166

follows the Drucker-Prager failure criterion.167

3.1 Neo-Hookean material model extended to168

compressible range169

One of the widely used material model for predicting

non-linear elastic behavior for solids undergoing large

deformations is the Neo-Hookean model extended to

compressible range. Under spacial configurations, it is

expressed as follows [6]:

τ ′ = Jσ′ = G(b− I) + (λ ln J)I, (20)

where τ ′ and b are the effective Kirchhoff stress tensor170

and the left Cauchy-Green tensor respectively, whereas171

J is the Jacobian determinant, G and λ are the Lamé172

constants.173

In order to take into consideration the compaction

point of the soil, Ehlers and Eipper [14] presented a

modification of the Neo-Hookean law taking into ac-

count the influence of the initial porosity n0 and the

Jacobian, i.e.

τ ′ = G(b− I) + λn20

(
J

n0
− J

J − 1 + n0

)
I, (21)

which is going to be used for the validation examples174

in Section 5.175

3.2 Drucker-Prager yield criterion176

For the calculation of plastic deformations, we follow177

the work of Cuitiño and Ortiz [12] to relate the right178

Cauchy-Green strain tensor C and the small strain ten-179

sor ε, during the trial step. In other words, for the cur-180

rent loading step, k + 1, the trial elastic deformations,181

pressure (ptrialk+1 ) and the deviatoric stress tensor (strialk+1 )182

are computed as the elastic deformations, pressure and183

the deviatoric stress tensor are computed as:184

Ce trial
k+1 = (Fpk)−TCk+1(Fpk)−1, (22)

εe trialk+1 =
1

2
log Ce trial

k+1 , (23)

ptrialk+1 = K (εevol)
trial
k+1 , (24)

strialk+1 = 2G (εedev)
trial
k+1 . (25)

where K and G represent the bulk and shear moduli185

of the solid respectively. Once the incremental plastic186

strain tensor is known, the plastic deformation gradient187

can be derived as:188

∆Fpk+1 = exp(∆εpk+1), (26)

Fpk+1 = ∆Fpk+1F
p
k. (27)

Regarding the Drucker-Prager yield criterion, the method-189

ology of Sanavia et al. [29,26] is employed for its re-190

duced computational effort and its capacity to distin-191

guish if the location of the stress state is on the cone or192

apex before calculating the plastic strain. The current193

cohesion, ck+1, and its derivative, the hardening mod-194

ulus, H, are calculated following Camacho and Ortiz195

research [9] from the reference value, c0, the reference196
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Table 1 Equivalent plastic strain

Classical εpk+1 = εpk +∆γ
√

3α2
Q

+ 1

Apex εpk+1 = εpk +
√
∆γ21 + 3α2

Q
(∆γ1 +∆γ2)

2

Table 2 Parameters for Drucker-Prager and von-Mises yield
criteria

DP: Plane strain DP: Outer cone von-Mises

α
F

tanφ√
3+4 tan2 φ

√
2
3

2 sinφ
3−sinφ

√
2
3 0

α
Q

tanψ√
3+4 tan2 ψ

√
2
3

2 sinψ
3−sinψ

√
2
3 0

β 3√
3+4 tan2 φ

√
2
3

6 cosφ
3−sinφ

√
2
3

√
2
3

plastic strain, ε0, and the hardening exponent, Nε, as197

follows:198

ck+1 = c0

(
1 +

εpk+1

ε0

) 1
Nε

,

∂c

∂εp
= H =

c0
Nεε0

(
1 +

εpk+1

ε0

)( 1
Nε−1)

, (28)

where εpk+1 is the current equivalent plastic strain, cal-199

culated in different ways depending on the fact that if200

the stress state is in the classical or apex region, see201

Table 1.202

In order to know which algorithm to employ, a limit203

value for the pressure, plim is calculated:204

plim =
3α

Q
K

2G
‖strialk+1 ‖

+
β

3α
F

(
‖strialk+1 ‖

2G
H
√

1 + 3α2
Q

+ ck

)
. (29)

If the trial pressure is lower than this limit, classical205

return-mapping algorithm is employed, otherwise the206

apex algorithm is adopted.207

The yield conditions for the classical and apex re-208

gions respectively are:209

Φcl = ‖strialk+1 ‖ − 2G∆γ + 3α
F

[ptrialk+1 − 3Kα
Q
∆γ]

−βck+1, (30)

Φap =
β

3α
F

[
ck +H

√
∆γ21 + 3α2

Q
(∆γ1 +∆γ2)2

]
−ptrialk+1 + 3Kα

Q
(∆γ1 +∆γ2) , (31)

where ∆γ1 =
‖strial

k+1 ‖
2G , ∆γ and ∆γ2 are the objective210

functions to be calculated in the Newton-Raphson scheme211

for the classical or apex regions accordingly.212

For the calculation of the Drucker-Prager parame-213

ters from the friction angle, φ, and the dilatancy angle,214

ψ, the plane strain case is presented in Table 2. Ad-215

ditionally the parameters for the out cone are shown216

in Table 2. This cone circumscribes the Mohr-Coulomb217

plastic region, and the corresponding values for a von218

Mises criterion.219

4 Solution dependent the time: Explicit220

solution221

To solve the aforementioned coupled problem in the

time domain, the standard central difference explicit

Newmark time integration scheme is employed. Con-

sequently, the numerical stability is guaranteed when

the Courant-Friedrichs-Lewy (CFL) condition is satis-

fied. In particular, the time step, ∆t, should be small

enough to ensure that the compressive wave can travel

between nodes, i.e.

∆t <
h

Vc
, (32)

where h represents the discretization size and Vc is the

p-wave velocity (see [34]), which is defined by

Vc =

√(
D +

Kf

n

)
1

ρ
, where D =

2G(1− ν)

1− 2ν
. (33)

222

If the current time step is numbered as k + 1, and223

assuming the solution in the previous step k has been224

already obtained (hence it is known), a relationship be-225

tween uk+1, u̇k+1 and ük+1 is established according to226

a finite difference scheme, as follows:227

ük+1 = ük +∆ük+1,

u̇k+1 = u̇k + ük∆t+ γ∆t∆ük+1,

uk+1 = uk + u̇k∆t+
1

2
∆t2ük + β∆t2∆ük+1. (34)

When the Newmark scheme parameters, γ and β are set228

to 0.5 and 0 respectively, the central difference scheme229

is obtained.230

4.1 Explicit integration231

From Eq. (14) and Eq. (16) we can get the solutions of232

the acceleration of the solid phase in both cases, written233

in the incremental form:234

∆ü = ρ−1 [∇ (∆σ′ −∆pw)− ρw∆ẅ + ρ∆g] , (35)

∆ü = ρ−1w

[
−∇∆pw −

1

k
∆ẇ − ρw

n
∆ẅ + ρw∆g

]
.(36)

As ∆ẇ is unknown in the k + 1 step, it is necessary235

to write the Newmark’s time integration scheme from236
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Eq. (34) in terms of the fluid phase:237

∆ẇk+1 = ẅk∆t+ γ∆t∆ẅk+1, (37)

∆wk+1 = ẇk∆t+
1

2
∆t2ẅk + β∆t2∆ẅn+1. (38)

If we write Eq. (36) by substituting ∆ẇ by the defini-238

tion given in Eq. (37), we obtain:239

∆ük+1 = ρ−1w

(
−∇∆pwk+1

− 1

k
ẅk∆t−

1

k
γ∆t∆ẅk+1

−ρw
n
∆ẅk+1 + ρw∆gk+1

)
= ρ−1w

[
−∇∆pwk+1

− 1

k
ẅk∆t+ ρw∆gk+1

−
(

1

k
γ∆t+

ρw
n

)
∆ẅk+1

]
. (39)

Rearranging Eq. (35) and Eq. (39) we can obtain240

one equation in terms of the relative acceleration of the241

fluid, which can be solved explicitly and ∆ẅ is obtained242

as in Eq.(41). Once this equation is solved, ∆ü can be243

obtained from Eq. (35).244

ρw
[
∇ (∆σ′ −∆pw)k+1 − ρw∆ẅk+1 + ρ∆gk+1

]
= ρ

[
−∇∆pwk+1

− 1

k
ẅk∆t

−
(

1

k
γ∆t+

ρw
n

)
∆ẅk+1 + ρw∆gk+1

]
. (40)

245

ρw∆R
s
k+1 − (ρw − ρ)∆Rw

k+1 + ρw∆P
s
k+1 − ρ∆P

w
k+1

+∆tρ
1

k
ẅk =

(
ρwρw − ρ

1

k
γ∆t− ρρw

n

)
∆ẅk+1. (41)

Both equations to be solved, Eq. (41) and Eq. (35),246

after integration in space can be written in the matrix247

form in the following way:248

[
MwMw − γ∆tM sC −M

sMw

n

]−1
[
∆R∗k+1 +∆P ∗k+1 +∆tM sCẅk

]
= ∆ẅk+1, (42)

[M s]
−1

[∆Rs +∆Rw +∆P s −Mw∆ẅ]k+1

= ∆ük+1. (43)

In Eqs. (42-43),Rk+1 represents the internal forces249

of the previous step for the solid, s, fluid, w, or the250

mixture of both, ∗, i.e.:251

∆Rs
k+1 = ∇∆σ′

k+1,

∆Rw
k+1 = ∇∆pwk+1

,

∆R∗k+1 = ρw∆R
s
k+1 − (ρw − ρ)∆Rw

k+1.

Similarly, the current external forces can be expressed

as P k+1, containing both gravity acceleration and the

boundary conditions for nodal forces. The external forces

of the mixture are denoted by:

∆P ∗k+1 = ρw∆P
s
k+1 − ρ∆P

w
k+1.

Mass and damping matrices, in the k + 1 step, are de-252

fined as follows:253

Mw = ρwI,

M s = ρI,

C =
1

k
I.

4.2 Explicit algorithm within the OTM framework254

The pseudo-algorithm of the whole model can be writ-255

ten in the following way:256

1. Explicit Newmark Predictor (γ = 0.5, β = 0)257

uk+1 = uk +∆tu̇k + 0.5∆t2 ük = uk +∆uk+1,

wk+1 = wk +∆tẇk + 0.5∆t2 ẅk = wk +∆wk+1;

u̇k+1 = u̇k + (1− γ)∆t ük,

ẇk+1 = ẇk + (1− γ)∆t ẅk;

xk+1 = xk +∆uk+1.

2. Material points position update

xpk+1 = xpk +

Nb∑
a=1

∆uak+1N
a(xpk).

3. Deformation gradient calculation258

∆Fk+1 = I +

Nb∑
a=1

∆uak+1∇Na(xpk),

∆Fwk+1 = I +

Nb∑
a=1

∆wak+1∇Na(xpk),

Fk+1 = ∆Fk+1Fk,

V = JV0 = det FV0,

n = 1− 1− n0
J

.

4. Small strains and pore pressure: C = FTF.259

div (u) = tr(εk+1) = tr

(
1

2
log Ck+1

)
,

div (w) = tr(εwk+1) = tr

(
1

2
log Cw

k+1

)
,

pw = −Q (div u+ div w) .

5. Remapping loop, reconnect the nodes with their260

new material neighbors.261
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6. Update density and recompute lumped mass

ρk+1 = nk+1ρw + (1− nk+1)ρs.

7. Constitutive relations from the Elasto-Plastic model:262

σ′
k+1 and Rk+1.263

8. Solve Eqs. 42 and 43 for ük+1 and ẅk+1.264

9. Explicit Newmark Corrector

u̇k+1 = u̇k+1 + γ∆t ük+1,

ẇk+1 = ẇk+1 + γ∆t ẅk+1.

265

266

In order to obtain the material point position (Step

2.) and the deformation gradient (Step 3.) it is neces-

sary to calculate the shape function and its derivatives.

Since a meshfree method is employed, the computation

is done along a neighborhood Nb. As mentioned before,

the shape functions are based on the work of Arroyo

and Ortiz [2], who defined the Local Max-Ent shape

function (LME) of the point (x) with respect to the

neighborhood (xa) as follows:

Na(x) =
exp

[
−β |x− xa|2 + λ∗ · (x− xa)

]
Z(x,λ∗(x))

, (44)

where

Z(x,λ) =

Nb∑
a=1

exp
[
−β |x− xa|2 + λ · (x− xa)

]
. (45)

The first derivatives of the shape function can be ob-267

tained from the own shape function and its Hessian268

matrix J by employing the following expression:269

∇N∗a = −N∗a (J∗)−1 (x− xa), (46)

The parameter β defines the shape of the neighborhood

and it is related with the discretization size (or nodal

spacing), h, and the constant, γ, which controls the

locality of the shape functions, as follows,

β =
γ

h2
. (47)

It bears emphasis that λ∗(x) comes from the min-270

imization of the function g(λ) = logZ(x,λ) to guar-271

antee the maximum entropy, by employing a modified272

Nelder-Mead algorithm [23].273

It is important to clarify the remapping loop defined274

in the algorithm. By using the stretches, λ1, λ2 and λ3,275

the eigenvalues of the Right Cauchy-Green deformation276

tensor, the neighborhood of the shape function can be277

enlarged. This fact allows us to model large deformation278

problems since the new locations of material points and279

nodes lead to new values of the shape function. When280

the largest stretch surpasses a tolerance it is necessary281

to do the following:282

P=P(t)

Γ1

Γ2

Γ3

Γ4

H
T =

 1
0 

m

L = 1 m

Γ1 :  ux=0,  wx=0
Γ2 :  uy=0,  wy=0
Γ3 :  ux=0,  wx=0
Γ4 :  free

A)

C)

Pmax

P(t)

tt0

Large deformation consolidation

Pmax

P(t)

t

T

B) Dynamic consolidation

Fig. 1 A) Geometry and boundary conditions of the column
of soil; Loading of B) the dynamic consolidation and C) large
deformation consolidation problems.

– Update neighborhood and parameter βpk+1 < βpk ,283

see Eq. (44) and Eq. (45).284

– Recompute Na(xpk+1) and∇Na(xpk+1) with the new285

positions of xk+1 and xpk+1.286

5 Validation287

In order to validate the proposed methodology, three288

examples are presented in this Section. The first one is289

the elastic dynamic consolidation proposed by Zienkiewicz290

et al. [34] to assess the performance of the complete291

formulation when large accelerations are involved. The292

second one is a consolidation problem for large defor-293

mations up to 1.5 meters.Finally the formation of a294

plastic shear band in a square domain is demonstrated295

by employing the Drucker-Prager yield criterion.296

5.1 Dynamic consolidation297

The dynamic consolidation of a soil column is studied298

using the geometry given in Fig. 1.A. The column is299

loaded at the top boundary, Γ4, by a harmonic surface300

loading, cos(ωt), see Fig. 1.B, where the angular fre-301

quency ω is defined as 2π/T . This problem was first302

analytically solved by Zienkiewicz et al. [34] in 1980s,303

and more recently by Navas et al. [22] using an im-304

plicit meshfree Eulerian framework using shape func-305

tions based on the principle of local maximum entropy.306

307

Different soil behaviors studied in the aforementioned308

work are dependent on the the solid skeleton properties,309



8 Pedro Navas et al.
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1
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10-1

1

101

P3 P2 P1

P4

P5

Zone (I) - Slow phenomena: ü and w can be neglected
Zone (II) - Moderate speed: w can be neglected
Zone (III) - Fast phenomena: only full Biot eq. valid

¨

¨
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P4
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100
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100

10-3

10-3

10-3

10-1

101

10.14

10.14

10.14

101.4

1014

3.22 · 10-2

3.22 · 10-4

3.22 · 10-6

3.22 · 10-2

3.22 · 10-2

π1
π2
          ω 

[rad/s]
  k 
[m/s]

Fig. 2 Zones of the different behavior of the soil depending
on the parameters Π1 and Π2 and values of ω and k for the
different points to be studied.

the permeability and the angular frequency of the har-310

monic load. Three zones, defined in Fig. 2 can be dis-311

tinguished according to the values of Π1 and Π2, which312

are defined as follows:313

Π1 =
k V 2

c

g
ρf
ρ ω H2

T

=
k ω

g
ρf
ρ Π2

, Π2 =
ω2H2

T

V 2
c

(48)

where HT is the column height, Vc is the p-wave ve-314

locity (see Eq. 4). While Π2 is closely related with ra-315

tio between the frequency of the loading and the nat-316

ural frequency of the system, Π1 combines this ratio317

together with the influence of the hydraulic conductiv-318

ity. Specifically, Zone I is characterized as slow phe-319

nomenon where both solid and fluid accelerations can320

be neglected; Zone II is typical of moderate speed be-321

havior, where only the fluid phase inertia is negligible;322

in Zone III, however, inertial contributions from both323

solid and fluid phases are significant and cannot be324

neglected. The five different points studied herein are325

shown in Fig 2, where the loading frequency, ω, and the326

soil permeability, k, are also listed.327

The material parameters are provided in Tab 3, and328

they are chosen to fit the dimensionless parameters em-329

ployed by Zienkiewicz et al.[34]. For this problem and330

the following one, the space discretization is of 0.2 m331

(316 nodes, 500 material points) and the time step em-332

ployed is 50 µs.333

The maximum envelope of the dimensionless pore334

pressure along the column is depicted in Figs. 3 and 4.335

Both figures show a very good agreement between the336

solution given by Navas et al. [22] and the one obtained337

with the current methodology. The main difference lies338

in the fact that the current solutions present more os-339

cillations compared to the original ones. This trend can340

be more clearly seen in Fig. 4 for the two points, P4 and341

Table 3 Material parameters for the dynamic consolidation
problem

G [MPa] 312.5 Kw [MPa] 104

ν 0.2 Ks [MPa] 1034

n 0.333 ρw [kg/m3] 1000

Vc [m/s] 3205 ρs [kg/m3] 3003

1

0.5

0
0 1

π2 = 10-3

Present research

1

0.5

0
P/Pmax0 1

P1

P2 

P3z/H

Navas et al. (2016)

Zienkiewicz et al. (1980)

Fig. 3 Maximum envelopes of the isochrones of the pore
pressure for points P1 to P3 (Π2 = 10−3).

1

0.5

0

z/H

0 1 2

P4 

P5 

Navas et al. (2016)

Present research

P/Pmax

Zienkiewicz et al. (1980)

Fig. 4 Maximum envelopes of the isochrones of the pore
pressure for points P4 and P5.
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Table 4 Material parameters of the dynamic consolidation
problem

λ [MPa] 29 Kw [MPa] 2.2× 104

G [MPa] 7 Ks [MPa] 1034

n 0.42 ρw [kg/m3] 1000

k [m/s] 0.1 ρs [kg/m3] 2700

P5, both located in zone III. This is due to the different342

time integration scheme employed in both works: while343

Navas et al. [22] used the Collocation method, in the344

present methodology, as previously explained, a central345

difference explicit Newmark’s scheme is adopted. The346

former method is known to be able to damp high fre-347

quency solutions meanwhile the explicit method does348

not. However, although the explicit solution presents349

this oscillating behavior, the steady solution is reached350

successfully without any additional numerical damping.351

This clearly demonstrates the good performance of the352

present methodology even for zone III problems.353

5.2 Large deformation consolidation354

Some examples seen in literature propose the consoli-355

dation of a column of soil as a discretization of a semi-356

infinite domain. Our goal, however, is the validation of357

the presented methodology when large deformation oc-358

curs. Taking this into consideration, the consolidation359

problem solved by Li et al. [18] is taken as a reference360

since they proposed a methodology to explicitly solve361

the dynamic expulsion of fluid from the porous solid362

matrix. The geometry is seen in Fig. 1.A, a column of363

soil which is loaded in the way that is shown in Fig. 1.C.364

The loading increases to reach Pmax at t0 = 0.05 s,365

when the pressure is kept constant until the end of the366

simulation (0.5 s). The parameters employed for the soil367

skeleton are listed in Tab. 4. The Neo-Hookean material368

model proposed by Ehlers and Eipper [14], see Eq. (21),369

is assumed in this case.370

The validation is made against the solution pro-371

posed by Li et al. [18]. The settlement of the top surface372

along time is checked for three different values of Pmax,373

namely 2, 4 and 8 MPa. The obtained solutions are seen374

in Fig. 5 for all three cases. It can be seen that the final375

steady solution of the settlement fits very well the finite376

deformation reported by Li et al. for the three different377

loading conditions, as it was expected, since the finite378

deformation scheme is the one employed in the current379

research.380

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0       0.1             0.2      0.3              0.4                  0.5
t (s)

Small deformation
Finite deformation

Li et al. (2001):

Present research

u y (
m

)

2 MPa 

4 MPa 

8 MPa 

Fig. 5 Comparison between the settlement obtained by Li
et al. [18] and with the current methodology for the large
deformation consolidation problem.

With this example, we seek to verify that the correct381

settlement value is obtained upon reaching the steady382

state. Such a comparison is not possible along the entire383

process since Li et al. [18] assumed the u− pw formula-384

tion, which is suitable for slow phenomena, in a quasi385

static approach. By contrast, we have taken on the com-386

plete Biot’s equations, which enables us to capture all387

the dynamic behaviors, since neither the soil nor the388

fluid accelerations are not neglected. Consequently, a389

ramped loading, contrary to the step-wise one employed390

in [18], is necessary in our case to avoid non-physical391

sudden loading.392

Additionally, traditional Neo-Hookean law [6] and393

the modified one by Ehlers and Eipper [14] for soil com-394

paction are tested and shown in Fig. 6. We can conclude395

that the modified law is much more convenient when396

compaction of the soil is modeled. With the Bonet’s397

law we obtain bigger settlement than the expected one.398

This fact suggests that this law is not suitable to sim-399

ulate the reduction of the pores volume, i.e. the com-400

paction, which leads to the hardening of the soil and401

the lesser settlement.402

5.3 Drainage of a square domain of saturated soil403

loaded by a rigid footing404

In this Section, the current methodology is applied to405

the analysis of a representative square domain of satu-406

rated soil loaded on the top right half by a rigid footing.407

The same problem was previously studied by Sanavia et408

al. [27,28]. The geometry and material properties are409

shown in Fig. 7. A displacement of 1 m on the loaded410
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-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0       0.1             0.2      0.3              0.4                  0.5
t (s)

Traditional Neo-Hookean
  (Bonet-Wood 1997)

Neo-Hookean for porous media
 (Ehlers 1999)u y (

m
)

Fig. 6 Comparison between the settlement obtained with
two different Neo-Hookean laws when a pressure of 8 MPa is
applied.

uy = uy(t)

Γ1

Γ2

Γ3

Γ4

10
 m

10 m

Γ5

5 m

K = 8333 kN/m2

G = 3486 kN/m2

c0 = 100 kN/m2

H = -10 kN/m2

Φ = 20º
Ψ = -10º, 0º, 10º, 20º

Kw = 50000 kN/m2

k = 0.0001 m/s
n = 0.33
ρs = 2700 kg/m3

ρw = 1000 kg/m3

Γ1 :   ux=0,  wx=0
Γ2 :   uy=0,  wy=0
Γ3 :   wx=0
Γ4 :   uy=uy(t),  wy=0
Γ5 :   free

P

Fig. 7 Geometry, material parameters and boundary condi-
tions of a square domain of water saturated porous material

boundary, Γ4, is imposed gradually during the simu-411

lation. Originally, a regular 8x8 discretization is em-412

ployed, which corresponds to a nodal spacing of 1.25 m.413

The time step is of 5 ms. The importance of this exam-414

ple lies in fact that, depending on the dilatancy angle,415

the formation of the shear band and the deformation416

pattern as well as the pore pressure may vary. Firstly,417

the currently obtained solution is tested against the pre-418

viously mentioned references, by applying the imposed419

displacement along 200 s (5 · 10−3 m/s) as a very slow420

loading condition. It is worth mentioning that this slow421

velocity in the application of the loading is required422

as the model we are comparing with is pseudo-static.423

The distribution of pore pressure and equivalent plastic424

strain can be seen in Fig. 8 at two different times of the425

simulation, being very similar to the previous solutions426

reported by Sanavia et al. [28].427

Since this is a methodology assumed to be suitable428

to capture fast phenomena, further simulations are car-429

ried out with a faster loading velocity (2 · 10−2 m/s)430

0.062 0.12 0.190.000e+00 2.500e-01

Ep

-8e+4 -4e+4 0-1.200e+05 4.000e+04

Pore_Pressure

Φ = 20º
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t = 100 s t = 200 s

Pw

-8e+4 -4e+4 0-1.200e+05 4.000e+04

Pore_Pressure

εp

0.062 0.12 0.190.000e+00 2.500e-01

Ep

Fig. 8 Pore pressure (in Pa) and equivalent plastic strain at
100 s and 200 s of the square domain for ψ = 20◦.

in order to check the good performance of the method431

against fully dynamic conditions. The obtained results432

on pore pressure and equivalent plastic deformation are433

shown in Figs. 9-17 for the different dilatancy angles of434

20◦, 10◦, 0◦ and −10◦ at 25 and 50 s respectively. For435

all the cases, the friction angle is kept at 20◦. It can436

be observed that there are no significant variation on437

the obtained equivalent plastic strain when the dila-438

tancy angle changes. However, when the dilatancy an-439

gle decreases, a decrease of the shear band slope is no-440

ticed. In addition, the effect of the plastic dilatancy441

(contractancy) is evidenced by the negative (positive)442

pore pressure within the shear band zone, see Figs. 9-10443

and Fig. 17 respectively. Moreover, in the case of zero444

dilatancy angle, see Fig. 11, no marked pore pressure445

variation is observed within the shear band zone. Sim-446

ilar phenomena were obtained by Sanavia et al. [28].447

In order to study the evolution of the principal re-448

sults of the problem, the histories of the pore pressure449

and equivalent plastic strain in a material point close to450

the shear band (Point P, see Fig. 7) have been depicted451

in Figs. 13 and 14.452

For positive dilatancy values, smooth pore pressure453

evolution is observed. In addition, the peak pressure sig-454

nals the initiation of plastic strain localization or shear455

band. The further extension of the shear band is ac-456

companied by the continuous decreasing of the pore457

pressure. The material with dilatancy equal to 0◦ expe-458
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Fig. 9 Pore pressure (in Pa) and equivalent plastic strain at
25 s and 50 s the square domain for ψ = 20◦.
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Fig. 10 Obtained results of the pore pressure (in Pa) and
equivalent plastic strain at 25 s and 50 s of the square domain
with ψ = 10◦.
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Fig. 11 Obtained results of the pore pressure (in Pa) and
equivalent plastic strain at 25 s and 45 s of the square domain
with ψ = 0◦.
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Fig. 12 Obtained results of the pore pressure (in Pa) and
equivalent plastic strain at 25 s and 45 s of the square domain
with ψ = −10◦.
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Fig. 14 Evolution of the equivalent plastic strain with time
in the point P.

riences a softer decreasing, in this case due to the dissi-459

pation of the pore pressure in the permeable boundary,460

not because of the shear band. In addition, for zero and461

negative dilatancy angles, increased pore pressure oscil-462

lation is seen and finally leads to an instability in the463

last five seconds of the simulation. This is the reason464

why figures 11 and 17 are not depicted for 50 s, but465

for 45 s. The contractive behavior presents soil failure466

around 15 seconds. Before that point the pore pressure467

increases in the plastic zone; after that, the soil fails468

and there is no change of the plastic strain. This failure469

is also reflected in the reaction of the soil against this470

load, Fig. 15.471
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Fig. 15 Reaction forces of the soil for the different dilatancy
angles.

From Fig. 15, we observe that the reaction force for472

negative dilatancy angles presents a softening branch473

until the soil fails, i.e. when the reaction force approaches474

zero. By contrast, positive dilatancy angles presents a475

hardening branch whereas zero dilatancy angle shows a476

horizontal part with slightly increased oscillations.477

The influence of the velocity of the loading can be478

seen by comparing Figs. 8 and 9. In the quicker prob-479

lem the dissipation is slower and a higher pore pres-480

sure in the lower right corner is seen. In contrast, more481

negative values are seen in the shear band, what leads482

to a lower plastic strain values around that zone. This483

quicker reduction of the pore pressure with the higher484

loading rate is also observed in Fig. 18, where both485

solutions are compared along the displacement of the486

footing. The increase of the plastic strain due to the487

higher pore pressure is evident as well.488

Finally, studies on the mesh dependency and the489

LME parameters are carried out. Three additional dis-490

cretization levels, 12x12, 16x16 and irregular 10x14, are491

employed to refine the original one (8x8). Moreover, the492

original value of 1.4 for the shape parameter of the LME493

shape function, γ, see Eq. (47), has been tuned to 2.4494

as well. The results of the pressure and the equivalent495

plastic strain at the final of the simulation are presented496

in Figs. 17, 18 and 19 for the cases of 12x12, 16x16 and497

10x14, respectively.498

It is observed that a finer discretization gives better499

resolution of the shear band, thus better pore pressure500

distribution. In addition, such enhancement is more501

pronounced with larger values of γ (which corresponds502

to smaller neighborhood). This is attributed to the fact503
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Fig. 16 Pore pressure and equivalent plastic strain obtained
by each loading rate against the displacement of the footing.
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Fig. 17 Results of the pressure (upper row) and the equiv-
alent plastic strain (lower row) for γ=1.4 (left column) and
2.4 (right column) at the final of the simulation for the dis-
cretization level of 12x12.

0 0.250.125

εp

-1.0 e+4 1.0 e+5 2.0 e+5

Pw

LME: γ=1.4 LME: γ=2.4

Fig. 18 Results of the pressure (upper row) and the equiv-
alent plastic strain (lower row) for γ=1.4 (left column) and
2.4 (right column) at the final of the simulation for the dis-
cretization level of 16x16.
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Fig. 19 Results of the pressure (upper row) and the equiv-
alent plastic strain (lower row) for γ=1.4 (left column) and
2.4 (right column) at the final of the simulation for the dis-
cretization level of 10x14.
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that, a smaller neighborhood reduces the spurious smooth-504

ing out of the shear band, see the results for γ=1.4.505

In the case of irregular discretization, see Fig. 19, for506

pressure and plastic strain distribution, it is observed507

that in order to obtain the same level of accuracy, a508

finer level of discretization than regular ones is needed.509

6 Conclusions510

We have presented a new methodology to model bi-511

phase saturated soils, solving the coupled problem in512

an explicit manner. In order to extend this methodol-513

ogy to the dynamic range, the complete formulation of514

the Biot’s equations is employed. Both elastic and plas-515

tic solid behaviors have been tested, meanwhile in the516

case of the water, the complete Darcy’s law is simulated,517

taking into account the acceleration terms, which play518

an important role in some dynamic cases. Although519

this methodology has been carried out within the Lo-520

cal Max-Ent shape function, employing a spatial dis-521

cretization based on the Optimal Transportation Mesh-522

free scheme, the proposed model can be utilized for523

any other type of finite element method. Since the fi-524

nite strain formulation is employed in order to be able525

to simulate large deformation regimes, advanced tech-526

niques such as any other meshfree scheme are well rec-527

ommended.528

Firstly, the model is employed under high frequency529

loading conditions and an elastic media. Zienkiewicz530

et al. [34] presented this problem and recently Navas531

et al. [22] solved it with an implicit methodology and532

dissipative time integration schemes. Compared to this533

former research, the proposed methodology yields very534

good trend, reproducing the original envelopes quite535

well. The main difference lies in the oscillation that the536

current results present, which was expected as the Cen-537

tral Differences explicit Newmark’s scheme was used.538

Secondly, the performance of the method under large539

deformation regime is analyzed. The first example car-540

ried out is a large consolidation that was proposed firstly541

by Li et al. [18]. Several simulations with different Neo-542

Hookean models are executed, giving the idea that the543

one proposed by Ehlers and Eipper [14] fits very well544

with the compaction behavior when large consolidation545

is modeled.546

Finally, last example is performed within a Drucker-547

Prager flow rule in order to see the behavior of the pore548

pressure along the plastic shear bands depending on549

the dilatancy of the material. Sanavia et al. [28] ver-550

ified that contractive materials accumulate pore pres-551

sure while in the dilatant shear band the reduction of552

pore pressure is observed. This behavior is well cap-553

tured in the present research. Differences between both554

studies reside in the employment of inertial terms made555

by the complete Biot’s formulation in the present re-556

search. Some pressure instabilities are found when large557

plastic strains occur, mainly when the soil experiences558

more contractive behavior.559
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A Nomenclature571

– as ≡ ü: acceleration vector of the solid = material time572

derivative of vs573

– aws: relative water acceleration vector with respect to the574

solid = material time derivative of vws with respect to575

the solid576

– b = FFT : left Cauchy-Green tensor577

– b: body forces vector578

– c: cohesion (equivalent to the yield stress, σY )579

– C = FTF : right Cauchy-Green tensor580

– C (time integration scheme): damping matrix581

– Ds�
Dt
≡ �̇: material time derivative of ut with respect to582

the solid583

– F = ∂x
∂X

: deformation gradient584

– g: gravity acceleration vector585

– G: shear modulus586

– h: nodal spacing587

– H: hardening modulus, derivative of the cohesion against588

time.589

– I: second order unit tensor590

– J = detF : Jacobian determinant591

– k: intrinsic permeability592

– k: permeability tensor593

– K: bulk modulus594

– Ks: bulk modulus of the solid grains595

– Kw: bulk modulus of the fluid596

– M : mass matrix597

– n: porosity598

– N(x), ∇N(x): shape function and its derivatives599

– p: solid pressure600

– pw: pore pressure601

– P (time integration scheme): external forces vector602

– Q: volumetric compressibility of the mixture603

– R: internal forces vector604

– s = σdev: deviatoric stress tensor605

– t: time606

– u: displacement vector of the solid607

– U : displacement vector of the water608

– vs = u̇: velocity vector of the solid609

– vws: relative velocity vector of the water with respect to610

the solid611

– w: relative displacement vector of the water with respect612

to the solid613

– Z(x,λ): denominator of the exponential shape function614
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– α
F

, α
Q

and β: Drucker-Prager parameters615

– β, γ: time integration schemes parameters616

– β, γ: LME parameters related with the shape of the neigh-617

borhood618

– ∆γ: increment of equivalent plastic strain619

– εp: equivalent plastic strain620

– ε: small strain tensor621

– ε0: reference plastic strain622

– κ: hydraulic conductivity623

– λ: Lamé constant624

– λ: minimizer of logZ(x,λ)625

– µw: viscosity of the water626

– ν: Poisson’s ratio627

– ρ: current mixture density628

– ρw: water density629

– ρs: density of the solid particles630

– σ: Cauchy stress tensor631

– σ′: effective Cauchy stress tensor632

– τ : Kirchhoff stress tensor633

– τ ′: effective Kirchhoff stress tensor634

– Φ: plastic yield surface635

– φ: friction angle636

– ψ: dilatancy angle637

638

Superscripts and subscripts639

– dev: superscript for deviatoric part640

– e: superscript for elastic part641

– k: subscript for the previous step642

– k+1: subscript for the current step643

– p: superscript for plastic part644

– s: superscript for the solid part645

– trial: superscript for trial state in the plastic calculation646

– vol: superscript for volumetric part647

– w: superscript for the fluid part648

– ws: superscript for the fluid part relative to the solid one649
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