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Abstract

The classical problem of point vortex equilibria has inspired many studies and

discovery of various equilibrium configurations involving non-zero vorticity distri-

butions. That infinitesimal vortices can be ‘smeared out’ to a finite area vortex

patch with constant vorticity to achieve equilibria has attracted large interest due

to its relevance to large-scale geophysical flows and the coherent flow structures ob-

served in two-dimensional turbulence. The present work starts with a consideration

of monopolar vortex equilibria in 2D inviscid incompressible flows. By employing a

Schwarz function method, an exact solution of monopolar equilibria under specific

straining field has been found. Numerical considerations are then used to study

multipolar vortex equilibria: the ‘m + 1’ point vortex - vortex patch equilibria are

numerically computed and consist of a finite area central patch surrounded by m

identical point vortices arranged at the vertices of a polygon. Two distinct fami-

lies of solutions have been found and their limiting states computed. Linear stability

analysis is carried out to study the effect of having a finite area central patch. Numer-

ical routines are further modified to compute the ‘m+1’ multipolar vortex equilibria

where the m point vortices from the previous configuration are replaced with fi-

nite area satellite patches. Various properties are investigated including the limiting
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states and non-linear stability through time-dependent integrations. The existence

of new, finite area multipolar vortex equilibria are suggested by the streamlines of

multipolar vortex equilibria and have thus been found numerically here. A general

numerical procedure is described and focus is put on particular multipolar vortex

equilibria consisting of two nested polygonal vortex patches. There exist two dis-

tinct families of solutions each having a further two separate cases. Time-dependent

integrations are carried out to study their non-linear stability and it has been shown

in certain unstable solution regimes the nested polygonal vortex equilibria evolve

into the ‘m+ 1’ multipolar vortex equilibria.

The second topic here concerns vortex patches over an exponential bottom to-

pography. This study is inspired by rip currents observed when water waves break

while propagating alongshore or offshore. Steady translating beach vortices have

been found numerically. Asymptotic approximation in the small slope limit is de-

rived and shown to agree well with the numerical solution. Linear stability analysis

indicates these structures are linearly stable and time-dependent integrations suggest

these are robust structures.

This thesis was completed under the supervision of Professor Robb McDonald

and Professor Ted Johnson.
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Chapter 1

Monopolar vortex patch equilibria

1.1 Introduction

A vortex patch is a two-dimensional finite area region with constant vorticity ω0

surrounded by an irrotational flow in two dimensions. Arguably the first classical

analytical solution for a vortex patch is the Kirchhoff ellipse (Lamb, 1932): an el-

liptical patch with semi-axes a and b rotating at constant rate Ω = ω0ab/(a + b)2.

Love (1893) investigated its linear stability, and more recently the non-linear sta-

bility analysis by Tang (1987) leads to the conclusion that the Kirchhoff ellipse is

non-linearly stable for aspect ratio 1/3 < b/a < 3. An analytical extension to the

Kirchhoff ellipse has been given by Moore and Saffman (1971) for a steadily rotating

elliptical patch in an imposed strain or shear provided the ratio e/ω0 is less than

a critical value, where e is the strain rate or shear rate. Monopolar vortex equilib-

ria with higher symmetry have been numerically computed in Deem and Zabusky

(1978) using contour integral method. The contour integral method reduces the 2D

area integral for the velocity field in the problem to a 1D boundary integral, and

so brings great simplification. Various forms of equilibria have been revealed using

contour integral method and Figure 1.1 shows some of the examples. The primary

concern of the first two chapters of this thesis is on steady rotating vortex equilibria
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Chapter 1. Monopolar vortex patch equilibria 14

such as the rotating monopole in Figure 1.1(b), and it is assumed all the 2D vortex

equilibria in chapters 1 and 2 of this thesis are at a constant rate of rotation Ω.

A later study by Wu et al. (1984) reveals families of solutions of monopolar vortex

equilibria having various symmetries and were called m-fold V-States (see Figure

1.2). These m-fold symmetric V-states are uniquely defined by two characteristic

radii RA = ra, RB = rb (where ra > rb by construction) illustrated in Figure 1.1(b).

For the solutions with fixed characteristic radius say rb, there is a range of ra beyond

which no equilibria exist and the monopole attains its limiting state at the maxi-

mum value of ra. A local expansion of the streamfunction by Overman (1986) and

Saffman and Tanveer (1982) together with the numerical results in Wu et al. (1984)

lead to the conclusion that limiting state must have non-continuous tangent jumps

of 90 degree (corners) on the boundary as shown by the outermost boundaries in

Figure 1.2 (hereafter, limiting states with corners). It is not ruled out that in some

other scenarios, limiting states with 180 degree tangent jumps on the boundary ex-

ist (hereafter, limiting states with cusps). A stability analysis of the V-states has

been carried out by Burbea and Landau (1982) for 3 ≤ m ≤ 6, which leads to the

conclusion that V-states are (secularly) stable when their angular velocity Ω lies in

a critical range characterised by the number of symmetries.

Aside from the numerically computed equilibria, an analytical construction by

Burbea (1981) that studied a m-fold symmetric monopole in a corresponding strain-

ing field reveals a limiting state with cusps. Similar limiting state equilibria have

been found by Crowdy (2002) for the configuration of a central vortex patch sur-

rounded by identical point vortices arranged at the vertices of a polygon. These

equilibria are characterised by zero velocity at all points on the boundary of the

central patch viewed in the rotating frame. i.e. a stagnant central vortex patch.

Other well-known vortex equilibria includes a translating dipole (two equal and

opposite-signed vortex pairs, see Figure 1.1(a)) computed by Wu et al. (1984) and
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Figure 1.1: From Wu et al. (1984). (a) Steady translating vortex dipole with equal
and opposite-signed vorticity. (b) 3-fold symmetric vortex patch in a constant rota-
tion. (c) Co-rotating vortex patches of the same-signed vorticity

Figure 1.2: From Wu et al. (1984). Families of solutions of rotating V-states for
3 ≤ m ≤ 6. The crosses are the centre of vorticity at origin. The limiting states
acquire m corners on the boundaries (the outer most boundary in each picture).
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Pierrehumbert (1980), co-rotating vortex pairs computed by Saffman and Szeto

(1980) (two identical vortex patches, see Figure 1.1(c)), and m-polygon, co-rotating

vortex patches computed by Dritschel (1985) (m identical vortex patches arranged

at vertices of a m-polygon). More recently, laboratory experiments by Van Heijst

and Kloosterziel (1989) demonstrate a robust tripolar vortex equilibria consisting of

a central vortex patch surrounded by two opposite-signed satellite vortex patches.

Similar structures were subsequently computed by Polvani and Carton (1990) and

Morel and Carton (1994). But their solutions are confined to mostly equilibria with

zero circulation. It is plausible there exists a much wider class of solution with ar-

bitrary overall circulation including distinct families when the central patch has the

same-signed vorticity as the satellite patches.

The first chapter here focuses on the steady rotating m-fold monopolar vortex

equilibria of the form in Figure 1.1(b). It is structured as follows: Section 1.2 finds

an asymptotic approximation of a near circular m-fold monopolar vortex equilibria.

Section 1.3 introduces a conformal mapping method based on Schwarz function to

represent the monopolar vortex equilibria. Section 1.4 and Section 1.5 gives some

comparisons between the asymptotic approximation, conformal mapping method and

the numerical solutions by contour integral method. And Section 1.6 presents some

special exact solutions using conformal mapping method under a specific straining

field. Finally, Section 1.7 gives a summary.

1.2 The near-circular approximation

The 2D Euler equation in the form of vorticity-streamfunction is:

ωt + uωx + vωy = 0, (1.1)
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where ω is the vorticity and is equal to a constant ω0 inside the boundary of vortex

patch and zero outside. The streamfunction ψ satisfies

∇2ψ = −ω, (1.2)

and the velocity field is

u = ψy, v = −ψx, (1.3)

or ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (1.4)

Assume a m symmetric near-circular vortex patch having boundary described in

polar coordinate

r = a+ ε cos
(
mθ̃
)
, (1.5)

where m is an integer, ε � a and θ̃ is the angle in the rotating frame. Asymp-

totically, the perturbation to the circular patch gives rise to perturbation vorticity

εω0 cos(mθ̃). The corresponding perturbation streamfunction satisfies the equation

∇2ψpert = −εω0δ(r − a) cos(mθ̃). Using Green’s function, ψpert can be expressed as

ψpert

(
θ̃
)

= − 1

2π

ˆ π

−π
εω0 cos(mθ′) log

∣∣∣aeiθ̃ − aeiθ′∣∣∣ adθ′, (1.6)

since ur = 1
r
∂ψ

∂θ̃
= 1

a
∂ψ

∂θ̃
at r = a, so the perturbation radial velocity at r = a becomes

u(p)
r (θ̃) = − 1

4π
εω0

ˆ π

−π
cos(mθ′) cot

(
1

2
(θ′ − θ̃)

)
dθ′, (1.7)

where superscript (p) is to refer to the perturbation variables. Now using change of

variables this becomes

u(p)
r (θ̃) = − 1

4π
εω0

ˆ π

−π
cos(mθ′ +mθ̃) cot

(
1

2
θ′
)

dθ′
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= − 1

4π
εω0

ˆ π

−π

[
cos(mθ′) cos(mθ̃)− sin(mθ′) sin(mθ̃)

]
cot

(
1

2
θ′
)

dθ′

= − 1

4π
εω0

[ˆ π

−π
cos(mθ′) cot

(
1

2
θ′
)

dθ′
]

cos(mθ̃) dθ′

+
1

4π
εω0

[ˆ π

−π
sin(mθ′) cot

(
1

2
θ′
)

dθ′
]

sin(mθ̃) dθ′, (1.8)

where the first integral on the right is zero since the integrand is odd. The second

integral equals 2π, so u
(p)
r (θ̃) = 1

2
εω0 sin(mθ̃). Since r = a + ε cos(mθ̃), so u

(p)
r =

−ε sin(mθ̃)m
˙̃
θ, by equating with the u

(p)
r just derived, this gives

˙̃
θ = −1

2
ω0/m. (1.9)

Note a circular patch gives solid body rotation with
˙̃
θ = 1

2
ω0. So the near-circular

patch with m-fold symmetry gives rise to rigid rotation of the whole vorticity distri-

bution with angular velocity

Ω =
1

2
ω0 −

1

2
ω0/m =

1

2
ω0

(
m− 1

m

)
. (1.10)

For a 3-fold symmetric near-circular patch, the angular velocity Ω = ω0/3. For

convenience, consider a 3-fold symmetric vortex patch boundary of the form

r =
1

2
(ra + rb) +

1

2
(ra − rb) cos

[
3
(
θ − Ωt+

π

2

) ]
,

where ra and rb are two characteristic radii of the 3-fold patch defined in Figure

1.1(b). This form is chosen so that θ − Ωt = −π/2 corresponds to r = ra, and

θ − Ωt = −π/6 corresponds to r = rb. It is obvious that a = 1
2
(ra + rb) and

ε = 1
2
(ra − rb). The vorticity due to the perturbation to circular patch is

ωpert = ε · ω0δ(r − a) cos
[
3
(
θ − Ωt+

π

2

) ]
,
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accurate to O(ε2). The corresponding streamfunction satisfies

∇2ψpert = −ε · ω0δ(r − a) cos
[
3
(
θ − Ωt+

π

2

) ]
. (1.11)

By expressing ψpert = f(r)ω0 cos
[
3
(
θ − Ωt+ π

2

) ]
, it can be shown that ψ ∼ r3 for

r < a and ψ ∼ r−3 for r > a. Then using continuity of ψpert at boundary, it is found

ψpert =


Ar3ω0 cos

[
3
(
θ − Ωt+ π

2

) ]
, for r < a,

Aa6r−3ω0 cos
[
3
(
θ − Ωt+ π

2

) ]
, for r > a,

(1.12)

where A is a constant. By integrating (1.11) with respect to r from a− ε1 to a+ ε1

and taking ε1 → 0, gives

∂ψpert

∂r

∣∣∣∣a+ε1

a−ε1
= −εω0 cos

[
3
(
θ − Ωt+

π

2

) ]
, (1.13)

which leads to A = ε
6a2

, so the perturbation streamfunction is

ψpert =


ε

6a2
r3ω0 cos

[
3
(
θ − Ωt+ π

2

) ]
for r < a,

εa4

6
r−3ω0 cos

[
3
(
θ − Ωt+ π

2

) ]
for r > a.

(1.14)

Now the velocity field due to a circular patch is

u− iv =


−1

2
iω0z̄, for |z|< a,

−1
2
iω0

a2

z
, for |z|> a,

(1.15)

so the streamfunction ψcirc due to a circular patch is

ψcirc =


−1

4
ω0|z|2+C1, for |z|< a,

−1
2
ω0a

2 log|z|, for |z|> a.

(1.16)
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Hence the total streamfunction (ψ = ψpert + ψcirc + ψrot) in the rotating frame is:

ψ =


ε

6a2
r3ω0 cos

[
3
(
θ̃ + π

2

) ]
− 1

4
ω0|z|2+1

2
Ω|z|2+C1, for |z|< a,

εa4

6
r−3ω0 cos

[
3
(
θ̃ + π

2

) ]
− 1

2
ω0a

2 log|z|+1
2
Ω|z|2, for |z|> a,

(1.17)

where θ̃ = θ − Ωt is in the rotating frame. C1 = ω0a
2/4 − 1/2ω0a

2 log(a) using

continuity of streamfunction. This can be rewritten in the complex form

ψ =


ε

12a2
ω0

(
z3ei

3
2
π + |z|6

z3
e−i

3
2
π
)

+ 1
4
ω0a

2 − 1
12
ω0|z|2, for |z|< a,

εa4

12
ω0

(
z3

|z|6 e
i 3
2
π + 1

z3
e−i

3
2
π
)

+ 1
2
ω0a

2 log( a
|z|) + 1

6
ω0|z|2, for |z|> a.

(1.18)

The corresponding velocity field can be found using u− iv = 2i∂ψ
∂z

which gives

u− iv =


ε

2a2
iω0z

2ei
3
2
π − 1

6
iω0z̄, for |z|< a,

− εa4

2z4
iω0e

−i 3
2
π − 1

2
iω0

a2

z
+ 1

3
iw0z̄, for |z|> a.

(1.19)

The approximate form (1.19) can be used to plot streamlines for various ε and find

the corresponding stagnation points that must lie on the lines of symmetries of the

vortex patch. Results will be shown in Section 1.4.

1.3 Conformal mapping method

This section introduces a conformal mapping to find an analytical representation

of V-states using a Schwarz function. It is based on the mapping described in Saffman

(1992, p. 167) which demonstrates an alternative derivation of Kirchhoff ellipse exact

solution. No exact solution (finite term mapping) can be found for m symmetric V-

states for which a truncated finite terms approximation is adopted. Assume there

exists a mapping which consists of an infinite series that maps the exterior of a m-
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fold vortex equilibria to the exterior of a unit circle. By truncation of the infinite

series and using the collocation points on the boundary where it is insisted that the

normal velocity in the rotation frame is zero, the coefficients of the truncated series

can be found giving an approximation to an equilibrium. The rotational velocity Ω

is determined as part of the question. For illustration, consider a 3-fold symmetric

patch that is uniquely characterised by chosen values of radii ra and rb .

A Schwarz function of a 2D curve C is a function Φ(z) that equals z̄ on C and is

analytic in the neighbourhood of C. e.g. for a circle of radius R, Φ(z) = R2/z. So,

for the case of closed C, Φ(z) can be written as

Φ(z) = F (z) +G(z),

where F (z) is analytic inside boundary C and G(z) is analytic outside C. If Φ(z)

has a Laurent expansion in an annulus containing C,

Φ(z) =
∞∑
0

fnz
n +

∞∑
1

gnz
−n, (1.20)

and F ,G are the analytic continuations of the series, then

u− iv =


−1

2
iω0G, outside C,

1
2
iω0F − 1

2
iω0z̄, inside C,

(1.21)

so that vx − uy = ω0 inside C. For 3-fold symmetric vortex patches that are not

too deformed from circular shapes, it is expected that the Laurent expansion (1.20)

exists. Assume the mapping from the exterior of the unit circle (ζ plane) to the

exterior of the patch (z plane) is

A(ζ) = z(ζ) = ζ

(
a0 +

a1

ζ3
+
a2

ζ6
+ · · ·

)
, (1.22)
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which is 3-fold symmetric. Since ζ̄ = 1/ζ on the unit circle

A(ζ) = z(ζ) =
1

ζ

(
ā0 + ā1ζ

3 + ā2ζ
6 + · · ·

)
, (1.23)

on ∂C. So the coefficients gn, fn can be evaluated using

gn =
1

2πi

˛
∂C

z̄zn−1 dz =
1

2πi

˛

∂D(0,1)

z̄zn−1dA

dζ
dζ, (1.24)

fn =
1

2πi

˛
∂C

z̄z−n−1 dz =
1

2πi

˛

∂D(0,1)

z̄z−n−1dA

dζ
dζ, (1.25)

where ∂D(0, 1) is the boundary of a unit circle centred at origin. The higher order

coefficients |ai| are expected to decrease. To determine the truncated coefficients

a0, a1, . . . an−1 and Ω, total of 2n+1 equations are required since ai, i = 0, 1, . . . , n−1

has real and imaginary part. Without loss of generality ζ = 1 is mapped to z = e−
iπ
2 ra

and ζ = e
iπ
3 is mapped to z = e−

iπ
6 rb . These provide four equations

<(a0 + a1 + a2 + . . .+ an−1 + ira) = 0, (1.26)

=(a0 + a1 + a2 + . . .+ an−1 + ira) = 0, (1.27)

<
(
a0 − a1 + a2 − . . .+ (−1)n+1an−1 + irb

)
= 0, (1.28)

=(a0 − a1 + a2 − . . .+ (−1)n+1an−1 + irb) = 0. (1.29)

The remaining 2n − 3 equations required to close the system are taken from the

boundary condition requiring the normal velocity (u − iv)ζ · n = 0 in the mapped

ζ-plane in the rotating frame. That is,

<[(uζ − ivζ) (cos θ + i sin θ)︸ ︷︷ ︸
eiθ=ζ

] = 0, (1.30)
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where uζ and vζ are the velocities in ζ-plane. But

u− iv =
dz̄

dt
=
∂z̄

∂ζ̄

dζ̄

dt
=
∂Ā

∂ζ̄

dζ̄

dt
, (1.31)

so the velocity in the ζ-plane is

uζ − ivζ =
dζ̄

dt
= (u− iv)

1
∂Ā
∂ζ̄

, (1.32)

and the boundary condition gives

<

[
ζ
∂Ā
∂ζ̄

{−1

2
iω0G+ iΩz̄}

]
= 0, (1.33)

where u− iv = −1
2
iω0G+ iΩz̄ is the velocity outside the vortex patch in the rotating

frame. Note ∂Ā
∂ζ̄
6= 0 since the mapping is conformal. Since G is a function of z and

z is a function of ζ, so the velocity boundary condition (1.33) is a function of ζ,

by picking 2n − 1 collocation points on the unit circle in ζ-plane, this completes a

closed system to solve for a0, a1, ....an−1,Ω. The equations are highly non-linear, so

successive computation of lower order truncation is used to advance to next order.

(i.e. using solution for two terms truncation to initialize the computation of three

terms mapping and so on), Newton iteration is used for computation. The remaining

task is to find the function G in terms of ζ.

By definition, G is an analytical function outside C. Using the expression for z

from (1.22), ζ can be rewritten as

ζ =
1

a0

(
z −

(
a1

ζ2
+
a2

ζ4
+ . . .+

an−1

ζ3(n−1)−1

))
, (1.34)
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by plugging this into (1.23) it gives

z̄ =
ā0

ζ
+
ā1

a2
0

(
z −

(
a1

ζ2
+
a2

ζ4
+ . . .+

an−1

ζ3(n−1)−1

))2

+
ā2

a5
0

(. . .)5 + . . . , (1.35)

by picking out the terms (z, ζ) with the power of z less than the power of ζ, the func-

tion G(z(ζ), ζ) is then found. The function F (z(ζ), ζ) is also found in the meantime.

This procedure can be implemented into a numerical procedure to solve the system.

For example, for a truncated mapping with 3 terms,

z = ζ

(
a0 +

a1

ζ3
+
a2

ζ6

)
, (1.36)

ζ =
1

a0

(
z −

(
a1

ζ2
+
a2

ζ4

))
, (1.37)

z̄ =
ā0

ζ
+
ā1

a2
0

(
z −

(
a1

ζ2
+
a2

ζ4

))2

+
ā2

a5
0

(
z −

(
a1

ζ2
+
a2

ζ4

))5

. (1.38)

for convenience put t = a1/ζ
2 + a2/ζ

4, then z̄ can be written as

z̄ =
ā0

ζ
+
ā1

a2
0

(
−2zt+ t2

)
+
ā2

a5
0

(
−5z4t+ 10z3t2 − 10z2t3 + 5zt4 + t5 + 5z4a1

ζ2

)
+
ā1

a2
0

z2 +
ā2

a5
0

(
z5 − 5z4a1

ζ2

)
,

where the first three terms are the function G and last two terms are the function

F . For n number of terms, the same procedures apply.

This method relies on the existence of the Laurent series. As |ra − rb| increases

the patch boundary deviates further from the circular shape so the accuracy of this

method is expected to drop across some critical ratio of ra/rb. To get an idea of the

accuracy, comparisons are made to the numerical results from numerical method by

Wu et al. (1984) (Denoted WOZ here) which is briefly described in the next chap-

ter. A quantitative error is computed for various ra with fixed rb by comparing the

boundary points obtained from WOZ method and the conformal mapping method.
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The corresponding points found by interpolation using cubic spline interpolation (so

they have same corresponding angles) are subtracted, squared, summed and then

divided by the total number of points and square rooted:

qerror =

√√√√√npt∑
1

(xi − xmi )2 + (yi − ymi )2

npt
, (1.39)

where npt is the total number of points, xi, yi are the numerically computed patch

boundary points and xmi , y
m
i are the boundary points through conformal mapping.

The quantitative error results will be presented in Section 1.6.

Now using the velocity (1.21), the streamlines can be plotted and stagnation

points found. The stagnation points are an important property of the flow fields,

new equilibrium can be achieved by growing identical vortices or patches at these

stagnation points and these configurations will be studied in Chapter 2. To plot the

streamlines, note the derivative of the complex potential W in terms of ζ is

dW

dζ
=
dW

dz

dz

dζ
= (u− iv)

dz

dζ
. (1.40)

Direct integration with respect to ζ gives the complex potential and hence ψ by

taking the imaginary part of the complex potential W , values of ψ(z(ζ)) and its

corresponding z can be found and used to plot the streamlines in the z-plane. An

extra term Ωzz̄/2 is added to account for the rotating frame.

1.4 Asymptotic approximation versus ex-

act mapping for Kirchhoff vortex

The Kirchhoff elliptical patch is a well known exact analytical solution: an ellip-

tical patch with semi-axes a, b in steady rotation of angular speed Ω = ω0ab/(a+ b)2.



Chapter 1. Monopolar vortex patch equilibria 26

There are many ways to derive this exact analytical solution. It is shown in Saffman

(1992) that there is a two term exact conformal mapping for the Kirchhoff ellipse

of the type described in Section 1.3. However, no finite term exact mapping can be

found for a m-fold V-state (m ≥ 3). To get a sense of the accuracy of the near circu-

lar asymptotic approximation, the exact mapping and the near circular asymptotic

approximation of Section 1.3 are compared for the Kirchhoff ellipse.

Using elliptical coordinates, the boundary of an ellipse can be represented by

x = c cosh(ξ) cos(η), (1.41)

y = c sinh(ξ) sin(η), (1.42)

where a particular ellipse corresponds to ξ = ξ0, and

cosh(ξ0) = rb/c, (1.43)

sinh(ξ0) = ra/c. (1.44)

Here ra, rb are the two characteristic radii or semi-axes of the ellipse. The stream-

function exterior to the ellipse in the rotating frame found by Kirchhoff is then

ψ =
rarbω0

2
ξ +

rarbω0

4
e−2ξ cos(2η)− rarbω0

4
e−2ξ0 (cosh(2ξ) + cos(2η)) , ∀ ξ > ξ0,

(1.45)

where c2 = r2
b − r2

a and the last term is due to steady angular rotation

Ω = ω0
rarb

(ra + rb)2
. (1.46)

For the Schwarz function method, in the rotating frame, the map from the exterior
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of a circle (ζ-plane) to the exterior of an ellipse (z-plane) is

z = a0ζ +
a1

ζ
, (1.47)

where a0 and a1 are constants. Without loss of generality let ζ = 1 map to z = rb

and ζ = i map to z = ira, then

a0 =
1

2
(rb + ra), a1 =

1

2
(rb − ra). (1.48)

(this implies a0, a1 ∈ R for the choice of mapping since ra, rb ∈ R). Now the Schwarz

function on the boundary is

z̄ =
a0

ζ
+ a1ζ =

a1

a0

z +
rarb
a0ζ

, (1.49)

since a0a0− a1a1 = rarb. The function which is analytic outside the ellipse G can be

read off from (1.49) and is

G(z) =
rarb
a0ζ

, (1.50)

and the velocity field outside the patch is

u− iv = −1

2
iω0G+ iΩz̄ = −iω0

rarb
2a0ζ

+ iω0
rarb

(ra + rb)2
z̄. (1.51)

From (1.51) the steady rotational velocity can be shown to be given by (1.46) by

applying the boundary condition in (1.33), see Saffman (1992, p. 167). Using (1.40)

and by direct integration, the streamfunction in the rotating frame is obtained

ψ = =
[
−iω0

1

2
rarb log ζ − 1

4
iω0

rarb
ra + rb

(rb − ra)
1

ζ2

]
+

1

2

rarb
(ra + rb)2

ω0zz̄. (1.52)

Now consider the near-circular asymptotic approximation. Given a patch boundary



Chapter 1. Monopolar vortex patch equilibria 28

of the form

r = a+ ε cos(2θ̃),

the asymptotic rotational velocity is Ω = 1
4
ω0 from (1.10). Now consider an elliptical

patch enclosed by the curve

r =
1

2
(rb + ra) +

1

2
(rb − ra) cos (2 (θ − Ωt)) , (1.53)

where the variables

a =
1

2
(rb + ra), ε =

1

2
(rb − ra). (1.54)

Following the same procedure described above, the streamfunction in the rotating

frame is found to be

ψ =


ε

8a
ω0

(
z2 + |z|4

z2

)
− 1

8
ω0|z|2+1

4
ω0a

2, for r < a,

ε
8
a3ω0

(
1
z2

+ z2

|z|4

)
+ 1

2
ω0a

2 log
(
a
|z|

)
+ 1

8
ω0|z|2, for r > a.

(1.55)

The streamfunction is expressed in terms of z, z̄ for convenience. The velocity field

in the rotating frame is then

u− iv =


ε

2a
iω0z − 1

4
iω0z̄, for r < a,

− ε
2
ia3ω0

1
z3
− 1

2
iω0

a2

z
+ 1

4
iω0z̄, for r > a.

(1.56)

Three streamlines plots for the exact solution (1.55) are compared to the asymp-

totic solution in Figure 1.3, for ra = 1 and rb = 1.1, 1.4, 1.7. Since rb = ra+2ε = 1+2ε

from (1.54), the rotational velocity using (1.46) is

Ω = ω0
rarb

(ra + rb)2
=

1

4

1 + 2ε

(1 + ε)2
ω0 ≈

1

4
ω0 + o(ε2), (1.57)

which shows the approximation (1.10) is accurate to o(ε2).
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Figure 1.3: Streamlines for Kirchhoff ellipse in rotating frame, shaded region repre-
sents vortex patch and asterisks indicates the positions of stagnation points. Upper
panels are the exact solutions and lower panels are the asymptotic solutions.

Two pairs of symmetric stagnation points are evident from the streamlines in

Figure 1.3: one stable pair on the minor axis of the ellipse, another unstable pair

on the major axis of the ellipse. Unstable stagnation point here means a fluid point

near it will be carried away and stable means the opposite. The Kirchhoff ellipse

is fundamentally different than the m-fold V-states (m ≥ 3). When a V-state ap-

proaches limiting state it has the unstable stagnation points getting closer to the

patch boundary, Wu et al. (1984) has shown that limiting state V-state acquires cor-

ners on its boundary with non-continuous tangent jump of 90 degree, this suggests

the unstable stagnation points meet the corners at the limiting state. In contrast

no limiting state has been found for Kirchhoff ellipse since the unstable stagnation

points never meet the patch boundary, but instead move infinitesimally close to it.

This is easily shown from the exact solution (1.51) for stagnation point on the x-axis
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i.e. ζ = ξ. Where the location of the stagnation points are given by

ξ2 = 2− a1

a0

. (1.58)

Now as the aspect ratio of ellipse increases, a1/a0 tends to 1+ from (1.48). So the

stagnation points move infinitesimally close to, but never meet the boundary of the

patch. The presence of these stagnation points also suggests new forms of equilibria

by ‘growing’ set of point vortices or vortex patches of either signed vorticity at these

stagnation points. Such types of equilibria are explored in the next chapter.

1.5 Conformal mapping versus contour in-

tegral method

There are no exact (analytical) solutions found for a m-fold symmetric V-state

(m ≥ 3). The conformal mapping method described above has no exact, finite terms

mapping for V-states. However, truncation of the infinite series can give a good

approximation for V-states. To get a sense of how accurate this approximation based

on conformal mapping is, results by this method are compared to the numerically

computed results using WOZ. The second order accurate WOZ routine has been used

for computations (second order accurate representation of velocities has been used).

Figure 1.4 presents three streamline plots of 3-fold symmetric V-states produced by

a standard 4th order Runge-Kutta time-advancing scheme, using boundary points

computed from WOZ. The flow field viewed in rotating frame indicates two sets

of stagnation points: 3 stable stagnation points which lie on the ‘flat’ side of the

V-states and 3 unstable stagnation points lie on the ‘pointy’ sides of the V-states.

The last picture in Figure 1.4 presents the family of solutions with ra varying and

rb = 1 fixed, and demonstrates that as the limiting state is approached the unstable
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Figure 1.4: Three streamlines plots with the locations of stagnation points for 3-fold
symmetric V-states. Last picture shows the family of solutions with variable ra and
rb = 1 with associated stagnation points. Third picture gives the limiting state when
the unstable stagnation points meet the patch boundary at the corners.

stagnation points and eventually meets the patch boundary. It has been shown by

Overman (1986) that this limiting state must have 90 degree corner of the patch

boundary at the location of the stagnation points. Again these stagnation points

suggest new vortex equilibria by growing a set of patches of either signed vorticity

at them which are to be studied in next chapter.

The 3-fold symmetric V-states computed by WOZ and conformal mapping method

are compared. Boundary points are interpolated using cubic spline to Ri having

evenly spaced θi for comparison. Three or four terms in the mapping (1.22) are used

for comparison with higher number of terms introducing negligible improvement on

accuracy. The family of solutions defined by fixed rb = 1 with various values of ra up

to the limiting state are compared. In particular, the following are compared: the

rotational speed Ω and the location of boundary points in terms of the quantitative

error by (1.39). These values are plotted against values of ra as it increases towards

its limiting value. The left picture in Figure 1.5 plots Ω against ra, and good agree-
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Figure 1.5: 3-fold symmetric V-states comparison: left panel is comparisons of the
rotational speed Ω produced by two methods for various ra, right panel is the plot
of corresponding quantitative error of the boundary against ra.

ment is observed even for ra approaching its limiting value. The right picture in

Figure 1.5 plots the quantitative error against ra and a dramatic change is evident

after a certain value of ra. Recall that conformal mapping works if the Laurent series

exists for function F,G defined above i.e. if the V-states are not too close to limiting

states.

1.6 Special exact solutions in a straining

field using conformal mapping

Unlike the Kirchhoff ellipse no exact finite terms mapping exists for m-fold (m ≥

3) V-states. But, with an additional straining field, an exact, finite terms mapping
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has been found here for m-fold (m ≥ 3) symmetric vortex equilibria. Burbea (1981)

presented equivalent analytical results using a different method. Another study by

Crowdy (2002) also used a Schwarz function but involved surrounding point vortices

of specific strength in place of the straining field. All these result falls into the same

category: these equilibria are all characterized by zero velocity on the patch boundary

viewed in the rotational frame and the steady rotational velocities are exactly ω0/2

where ω0 is the vorticity strength of the patch. Lastly, the limiting states of these

equilibria acquire 180 degree tangent jumps (cusps) on the patch boundary rather

than corners.

For illustration, the derivation of the exact mapping for the 3-fold symmetric

vortex equilibria in a straining field is presented here for a mapping having two

terms. Higher symmetry solutions and those with more terms in the mapping can

be found similarly. Assume there exists an exact mapping with two terms

z = ζ

(
a0 +

a1

ζ3

)
, (1.59)

that maps the exterior of a unit circle to the exterior of an 3-fold symmetric vortex

patch. For a steady state to exist the boundary conditions in (1.33) must be satisfied.

Everything inside (1.33) can be written as a function of ζ where ζ = exp(iθ). By

expansion and collection of terms, the boundary condition reduces to

C1(a0, a1,Ω) + C2(a0, a1,Ω) cos(3θ) = 0,

where C1, C2 are functions of a0, a1,Ω, this gives C1 = C2 = 0, but C2 = 0 gives

trivial solution where a1 = 0. To find a non-trivial solution, look for the same

mapping for a vortex patch embedded in a specific straining field. By symmetry,

this straining field is expected to be of form b1z
2 + b2z

5 + . . .. Applying the same
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boundary condition (1.33) now with extra term due to straining field.

<

[
ζ
∂Ā
∂ζ̄

{−1

2
iω0G+ iΩz̄ + b1z

2 + b2z
5 + . . .}

]
= 0. (1.60)

The only possible solution that satisfies boundary condition is Ω = ω0/2 and b1 =

−iω0ā1/(2a
2
0). An important fact about this solution is that the velocities on the

boundary vanish which means the vortex patch remain stagnant in the rotating

frame. It is also noted that b1z
2 is exactly −iω0F/2 where the function F is defined

above for the Schwarz function.

An alternative and more general way to derive above result is as follows. Assume

there exists an exact mapping with finite terms for a m ≥ 3 symmetric patch:

z = ζ

(
a0 +

a1

ζm
+

a2

ζ2m
. . .

)
= ζ

k∑
i=1

(
ai−1

ζm(i−1)

)
. (1.61)

Assume the corresponding external straining field needed to find an equilibrium is

S(z). Following the procedure described above, the functions G,F can be found

and the Schwarz function equals to their sum z̄ = G + F on the boundary. The

velocity field outside the patch is defined by the function G in (1.21). Putting all

this together, the boundary condition becomes

<

[
ζ
∂Ā
∂ζ̄

{−1

2
iω0G+ iΩz̄ + S(z)}

]
= 0. (1.62)

For the special class solution where Ω = w0/0, the sum of two terms

− 1

2
iω0G+ iΩz̄ =

1

2
iw0(z̄ −G) =

1

2
iw0F, (1.63)

where F (z) is a function of z to positive powers which is in the form of straining field.

Hence the straining field needed for the steady state is S(z) = −1
2
iw0F , then the

velocities on the boundary reduce to zero and are automatically satisfied. So for all
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Figure 1.6: Limiting state equilibria with cusps and the streamlines in the rotating
frame with a0 = 1 for m = 3, 4, 5.

one-to-one mappings of finite terms with m-symmetry, there exists a corresponding

equilibrium that is in steady rotation Ω = ω0/2 under a specific straining field. Now

the velocity field outside the patch is,

u− iv = −1

2
iω0

[
z̄

(
1

ζ

)
− z(ζ)

]
. (1.64)

The streamfunction in rotational frame can be found by integration:

ψ(ζ) = =
[ˆ
−1

2
iw0z̄

(
1

ζ

)
dz

dζ
dζ

]
+

1

4
w0zz̄. (1.65)

The requirement that the mapping be one-to-one mapping puts a constraint on ratio

|a1/a0|. To ensure a one-to-one mapping for |ζ|> 1, it is required that

dz

dζ
= a0 − (m− 1)

a1

ζm
6= 0, ∀|ζ|> 1, (1.66)

which is true only if |a1/a0|≤ 1/(m− 1). The limiting case when |a1/a0|= 1/(m− 1)

implies dz/dζ = 0 at m points of the patch boundary. This gives a ‘hypotrochoid’

cusp shape for the boundaries, see also Burbea (1981).

Figure 1.6 presents the limiting state monopolar vortex equilibria calculated using

2-terms mapping for the cases m = 3, 4, 5 with cusps for various symmetry under
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a specific straining field. The streamfunction is found using (1.65) through direct

integration:

ψ = =
[
−1

2
iω0

(
(|a0|2−(m− 1)|a1|2) log ζ +

1

m
a0ā1ζ

m +
m− 1

m

ā0a1

ζm

)]
+

1

4
ω0zz̄.

(1.67)

The background straining field is of the form −iω0F/2 = −iw0ā1z
m−1/(2am−1

0 ).

Without loss of generality take both coefficients a0, a1 to be real and a0 = 1. In the

limiting case, a1 = a0/(m− 1).

More generally, if instead three terms are included in the exact mapping

z = ζ

(
a0 +

a1

ζm
+

a2

ζ2m

)
, (1.68)

then equilibria can be found provided they exist in a straining field of the form

F =
ā1

am−1
0

zm−1 +
ā2

a2m−1
0

(
z2m−1 + (2m− 1)

a1z
2m−2

ζm−1

)
. (1.69)

The streamfunction in the rotating frame is

ψ(ζ) = −1

2
ω0< [A(a0, a1, a2, ζ)] +

1

4
ω0zz̄, (1.70)

where the function A is

A =
[
|a0|2−(m− 1)|a1|2−(2m− 1)|a2|2

]
log(ζ) +

1

m

[
a0ā1 − (m− 1)a1ā2

]
ζm

+
1

2m
a0ā2ζ

2m +
1

m

[
(m− 1)ā0a1 − (2m− 1)ā1a2

] 1

ζm
+

1

2m
(2m− 1)ā0a2

1

ζ2m
.

(1.71)

For the demonstration of the three terms exact mapping, a 4-fold symmetric limiting

state equilibrium is presented in Figure 1.7, using the one-to-one condition dz/dζ = 0

on the boundary as well as fixing two characteristic radii ra = 1.4, rb = 1.2 which



Chapter 1. Monopolar vortex patch equilibria 37

Figure 1.7: Limiting cusp-like 4-fold symmetric equilibrium with streamlines using
the three terms mapping with ra = 1.4, rb = 1.2.

gives three equations to solve for a0, a1, a2. Many other various equilibria can be

found.

1.7 Summary

This chapter reviewed the monopolar patch equilibria, in particularly the Kirch-

hoff ellipse and m-fold V-states. A near-circular asymptotic approximation and an

analytical mapping have been derived for m-fold symmetric vortex equilibria. These

analytical approximations have been compared to existing exact solutions and nu-

merical results to demonstrate their accuracy. The analytical mapping is based on

Schwarz function and has been shown to be accurate when the vortex patch has

an aspect ratio within a critical value. Further studies reveal that under a specific

straining field, the finite terms conformal mapping represents an exact solution. The

corresponding family of solutions described by these exact solutions have limiting

states characterized by cusps on the boundary. The next chapter considers vortex

patch equilibria of multiple connectivity including a further investigation of limiting
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states with cusps or corners.



Chapter 2

Multipolar vortex equilibria

2.1 Introduction

Arising from studies of magnetism and plasma physics, the well known equilibria

of identical point vortices arranged at the vertices of a polygon by Thomson (1883)

(hereafter called m-polygon point vortex equilibria) inspired many subsequent stud-

ies and the search for new equilibria involving point vortices of arbitrary strengths

along with their stability analysis. A detailed summary of various forms of point

vortex equilibria and their stability analysis has been given in Aref et al. (2002).

That infinitesimal vortices can be ‘smeared out’ to finite area vortex patches with

constant vorticity to achieve equilibria has attracted large interest due to its rele-

vance to large-scale geophysical flows and the coherent flow structures observed in

quasi-geostrophic or two-dimensional turbulence. Following application of contour

dynamics that reduces the problem to 1D boundary integral, various forms of steady

rotating finite area vortex equilibria have been revealed. Monopolar vortex equi-

libria such as m-fold symmetric V-states and Kirchhoff ellipse have been discussed

in Chapter 1, much work have also been done on multipolar vortex equilibria such

as translating dipole consisting of two identical vortex patches of opposite-signed

vorticity in Wu et al. (1984) and Pierrehumbert (1980). Other multipolar vortex

39
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equilibria such as the finite area analogue of m-polygon point vortex equilibria have

been numerically computed and thoroughly studied by Dritschel (1985) (hereafter

called m-polygon multipolar vortex equilibria). This chapter investigates the steady

rotating multipolar vortex equilibria, it is assumed all equilibria in the chapter are

in a steady rotation of angular speed Ω.

More recently, numerical and laboratory experiments (see Larichev and Reznik,

1983; Flór et al., 1993; Legras et al., 1988; Larichev and Reznik, 1983; Van Heijst

et al., 1991; Carnevale and Kloosterziel, 1994) indicate the existence of coherent

rotating tripolar structure and that of higher connectivity. Their point vortex ana-

logues have been summarised in Aref et al. (2002) which consists of m identical point

vortices of strength Γs arranged at the vertices of polygon and a central point vortex

of strength Γc at origin. For convenience, they will be called ‘m + 1’ point vortex

equilibria with ‘1’ referring to the single central point vortex. Numerical computa-

tions of ‘m + 1’ configurations having finite area patches in place of point vortices

and zero total circulation have been done in Polvani and Carton (1990) and Morel

and Carton (1994), they consist of central patch of vorticity surrounded by opposite-

signed m identical satellite vortex patches. Numerous studies including laboratory

simulations (see Morel and Carton, 1994; Carnevale and Kloosterziel, 1994; Carton,

1992; Carton et al., 1989; Carton and Legras, 1994) indicate these multipolar vortex

equilibria with zero total circulation can be generated through barotropic instability

of shielded vortex i.e. a shielded circular patch with zero total circulation. These

equilibria belong to a more general class which here will be called ‘m+ 1’ multipolar

vortex equilibria where ‘1’ refers to the single central patch at origin, including those

having same-signed vorticity central patch. Linear stability of ‘m + 1’ point vortex

equilibria depends on the circulation ratio of central point vortex to satellite point

vortex shown in Morikawa and Swenson (1971) and Cabral and Schmidt (2000).

Such equilibria are linearly stable for a range of circulation ratios both negative and
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positive. The presence of a same-signed central point vortex have been shown to

make the m-polygon point vortex structures more stable in Morikawa and Swenson

(1971). Apart from these 2D vortex equilibria, geophysical tripolar vortex equilibria

in a two-layer fluid has been numerically found recently in Reinaud et al. (2017).

A further class of multipolar vortex equilibria are computed here: new finite

area vortex equilibria consisting of two sets of nested polygonal arranged vortex

patches i.e. a structure comprising two sets of identical vortex patches arranged at

the vertices of polygons of different sizes. There exists two distinct cases when two

sets of polygonal patches are aligned with each other or staggered, each having two

distinct families of solutions when two sets of polygonally arranged patches have

same-signed vorticity or opposite-signed vorticity.

This chapter is structured as follows: Section 2.2 gives a brief description of

a second order contour dynamics from Wu et al. (1984) for computations of m-fold

symmetric V-state, and the co-rotating solution of a single vortex patch with a single

point vortex using modified numerical routine. Section 2.3 presents ‘m + 1’ point

vortex - vortex patch equilibria. The limiting state solutions are discussed, and the

family is subjected to linear stability. Section 2.4 computes ‘m+1’ multipolar vortex

equilibria and various limiting state behaviours are investigated. These equilibria are

simulated in a time-dependent integration in order to test their stability. In Section

2.5, new finite area equilibria are found numerically which are called here the ‘m+m’

equilibria. Results are compared and connections made to the existing equilibria.

Finally section 2.6 gives a summary and discussion.
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2.2 The modified WOZ method

Using Green’s theorem, the streamfunction in (1.2) for piecewise constant vortex

patches enclosed by boundaries ∂Di with vorticity ωi can be written:

ψ(x, y) = −
Ñ∑
i=1

ωi
2π

ˆ
∂Di

log(l(i)) dξ(i) dη(i), (2.1)

where the superscripts (i) refer to the i-th patch andÑ is the number of vortex patches

in the configuration, (ξ(i), η(i)) ∈ ∂Di and l(i)
(
x, y, ξ(i), η(i)

)
=
√

(x− ξ(i))2 + (y − η(i))2.

Using integration by parts the velocity field (u, v) at (x, y) can be written:

(u, v)(x, y) = −
Ñ∑
i=1

ωi
2π

ˆ
∂Di

[
(x− ξ(i), y − η(i))/l(i)

]
dl(i). (2.2)

In order to be a steady rotating vortex equilibria, the velocity u = (u, v) on the

vortex boundary satisfies

(u−Ω ∧ x) · n = 0, (2.3)

where Ω = Ωk, k is a unit vector orthogonal to the axis of rotation, and Ω is the

rotational velocity of the equilibria. The boundaries of vortex patches in a time-

dependent simulation can be evolved using

(
dξ(i)

dt
,
dη(i)

dt

)
= (u, v)|x=ξ(i),y=η(i) . (2.4)

All numerical routines used here are various modified forms of the iterative routines

developed by Wu et al. (1984) (hereafter WOZ) and based on a 2nd-order contour

dynamics routine to compute the velocities on patch boundaries.



Chapter 2. Multipolar vortex equilibria 43

2.2.1 Steady rotating monopolar equilibria

Assume the boundary points (x, y) of a vortex patch in an equilibrium configu-

ration are expressed in polar coordinates relative to its ‘centre’ e.g centre of mass,

(x− x0, y − y0) = R(θ)(cos θ, sin θ), (2.5)

where (x0, y0) is the ‘centre’ of vortex. The boundary condition in (2.3) can be

written as

u
dy

dθ
− vdx

dθ
+ ΩR̃

dR̃

dθ
= 0, (2.6)

where R̃ is the distance of the patch boundary point to the origin, which is equal to

R if the vortex is centred at the origin (monopole). Note that

R̃2 = (x+ x0)2 + (y + y0)2

= (R cos(θ) + x0)2 + (R sin(θ) + y0)2

= R2 + 2R cos(θ)x0 + 2R sin(θ)y0 + x2
0 + y2

0. (2.7)

For discretized boundary points, first represent the velocity in (2.2) as

(uk, vk) = (2π)−1

Ñ∑
j=1

wj

N
(j)
T∑
i=1

(xk − ξ(j)
i+1/2, yk − η

(j)
i+1/2)[

(xk − ξ(j)
i+1/2)2 + (yk − η(j)

i+1/2)2
]1/2

(l
(j)
k,i+1 − l

(j)
k,i ), (2.8)

where ωj is the vorticity of the j-th vortex patch, Ñ is the total number of vortex

patches in the equilibrium, N
(j)
T is the total number of points on j-th vortex patch,

fi+1/2 = (fi + fi+1)/2 and (ξ
(j)
i , η

(j)
i ) ∈ ∂Dj. Also

l
(j)
k,i =

[
(xk − ξ(j)

i+1/2)2 + (yk − η(j)
i+1/2)2

]1/2

.
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Figure 2.1: Discretization of the boundary of a m-fold symmetry vortex patch for
computation. Herem = 3. By symmetry, only 1/2m section of the boundary needs to
be considered. That is Rk for 1 ≤ k ≤ N+1 with corresponding 0 ≤ θk+π/2 ≤ π/m.
Here N + 1 is the number of points on that section of boundary.

For the computation of m-fold symmetric monopolar equilibrium, Figure 2.1 shows

N + 1 boundary points with R1, RN+1 fixed and Rk adjustable at each iteration.

With second order accuracy, the boundary condition in (2.6) is expressed as

uk+1/2∆yk − vk+1/2∆xk + (Ω/2)∆R̃2
k = 0, 1 ≤ k ≤ N, (2.9)

where ∆fk = fk+1 − fk and uk+1/2 = (uk + uk+1)/2. Substituting (2.7) gives

uk+1/2∆ (Rk sin θk)−vk+1/2∆ (Rk cos θk)+(Ω/2)
(
∆R2

k + 2∆Rk cos θkx0 + 2∆Rk sin θky0

)
= 0.

(2.10)

Using (2.5) this can be reduced to

Rk − Fk+1/2Rk+1 = 0, 1 ≤ k ≤ N, (2.11)

or, alternatively

Rk − F−1
k−1/2Rk−1 = 0, 2 ≤ k ≤ N + 1, (2.12)
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where the function Fk+1/2 is defined as

Fk+1/2 =
uk+1/2 sin θk+1 − vk+1/2 cos θk+1 + (Ω/2)Rk+1 + Ωx0 cos θk+1 + Ωy0 sin θk+1

uk+1/2 sin θk − vk+1/2 cos θk + (Ω/2)Rk + Ωx0 cos θk + Ωy0 sin θk
.

(2.13)

Now a three-point scheme and a relaxation procedure follows: first average (2.11)

and (2.12) to give

− 1

2
F−1
k−1/2R̄k−1 + R̄k −

1

2
Fk+1/2R̄k+1 = 0, 2 ≤ k ≤ N, (2.14)

where R̄1 = ra, R̄N+1 = rb are prescribed and fixed. Equation (2.14) can then be

used to solve for R̄k given Fk+1/2. Assume R
(n)
k are the boundary points after the

n-th iteration. The velocities are found using (2.8) and Ω is updated by summing

(2.9) giving

Ω(n) = 2
N∑
k=1

[
u

(n)
k+1/2∆y

(n)
k − v

(n)
k+1/2∆x

(n)
k

]
/
(
R̃2

1 − R̃2
N+1

)
. (2.15)

These in turn gives F
(n)
k+1/2 in (2.13) and can be used to solve for R

(n+1)
k using (2.14).

Finally a relaxation is used

R
(n+1)
k = µR̄

(n+1)
k + (1− µ)R

(n)
k , (2.16)

where µ is the relaxation parameter. This completes an iteration. The iteration

continues until
N+1∑
k=1

∣∣∣R(n+1)
k −R(n)

k

∣∣∣ < 5× 10−7. (2.17)
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Figure 2.2: (a) Same-signed equilibrium with ra = −0.2, rb = −0.8, ωc = 1, rp =
0.3,Γ = 0.262. (b) Opposite-signed equilibrium with ra = −0.72, rb = −1, ωc =
1, rp = 0.4,Γ = −0.272. Arrows are to indicate the direction of the flows.

2.2.2 Co-rotating equilibria of a single vortex patch

with a single point vortex

Now consider the simplest multiply connected vortex equilibria consisting of a

single vortex patch with a single point vortex in steady rotation as shown in Fig-

ure 2.2. The vortex patch is symmetric against x-axis so it is sufficient to consider

the upper half discretized boundary points. To find a unique solution, the parame-

ters ra, rb, rp, ωc are prescribed and fixed where ra, rb are the distances of two patch

boundary points that intersect with x-axis to the origin and rp is the distance of

point vortex to the origin, ωc is the vorticity of the vortex patch. In comparison to

a single vortex patch problem, an extra unknown of this problem is the strength of

the point vortex Γ which requires an extra boundary equation. This extra boundary

condition comes from the fact point vortex stays fixed in the rotational frame. The

detailed modified WOZ method used here differs little from computations in Section

2.3 and shall be skipped here.

Two equilibria are plotted in Figure 2.2 with streamlines produced using a stan-
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dard 4th order Runge-Kutta scheme to advance in time, the arrows have been added

to indicate the direction of flow. There are two scenarios: in the first scenario the

vortex patch and point vortex have same-signed vorticity and they rotate around a

point in-between them as shown in Figure 2.2(a). In the second scenario, the vortex

patch and point vortex have opposite-signed vorticity and they rotate as a pair in a

circle relative to the origin as shown in Figure 2.2(b). The same-signed co-rotating

equilibrium has an oval vortex patch pointing towards the centre of rotation. There

exists an unstable stagnation point between the vortex patch and the point vortex

and two stable stagnation points above and below. The opposite-signed equilibrium

has the vortex patch flatten against the point vortex with one stable stagnation point

on the opposite side of the rotating pair to the origin and two unstable stagnation

points on two sides.

2.3 ‘m + 1’ point vortex - vortex patch

equilibria

Now consider equilibria in which a central finite area vortex patch with vorticity

ωc is surrounded by m identical point vortices of strength Γs (see Figure 2.3(a)).

Hereafter this equilibrium type is called ‘m + 1’ point vortex - vortex patch equi-

libria. Symmetry considerations dictate that the central patch must have m-fold

symmetry. There are 5 parameters in this problem: two characteristic radii of the

central patch R1, RN+1, the radial distance b of the point vortices to the origin, ωc

(or the total circulation of the patch Γc) and Γs, the circulation of the satellite point

vortices. Prescribing four of them uniquely defines an equilibrium. Two modified

WOZ methods have been used for computation of the equilibria and are briefly de-

scribed below. One routine seeks convergent solutions with prescribed R1 = a1, b,

ωc, Γs, the other prescribes R1 = a1, RN+1 = a2, b, ωc. For all the computations, at
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Figure 2.3: Schematic diagram of (a) ‘3+1’ point vortex - vortex patch equilibria, (b)
‘3+1’ multipolar vortex equilibria along with their boundary points discretizations
and parameters for numerical considerations.

least 300 discretized boundary points have been used on each symmetric section of

the individual patch.

To find the convergent solution uniquely defined by R1, b, ωc,Γs, the boundary

points on a 1/m section of the central patch needs to be considered using the pro-

cedure described in Section 2.2.1 i.e. the boundary points Rk for 1 ≤ k ≤ 2N + 1 in

Figure 2.3(a) where R1 = R2N+1 = a1 (due to symmetry) are prescribed. A circular

patch is used to initialise the central patch for computation. The rotational velocity

Ω cannot be updated using (2.15) since R1 = R2N+1. Instead, it is updated using

the boundary condition that the point vortex is fixed in the rotating frame:

u
(
ωc,Γs, b, x

(n)
k , y

(n)
k

)
+ Ω(n+1)b = 0,

or Ω(n+1) = u
(
ωc,Γs, b, x

(n)
k , y

(n)
k

)
/b, (2.18)

where u is the velocity at the point vortex and
(
x

(n)
k , y

(n)
k

)
are the boundary points

at the n-th iteration. The procedure now follows that of Section 2.2.1.

An alternative is to find a convergent solution by prescribing parameters R1,

RN+1, b, ωc. This means the strength of satellite point vortices Γs needs to be
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determined as part of the solution. The initial profile for central patch to initialise

computation is

R =
1

2
(a1 + a2) +

1

2
(a1 − a2) cos(m(θ + π/2)). (2.19)

so that θ = 0 gives R1 = a1 and θ = π/m gives RN+1 = a2. The boundary points that

needs to be updated are Rk for 2 ≤ k ≤ N . At the n-th iteration with boundary

points
(
x

(n)
k , y

(n)
k

)
, the boundary condition from (2.15) and (2.18) give two linear

equations for Ω and Γs. The velocities are split into two parts: a contribution from

the central patch and a contribution from point vortices as follows

ωc

N∑
k=1

[
u

(cc)
k+1/2∆y

(n)
k − v

(cc)
k+1/2∆x

(n)
k

]
+

Γ
(n+1)
s

2π

N∑
k=1

[
u

(cp)
k+1/2∆y

(n)
k − v

(cp)
k+1/2∆x

(n)
k

]
+

Ω(n+1)

2

(
R2
N+1 −R2

1

)
= 0,

ωcu
(pc) +

Γ
(n+1)
s

2π
u(pp) + Ω(n+1)b = 0,

(2.20)

where u
(cc)
k+1/2 is the velocity on the central patch boundary points induced by the

central patch of unit strength and u
(cp)
k+1/2 is the velocity on the central patch due to

the surrounding point vortices of unit strength, u(pc) is the velocity at the point vortex

induced by unit strength central patch and u(pp) is the velocity owing to the other

point vortices. The coupled linear equations (2.20) are solved to find Ω(n+1),Γ
(n+1)
s

enabling Fk+1/2 to be found. The rest follows from Section 2.2.1.
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2.3.1 Summary of numerical results and some ob-

servations

These two numerical routines have been cross-checked and found to agree with

each other. Fixing the two characteristic radii R1, RN+1 of the central patch while

relaxing the constraint on Γs reveals a family of solutions with a limiting state central

patch. Figure 2.4 shows families of equilibria obtained by prescribing R1, RN+1 with

values a1, a2 for various aspect ratios a2/a1. All the solutions are normalised so that

the satellite point vortices have unit strength and are unit distance from the origin

i.e. Γs = 1, b = 1. The circulation ratio of the central patch to point vortices is

denoted as α = Γc/Γs. There are two distinct families of solutions: the equilibria with

a2/a1 > 1 have corresponding α < 0 (i.e. central patch and satellite patches have

opposite-signed circulation), while those with a2/a1 < 1 have corresponding α > 0

(same-signed circulation). The opposite-signed (α < 0) equilibria have the boundary

of the central patch flatten on the side nearest surrounding point vortices as shown in

Figure 2.4(a,b,c), while same-signed (α > 0) equilibria have the boundary of central

patch pointing towards each of the surrounding point vortices as shown in Figure

2.4(d,e,f).

Solution families are computed and limiting states approached by increasing or

decreasing the a2/a1 ratio. In the α > 0 family it is clear that the limiting states

acquire corners on the central patch boundary when a2/a1 is decreased to a minimum

as shown in Figure 2.4(d,e,f), and in the α < 0 family limiting states are approached

when a2/a1 is increased to a maximum as shown in Figure 2.5. A clear indication of

the occurrence of a limiting states is when increasing or decreasing the aspect ratio

a2/a1, the stagnation points of the flow (not shown) found on the lines of symmetry

of the central patch meet the boundary. This means in Figure 2.4(d,e,f) the limiting

states have stagnation points on the corners for α > 0 equilibria, while the limiting
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Figure 2.4: Families of solutions of normalised (i.e b = 1,Γs = 1) ‘m + 1’ point
vortex - vortex patch equilibria with 3, 4, 5-fold symmetry. (a,b,c) shows opposite-
signed equilibria (α < 0) with solutions corresponding to (a) a1 = 0.3 with values
of a2 from a1 increasing to 0.541. (b) a1 = 0.4 with values of a2 from a1 increasing
to 0.524. (c) a1 = 0.6 with values of a2 from a1 increasing to 0.814. (d,e,f) shows
same-signed equilibria (α > 0) with solutions corresponding to (d) a1 = 0.5 with
values of a2 from a1 decreasing to 0.285. (e) a1 = 0.5 with values of a2 from a1

decreasing to 0.34. (f) a1 = 0.5 with values of a2 from a1 decreasing to 0.375.

Figure 2.5: Families of solutions of normalised opposite-signed ‘m + 1’ point vortex
-vortex patch equilibria (α < 0) with 3,4,5-fold symmetry. Solutions correspond to
(a) ‘3+1’ equilibria having a1 = 0.4 with values of a2 from a1 up to 0.94. (b) ‘4+1’
equilibria having a1 = 0.6 with values of a2 from a1 up to 1.05. (c)‘5+1’ equilibria
having a1 = 0.7 with values of a2 from a1 up to 1.05.
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Figure 2.6: Plots of inverse circulation ratio 1/α against a2/a1 for complete fami-
lies of solutions with 3,4,5-fold symmetry. (a) ‘3+1’ solutions with a1 = 0.4. (b)
‘4+1’ solutions with a1 = 0.6. (c) ‘5+1’ solutions with a1 = 0.7. Minimum a2/a1

corresponds to same-signed limiting equilibria with corners and the maximum a2/a1

corresponds opposite-signed limiting equilibria with tips.

states for α < 0 equilibria, as shown in Figure 2.5, have stagnation points at the

tips of central patch. To illustrate the complete solution for the families with given

choice of a1, the inverse circulation ratio 1/α is plotted against a2/a1 in Figure

2.6. The inverse circulation ratio changes sign when the aspect ratio a2/a1 = 1 i.e. a

circular patch, and the satellite vertices have zero strength. Note also that increasing

the number of satellite point vortices gives shorter range of solutions for a2/a1 but

supports a larger central patch. It is expected that when m → ∞ the equilibrium

must have circular central patch. As a1 → 0 i.e a smaller central patch, equilibria

with an infinite range of circulation ratios −∞ ≤ α ≤ ∞ is recovered as in the ‘m+1’

point vortex equilibria in Morikawa and Swenson (1971).
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Figure 2.7: Comparisons of numerically computed limiting state opposite-signed
‘3+1’ equilibrium and the exact limiting state solution. (a) Absolute velocity profile
on 1/(2m) section of the central patch boundary of the numerically produced equilib-
rium in rotating frame. (b) Outer central patch corresponds to numerically produced
limiting state for prescribed a1 = 0.4, a2 = 0.94 giving α = −1.19 and inner central
patch corresponds to exact solution in Crowdy (2002) having cusps with parameters
a1 = 0.085, a2 = 0.261, α = −0.0149.

2.3.2 Discussion of limiting states of normalised

solutions

The local expansion of the streamfunction in Overman (1986) leads to the conclu-

sion that limiting state m-fold rotating vortex equilibria must have non-continuous

tangent jumps of 90 degree (corners) on its boundary, but it does not rule out the

possibility of a cusp type limiting state in other scenarios involving the presence

of background flows, possibly due to other vortex patches. As found here, limiting

corner-like equilibria arise in same-signed solution families, and limiting states with

tip-like central patch arise in the opposite-signed solution families. For opposite-

signed equilibria, there exist analytical results from Burbea (1981) and Crowdy

(2002) with limiting states having cusps, these being the equivalent of the tips of

normalised solutions presented here. These solutions either have surrounding point

vortices on the ‘flat’ side of central patch (see Crowdy (2002)) as in the numerical

solutions presented here or involve a patch embedded in a straining field that pro-
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vides an equivalent effect in Burbea (1981). They both share the property that the

tangential and normal velocities on the patch boundary are identically zero when

viewed in the rotating frame, and the equilibria have steady rotational speed of ex-

actly ωc/2. The exact solutions from Crowdy (2002) with surrounding point vortices

lie outside the range of solutions that are capable of being computed by the numeri-

cal routine used here. In Figure 2.7(a) the absolute velocity in the rotating frame for

a numerically computed ‘3+1’ limiting state opposite-signed equilibrium is plotted

against θ for the section of central patch boundary points defined by R1 to RN+1

as in Figure 2.3(a). The patch boundary attains the maximum absolute velocity at

R1 and gradually decreases towards zero at the tips as shown in Figure 2.7(a). In

contrast the exact analytical solution from Crowdy (2002) has zero velocity profile

for all θ. Figure 2.7(b) plots the numerically produced opposite-signed ‘3+1’ limit-

ing state solution and the exact analytical solution in Crowdy (2002), scaled so that

the point vortices coincide. This indicates the exact analytical solution is a special

member of the opposite-signed family of solutions.

2.3.3 Linear stability analysis

The linear stability of both m-polygon point vortex equilibria (m identical point

vortices arrange at the vertices of m-gon) and its finite-area analogous m-polygon

co-rotating vortex patch equilibria (i.e. with the surrounding point vortices replaced

by patches whose shape is numerically computed) have been thoroughly studied by

Dritschel (1986). It is well known that m-polygon point vortex equilibria are linearly

stable if m ≤ 7 and unstable for m ≥ 8. This mode of instability for m ≥ 8 will be

referred to as ‘circular instability’. If a central vortex is added, then linear stability

analysis of ‘m+ 1’ point vortex equilibria by Morikawa and Swenson (1971) with the

satellite point vortices with unit distance from the central patch, reveals stability
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Figure 2.8: Max over i, i = 1, 2, . . . ,M the absolute real part of eigenvalues Re(|σ|)
plotted against values of a2 for a family of equilibria with a1 = 0.4 fixed. (a) Same-
signed equilibria with a2 < a1. The thick line is for m = 5 case. (b) Opposite-signed
equilibria with a2 > a1.

regions within which the configurations are Liapunov stable:

m = 3, −0.5 < α < 1,

m = 4, −0.5 < α < 2.25,

m = 5, −0.5 < α < 4,

m = 6, −0.25 < α < 6.25. (2.21)

There are two instability mechanisms described in Morikawa and Swenson (1971)

(i) central point vortex instability, where the location of the central point vortex

is unstable if α is below the lower negative threshold, and (ii) circular instability

affecting the surrounding m point vortices if α is above the upper positive threshold.

The presence of same-signed central point vortex is shown to stabilize the m-polygon

point vortex equilibria in Morikawa and Swenson (1971).

To study the effect of having a finite area central patch in the ‘m + 1’ equilib-

ria, consider a perturbation on the central patch boundary while keeping the point

vortices fixed. A numerical method from Dritschel (1985) is used, adapted here to

include surrounding point vortices. A brief description is given here and more details
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will be provided in Chapter 3. Consider a perturbed central patch boundary

r(θ) = r0(θ) + r̂(θ)eσt, (2.22)

where r0 is the unperturbed central patch boundary in an ‘m + 1’ equilibrium, the

second term is the small perturbation (r̂ � r0) to the boundary which is in the form

of normal mode. The real part of σ is the growth rate and the imaginary part is the

frequency of the boundary disturbance. The form of r̂(θ) is expressed as

r̂(θ) = r0(θ)
M∑
i=1

Ciφi(θ), (2.23)

where φi are the orthonormal functions

π
1
2φ =

(
1√
2
, cos θ, . . . , cos(Pθ), sin θ, . . . , sin(Pθ)

)
. (2.24)

Hence M = 2P + 1 and Ci are the coefficients to be determined. The points on the

perturbed boundary move with local fluid velocity

∂r

∂t
+
uθ
r

∂r

∂θ
= ur, (2.25)

where uθ, ur are the tangential and radial velocity on the patch boundary in the rotat-

ing frame with the contributions of fixed point satellite vortices taken into account.

Inserting (2.22) into (2.25) gives

σr̂ − uθ0
r2

0

dr0

dθ
r̂ +

uθ0
r0

dr̂

dθ
+

1

r0

dr0

dθ
ûθ = ûr, (2.26)

where uθ0 is the unperturbed tangential velocity and ûθ, ûr are the perturbation ve-

locities. Using the linearised velocity equation (2.26) and Galerkin method requiring
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that ˆ 2π

0

ε(θ′)φi(θ
′)dθ′ = 0, i = 1, 2, . . . ,M, (2.27)

this leads to an eigenvalue problem

σC = AC. (2.28)

where C = (C1, C2, . . . , CM) and A is a real M × M matrix. Here M = 201,

equation (2.28) can be used to find σi, i = 1, 2, . . . ,M. The maximum growth rate,

max(Re(σi)), i = 1, 2, . . . ,M is plotted against values of a2 in Figure 2.8 for nor-

malised solutions of ‘m+1’ point vortex - vortex patch equilibria with fixed a1 = 0.4.

Figure 2.8(a) plots the maximum growth rate for same-signed equilibria and Figure

2.8(b) for opposite-signed equilibria. The vertical lines in Figure 2.8(a,b) indicate

the lower and upper limit of a2 beyond which no equilibria are found. Recall also

that a2 < a1 corresponds to same-signed equilibria and a2 > a1 corresponds to

opposite-signed equilibria.

When |a2−a1| is small, the central patch is near circular and the absolute relative

circulation ratio |α| is large then the central patch is linearly stable. On the other

hand, when a2 − a1 approaches the upper and lower limit so that central patch is

relatively weak (|α| small) and has distinct non-circular boundary or develops cor-

ners, tips as shown in Figures 2.4 and 2.5, then the central patch is linearly unstable.

The kinks in the growth rate of the instability of the same-signed solution region

in Figure 2.8(a) indicates the transition from one instability mechanism to another.

This is especially evident for case m = 5 (i.e ‘5+1’ equilibria) shown by the thick line

where a small linear stable region resides in-between two separate linearly unstable

regions. The possible different mechanisms are illustrated later when discussing the

time-dependent evolution. The opposite-signed equilibria have only one linear insta-

bility region which indicates these are more stable structures than their same-signed
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counterparts. Figure 2.8(a,b) also reveal that same-signed equilibria have generally

smaller linearly stable region than opposite-signed equilibria. Increasing the number

of satellite point vortices makes the central patch more stable for both same and

opposite-signed equilibria. However, increasing the number of satellite point vortices

will eventually bring in the circular instability in which the polygonally arranged

satellite vortices become unstable (see Morikawa and Swenson (1971)).

2.4 ‘m+1’ multipolar vortex equilibria

Now consider the ‘m+ 1’ multipolar vortex equilibria in which a central patch is

surrounded by m identical satellite patches (see Figure 2.3(b)). This configuration

has one degree of freedom more than the ‘m + 1’ point vortex - vortex patch equi-

libria: two characteristic radii Rc
1, R

c
N+1 for the central patch, two boundary points

corresponding to Rs
1, R

s
P+1 for the satellite patches and their respective vorticities

ωc, ωs (or their circulations Γc,Γs). Here superscripts and subscripts c, s refers to

variables for central patch and satellite patches. Symmetry considerations dictate

the central patch must have m-fold symmetry and the satellite patches having mir-

ror symmetry, so only discretized points on fundamental sectors of the vortex patch

boundaries need be considered in the numerical computation. Let N + 1 be the

number of points on a 1/2m section of the central patch and P + 1 be the number of

points on one half of the symmetric boundary of a satellite patch. These boundaries

are discretized relative to the ‘centre’ of individual patches with evenly spaced θ as

in Section 2.2.1.

As in the case of ‘m+1’ point vortex - vortex patch equilibria there exist two dis-

tinct families of solutions: one with a central patch having opposite-signed vorticity

to the satellite patches, the other with all patches having the same-signed vortic-

ity. Previous results in Polvani and Carton (1990) and Morel and Carton (1994)
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Figure 2.9: Family of solutions of same-signed multipolar vortex equilibria with 3,4,5-
fold symmetry. For (a,b,c) the families have a1 = 0.2, b2 = 1, ωc = 1, ωs = 1 with
decreasing values of b1 from 0.9, so that satellite patches increase in size towards
limiting states. (a) Limiting value b1 = 0.316. (b) Limiting value b1 = 0.32. (c)
Limiting value b1 = 0.314. For (d,e,f), the families have a1 = 0.4, b1 = 0.6, b2 =
1, ωc = 1 with decreasing values of α corresponding to weaker central patch and a
boundary tending to limiting states with corners. (d) α from 7 to a limiting value
0.75. (e) α from 7.5 to a limiting value 0.8. (f) α from 7.5 to a limiting value 0.8.
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exist for opposite-signed multipolar vortex equilibria for the special case of total

total zero circulation. The same-signed multipolar vortex equilibria obtained here

are new, as are the opposite-signed equilibria with non-zero total circulation. To-

gether they give a complete class of ‘m + 1’ multipolar vortex equilibria. Different

modified WOZ methods have been used here for computations: one approach pre-

scribes a1, b1, b2, ωc, ωs (see Figure 2.3) as in Polvani and Carton (1990) and Morel

and Carton (1994); another prescribes a1, a2, b2, ωc, ωs (or the circulations Γc,Γs in

place of their strengths). This latter approach prescribes two characteristic radii of

the central patch while relaxing the constraint on the inner boundary point b1 of

satellite patches. A further approach employed here prescribes a1, a2, b1, b2, ωc (or

α the circulation ratio) and has proved effective in finding new finite area vortex

equilibria. These different methods have been crossed-check and found to agree with

each other.

Equilibria sought by prescribing a1, a2, b1, b2, ωc means that ωs has to be deter-

mined. The central and satellite patches are discretized with boundary points Rc
k,

2 ≤ k ≤ N , and Rs
k, 2 ≤ k ≤ P , respectively, such that boundary points are evenly

spaced θ in polar coordinates. Rc
1, R

c
N+1, R

s
1, R

s
P+1 are fixed. These radii are defined

relative to the relevant patch ‘centre’, which is taken to be origin for central patch

and the radial mid point of the satellite patches. An initial boundary profile in the

form of (2.19) is used for the central patch and a circle used for satellite patches.

The corresponding modifications for updating the boundary points is given in Sec-

tion 2.2.1, the difference here being that there are two functions F c
k+1/2 and F s

k+1/2

defined as in (2.13) for two sets of boundary points which are used in (2.14) to up-

date boundary points. In order to find F c
k+1/2 and F s

k+1/2, at the n-th iteration the

vorticity ωs and Ω are updated using boundary conditions (2.15) on two separate

boundaries. These two equations are coupled linear equations in ωs,Ω and, after
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Figure 2.10: Opposite-signed multipolar equilibria computed by prescribing a1, a2,
b2, ωc, ωs defined in Figure 2.3(b), family of solutions corresponds to various values
of a2 with other parameters fixed. (a) ‘3+1’ equilibria with a1 = 0.4, a2 = 0.9, 0.8,
0.7, 0.6, 0.5, 0.45. b2 = 1, ωc = 1, ωs = −4. (b) ‘4+1’ equilibria with a1 = 0.4, a2 =
0.6, 0.55, 0.5, 0.45. b2 = 1, ωc = 1, ωs = −4. (c) ‘5+1’ equilibria with a1 = 0.5, a2 =
0.6, 0.59, 0.58, 0.57, 0.56, 0.55. b2 = 1, ωc = 1, ωs = −3.5

splitting the velocities due to contribution of different patches, they give

ωc

N+1∑
k=1

[u
(cc)
k+1/2∆yck − v

(cc)
k+1/2∆xck] + ωs

N+1∑
k=1

[u
(cs)
k+1/2∆yck − v

(cs)
k+1/2∆xck] =

Ω

2
(a2

1 − a2
2),

ωc

P+1∑
k=1

[u
(sc)
k+1/2∆ysk − v

(sc)
k+1/2∆xsk] + ωs

P+1∑
k=1

[u
(ss)
k+1/2∆ysk − v

(ss)
k+1/2∆xsk] =

Ω

2
(b2

1 − b2
2),

(2.29)

where (xck, y
c
k), (x

s
k, y

s
k) are the boundary points on central patch and satellite patches.

(2.29) is solved for ωs,Ω.

The same procedure can be applied to find equilibria with more than two sets of

identical vortex patches by prescribing two characteristic radial points of each patch

along with vortex strength of one of the patch sets. For example, with 3 sets of

patches in an equilibrium, three sections of boundary points need to be considered

and correspondingly three Fk+1/2 for each boundary must be computed. The equiv-

alence of (2.29) then becomes three linear equations in the vorticity strengths of two

other sets of vortex patches and Ω.
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2.4.1 Numerical results and discussions

The numerical solutions reveal two limiting behaviours for each distinct family

of ‘m+ 1’ multipolar vortex equilibria, dependent on the relative vorticity strengths

of the central patch to the satellite patches. One way to illustrate the limiting be-

haviours is by prescribing the same characteristic radii a1, b1, b2 with various circula-

tion ratios of patches as shown in Figure 2.9(d,e,f) for same-signed ‘m+1’ multipolar

vortex equilibria. In this case the two limiting states are evident by decreasing the

circulation ratio α. When α is large and at its maximum, the central patch is rel-

atively strong hence has near circular shape while the satellite patches have oval

shapes with pointy tips close to the central patch. When α decreases towards a min-

imum, the central patch becomes relatively weak and eventually attains corners on

its boundary while the satellite patches are relatively strong and have near elliptical

shape. Another way to illustrate the limiting behaviour is by varying one character-

istic radius: for example, Figure 2.9(a,b,c) gives equilibria with increasing sizes of

satellite patches by prescribing decreasing values of b1. Similar limiting m-polygon

co-rotating patches as in Figure 2.9(a,b,c) in the absence of central patch have been

computed by Dritschel (1985).

The opposite-signed ‘m + 1’ equilibria are expected to have two limiting be-

haviours, one with satellite patches approaching a limiting state that requires more

sophisticated numerical treatment than the one used here, the other with the cen-

tral patch approaching a limiting state. This is demonstrated in Figure 2.10: for

sufficiently large central patch, the limiting state central patch acquires ‘tips’ on

its boundary. A common feature for opposite-signed equilibria is that the satellite

patches flatten against the central patch as indicated in Figure 2.10.

The streamline plots in Figure 2.11 and Figure 2.12 for multipolar vortex equi-

libria of 3,4,5 symmetries reveal different circulation regions. Figure 2.12 has arrows

added to indicate the flow directions. These streamlines are produced by time ad-
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Figure 2.11: Streamline plots of same-signed multipolar equilibria with the shaded
regions being the vortex patches having same-signed vorticity. (a) ‘3+1’ equilibrium
with a1 = 0.4, b1 = 0.6, b2 = 1, ωc = 1, ωs = 2. (b) ‘4+1’ equilibrium with a1 = 0.4,
b1 = 0.6, b2 = 1, ωc = 1, ωs = 2. (c) ‘3+1’ equilibrium with a1 = 0.4, b1 = 0.6,
b2 = 1, ωc = 1, ωs = 3.077. (d) ‘4+1’ equilibrium with a1 = 0.4, b1 = 0.6, b2 = 1,
ωc = 1, ωs = 3.77.
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(b)(a)

Figure 2.12: Streamline plots of ‘5+1’ same-signed multipolar equilibria with the
shaded regions being the vortex patches having same-signed vorticity. Arrows are
added to indicate direction of flows. (a) a1 = 0.4, b1 = 0.6, b2 = 1, ωc = 1, ωs = 2.
(b) a1 = 0.4, b1 = 0.6, b2 = 1, ωc = 1, ωs = 3.922.

vancing fluid points outside the patches using a standard 4th order Runge-Kutta

scheme. In both example there exists unstable stagnation points between the central

patch and the satellite patches due to the opposing flows produced by them. When

the central patch tends to its limiting state, these stagnation points meet the corners

of the central patch, see Figure 2.12(b). When the satellite patches tend to their

limiting states, these stagnation points meet the tips of the satellite patches (not

shown). Stable stagnation points are also evident in Figure 2.12. New equilibria

can, in principle, be computed by ‘growing’ sets of satellite patches of either positive

or negative vorticity at such stable stagnation points. Indeed, the ‘m+ 1’ multipolar

vortex equilibria themselves can be seen as the result of ‘growing’ a central patch of

either sign from existing ‘m’-polygonal co-rotating equilibria. Numerical computa-

tions of new equilibria by placing point vortices at the stable stagnation points of a

‘m+ 1’ multipolar vortex equilibria has been done but not included here.
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2.4.2 Fully non-linear evolutions

In this section the time-dependent behaviour of the equilibria is investigated using

contour surgery (see Dritschel (1988)) that allows vortex filamentation and merging.

This enables another way to examine the stability of the equilibria computed here.

For all evolutions hereafter, the cut-off scale used in contour surgery that allows

breaking and merging of patches is chosen to be µ = 0.1 and time step of integration

is chosen to be dt = 0.05.

A simple configuration involving patches is the ‘2+1’ equilibrium families. First

note that in the ‘2+1’ equilibria, all the patches have their centre of vorticity on

a straight line as in Figure 2.13. These ‘2+1’ equilibria are generally unstable: an

unstable same-signed ‘2+1’ equilibria leads to central patch being drawn towards

one of the satellite patches, and unstable opposite-signed ‘2+1’ equilibria leads to

the central patch pairing up with one of satellite patches to form a self-propagating

dipole which propagates away leaving the remaining patch behind. Figure 2.13(a)

shows evolution of an opposite-signed ‘2+1’ equilibrium in which the central patch

(the dashed patch) is displaced a distance 0.1 towards upper satellite patch, the

central patch pair up with upper satellite patch and propagate away leaving the

unpaired satellite vortex behind. Figure 2.13(b) shows evolution of a same-signed

‘2+1’ equilibrium in which the central patch (the dashed patch) is again displaced

0.1 towards upper satellite patch, the central patch is drawn towards upper satellite

patch and this satellite patch is thrown towards its counter-part patch which then

merges into one single patch that subsequently form a rotating pair.

Now consider ‘m + 1’ multipolar vortex equilibria when the central patch is at,

or near, its limiting state as in Figure 2.14. Figure 2.14(a) shows the evolution

of unstable opposite-signed ‘3+1’ equilibria in which the tips send off filaments of

vorticity that wrap around the satellite patches, and the central patch eventually

gets torn apart. This instability is a result of the flow field being strongest between
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(b)
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t=0

t=0
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t=30 t=95 t=150

Figure 2.13: (a) Evolution of perturbed opposite-signed ‘2+1’ equilibrium with
a1 = 0.15, b1 = 0.7, b2 = 1, ωc = 1, ωp = −1. (b) Evolution of same-signed ‘2+1’
equilibrium with prescribed a1 = 0.15, b1 = 0.7, b2 = 1, ωc = 2.5, ωp = 1. The
dashed lines indicates the displaced central patch.

(a)

(b)

t=0 t=20 t=40 t=60

t=0 t=25 t=50 t=70

Figure 2.14: (a) Evolution of opposite-signed ‘3+1’ equilibrium with a1 = 0.3, a2 =
0.67, b2 = 1, ωc = 1, ωs = −4. (b) Evolution of same-signed ‘4+1’ equilibrium with
prescribed a1 = 0.4, b1 = 0.53, b2 = 1, ωc = 1, ωs = 2.5.
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Figure 2.15: (a) Evolution of opposite-signed ‘6+1’ equilibrium with a1 = 0.3, b1 =
0.7, b2 = 1, ωc = 2, ωs = −1. (b) Evolution of same-signed ‘5+1’ equilibrium with
a1 = 0.3, b1 = 0.53, b2 = 1, ωc = 1, ωs = 1.1.

the central patch and satellite patches: a small (linear) perturbation of the central

patch boundary is expected to be swept towards the tips resulting in filamentation

there. Unstable configurations with smooth boundaries for opposite-signed equilibria

for the special case of zero total circulation have been thoroughly studied by Morel

and Carton (1994). Figure 2.14(b) shows the evolution of unstable same-signed ‘4+1’

equilibrium in which the instability is manifested through the corners being drawn

towards satellite patches. Again this is the result of central patch having largest

velocity on its ‘flat’ side and smallest at corners, an instability mechanism related

to the linear stability result in Figure 2.8(a) on the left of the ‘kinks’. The right of

the ‘kinks’ of 2.8(a) represents of different instability mechanism: it corresponds to

equilibria with a smoother central patch for which an unstable distortion of central

patch that tears it apart before any filamentation process.

The other limiting behaviour is when the central patch is relatively strong com-
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Figure 2.16: Schematic diagram of ‘3+3’ nested polygons with the parameters that
defines an equilibrium. (a) Staggered, nested polygons which are out-of-phase by
angle π/3. (b) Aligned, nested polygons. The vorticities ωa and ωb can be either
same-signed or opposite-signed.

pared to satellite patches (|α| large) i.e. the central patch is near circular. In

the opposite-signed equilibrium the satellite patches flatten against central patch

as shown in Figure 2.15(a), while in same-signed equilibrium the satellite patches

look tear-dropped with tips pointing towards origin as shown in Figure 2.15(b). The

investigation of analogous ‘m+ 1’ point vortex equilibria by Morikawa and Swenson

(1971) concludes that opposite-signed ‘m + 1’ point vortex equilibria with a strong

central vortex leads to the surrounding m-polygon satellite point vortices becoming

unstable. This is also evident for finite area patches e.g. Figure 2.15(a) For same-

signed equilibria the satellite patches are also unstable, undergoing filamentation

from the tips of satellite patches as shown in Figure 2.15(b). The shed filaments

shield the central patch while satellite patches remain but are much reduced in area.
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2.5 Nested polygonal multipolar vortex

equilibria

An extension to steady rotating m-polygon point vortex equilibria, nested polyg-

onal equilibria, have been found in Aref et al. (2002) which consists of m1 identical

point vortices of circulation Γ1 centred at the vertices of a regular polygon whose

vertices reside on circle of radius R1 and m2 identical point vortices of circulation Γ2

centred at the vertices of a regular polygon whose vertices reside on circle of radius

R2. It has been shown in Aref et al. (2002) that for such equilibria to exist, m1

must be equal to m2 (say m1 = m2 = m), and the polygons can either be in align-

ment with each other or out-of-phase (referred to here as ‘staggered’) by angle π/m.

Figure 2.16 gives a schematic diagram of the analogous finite area 3-fold symmetric

nested-polygons that are uniquely defined by five of the parameters of characteris-

tic radii a1, a2, b1, b2 and vorticities ωa, ωb (or, equivalently, their circulations Γa,Γb).

Figure 2.16(a) gives schematic diagram for staggered nested polygonal equilibria

(hereafter staggered ‘m + m’ equilibria) and Figure 2.16(b) gives a schematic di-

agram for polygonal equilibria in alignment (hereafter aligned ‘m + m’ equilibria)

where m is the number of patches in each polygon. Note all the vortex patches

in consideration have reflectional symmetry so only discretized boundary points on

half of the patch boundaries needs to be considered in computations. The numerical

routine for obtaining equilibria by prescribing two characteristic radii for each set of

identical patches (a1, a2, b1, b2 in this case) and strength of one set of patches, say

ωa, is given at the beginning of Section 2.4.

For either aligned or staggered ‘m+m’ equilibria, there again exists two distinct

families of solutions: opposite-signed equilibria (α < 0 where α = Γa/Γb the total

circulation ratio), or same-signed equilibria (α > 0). The m = 2, 3 cases are given

here for illustration.
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2.5.1 Aligned ‘m +m’ equilibria

Families of solutions of same-signed (α > 0) aligned ‘m+m’ equilibria are given in

Figure 2.17 for m = 2, 3. Two limiting behaviours are revealed by increasing the sizes

of polygonal patches: Figure 2.17(a) shows the limiting states with the outer set of

patches tending towards tear-dropped shapes pointing towards the origin and Figure

2.17(b) shows the limiting state in which the inner set of patches touch at the origin.

Figure 2.17(c,d) gives the family solutions for ‘3+3’ equilibria where Figure 2.17(c)

shows the limiting state where inner set of patches become tear-dropped and pointing

outwards towards outer polygon patches. Figure 2.17(d) shows limiting state outer

set of patches pointing towards the origin. Figure 2.17(e) shows a streamline plot

for a ‘3+3’ equilibrium. There exists unstable stagnation points between the aligned

patches indicating existence of a possible instability mechanism.

In the opposite-signed case, only a limited range of solutions have been found for

aligned equilibria (for m = 2, 3 cases) and none for m ≥ 4. Figure 2.18(a,b) gives

examples of ‘2+2’ and ‘3+3’ equilibrium for illustration, as expected the opposite-

signed patches flatten against each other. Figure 2.18(e) plots the streamlines for an

opposite-signed aligned ‘3+3’ equilibrium.

2.5.2 Staggered ‘m +m’ equilibria

The family of solutions with same-signed, staggered ‘m+m’ equilibria are given

in Figure 2.19 for m = 2, 3 in which limiting states are approached by increasing

the sizes of one set of the patches. The ‘2+2’ equilibria exhibit different limiting

state in comparison to ‘3+3’ equilibria: Figure 2.19(a) shows the limiting state ‘2+2’

equilibria touching at origin, while Figure 2.19(b) shows the limiting state ‘3+3’

having flattened shapes. One can think of these structures as extension to co-rotating

vortex pairs and 3-polygon rotating structure by ‘growing’ extra set of patches at
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Figure 2.17: Same-signed (α > 0), aligned, ‘m+m’ equilibria for m = 2, 3. (a) ‘2+2’
equilibria with a1 = 0.9, 0.8, 0.7, 0.65, 0.63, 0.61. a2 = 1, b1 = 0.2, b2 = 0.4, ωa = 1
with ωb = 0.268, 1.24, 2.97, 3.79, 3.98, 4.05. (b) ‘2+2’ equilibria with a1 = 0.8,
a2 = 1, b1 = 0.3, 0.2, 0.1, 0.05, 0.03, 0.01, 0.005. b2 = 0.4, ωa = 1 with ωb = 9.68,
1.24, 0.37, 0.26, 0.23, 0.23, 0.23. (c) ‘3+3’ equilibria with a1 = 0.8, a2 = 1, b1 = 0.1,
b2 = 0.2, 0.3, 0.4, 0.48. ωa = 1 with ωb = 0.22, 0.15, 0.16, 0.18. (d) ‘3+3’ equilibria
with a1 = 0.9, 0.85, 0.8, 0.75, 0.7, 0.68. a2 = 1, b1 = 0.3, b2 = 0.5, ωa = 1 with
ωb = 0.27, 0.68, 1.32, 2.15, 2.88, 2.96. (e) Streamlines for a ‘3+3’ equilibrium with
a1 = 0.65, a2 = 1, b1 = 0.2, b2 = 0.55, ωa = 1, ωb = 1.16. The shaded regions are the
vortex patches having same-signed vorticity. Arrows indicate the direction of flow
field.
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Figure 2.18: Opposite-signed (α < 0), aligned, ‘m + m’ equilibria. (a) ‘2+2’ equi-
librium with a1 = 0.85, a2 = 1.05, b1 = 0.48, b2 = 0.6, ωa = 1, ωb = −10.29. (b)
‘3+3’ equilibrium with a1 = 0.85, a2 = 1, b1 = 0.48, b2 = 0.6, ωa = 1, ωb = −9.72.
(c) Streamlines for the ‘3+3’ equilibrium in (b) with shaded regions being the vortex
patches.

the stable stagnation points viewed in rotating frame. The idea of growing vortex

patches at stagnation points to generate new, exact, equilibria has been used before

by Crowdy and Marshall (2004). Streamlines in Figure 2.19(e) gives details of the

flow field in rotating frame for a ‘3+3’ equilibrium.

The opposite-signed staggered ‘m + m’ equilibria for m = 2, 3 cases have two

distinct limiting behaviours as shown in Figure 2.20. Scallop-like near limiting states

of the outer set of patches are given in the family in Figure 2.20(a,c). The limiting

state of inner set of patches in a ‘2+2’ equilibrium touch at origin as shown in Figure

2.20(b), while ‘3+3’ equilibria have long and thin inner set of patches as shown in

Figure 2.20(d). Streamlines in Figure 2.20(e) gives details of the flow field in rotating

frame for a ‘3+3’ equilibrium.
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Figure 2.19: Same-signed (α > 0) staggered ‘m + m’ equilibria. (a) ‘2+2’ equilibria
for a1 = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01. a2 = 1, b1 = 0.6, b2 = 0.8,
ωa = 1 with ωb = 0.53, 1.75, 3.31, 4.98, 6.58, 7.91, 8.59, 8.09, 6.37, 5.43, 5.10. (b)
‘3+3’ equilibria for a1 = 0.9, 0.8, 0.7, 0.6, 0.55. a2 = 1, b1 = 0.7, b2 = 0.9, ωa = 1
with ωb = 0.31, 1.13, 2.41, 4.22, 5.50. (c) Streamlines for a ‘3+3’ equilibrium with
a1 = 0.55, a2 = 1, b1 = 0.6, b2 = 0.7 giving ωb = 24.6. All shaded region are vortex
patches having same-signed vorticity.
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Figure 2.20: Opposite-signed (α < 0) staggered ‘m + m’ equilibria. (a) ‘2+2’ equi-
libria for a1 = 0.9, 0.8, 0.7, 0.6, 0.5, 0.45. a2 = 1, b1 = 0.3, b2 = 0.5, ωa = −1 with
ωb = 0.28, 1.47, 4.74, 14.22, 47.93, 103.77. (b) ‘2+2’ equilibria for a1 = 0.8, a2 = 1,
b1 = 0.4, 0.3, 0.2, 0.1, 0.05, 0.01. b2 = 0.5, ωa = −1 with ωb = 11.73, 1.47, 0.42,
0.18, 0.14, 0.12. (c) ‘3+3’ equilibria for a1 = 0.9, 0.8, 0.7, 0.6, 0.55, 0.52. a2 = 1,
b1 = 0.4, b2 = 0.6, ωa = −1 with ωb = 0.11, 0.70, 2.97, 14.78, 45.13, 154.89. (d)
‘3+3’ equilibria for a1 = 0.8, a2 = 1, b1 = 0.2, 0.22, 0.24, 0.26, 0.28, 0.30, b2 = 0.6,
0.55, 0.5, 0.46, 0.42, 0.4, ωa = −1 with ωb = 0.07, 0.07, 0.07, 0.07, 0.09, 0.15. (e)
Streamlines plot for a ‘3+3’ equilibrium for a1 = 0.6, a2 = 1, b1 = 0.4, b2 = 0.6,
ωa = 1 with ωb = −14.78. Shaded regions are vortex patches.
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(b)

(a)

t=0

t=0

t=40 t=55 t=90

t=50 t=70 t=100

Figure 2.21: Evolution of same-signed aligned ‘2+2’ and ’3+3’ equilibrium. (a) ‘2+2’
equilibrium with a1 = 0.6, a2 = 1, b1 = 0.1, b2 = 0.45, ωa = 1 giving convergent
ωb = 1.55. (b) ‘3+3’ equilibrium with a1 = 0.65, a2 = 1, b1 = 0.2, b2 = 0.53 giving
convergent ωb = 1.21.

2.5.3 Fully non-linear evolutions

Stability of the nested polygonal equilibria is explored using time-dependent sim-

ulation for the following scenarios: when either set of polygonal patches are at, or

near, their limiting states and when the two sets of patches are ‘comparable’ in sizes

and strengths in the sense that they have boundary shapes not too different from

circular or ellipse. A summary of some of the general findings is given below:

1. The nested polygonal equilibria are generally less stable than the analogous

‘m + 1’ multipolar vortex equilibria. Indeed, in some time-dependent simula-

tions they have been observed to evolve into multipolar equilibria.

2. The ‘2+2’ equilibria are particularly unstable for both aligned and staggered

nested polygonal equilibria, ‘3+3’ are the most stable equilibria.

3. The aligned ‘m+m’ equilibria of either same-signed vorticity or opposite-signed
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(a)

(b)

t=0

t=0

t=60 t=120 t=180

t=250 t=320 t=420

Figure 2.22: Evolution of same-signed aligned ‘2+2’ and ‘3+3’ equilibrium. (a)
‘2+2’ equilibrium with prescribed a1 = 0.8, a2 = 1, b1 = 0.01, b2 = 0.5, ωa = 1
giving convergent ωb = 0.28. (b) ‘3+3’ equilibrium with a1 = 0.8, a2 = 1, b1 =
0.15, b2 = 0.5, ωa = 1 giving convergent ωb = 0.25.

vorticity are relatively less stable than staggered ‘m+m’ equilibria.

The evolution of same-signed, aligned ‘m + m’ equilibria for m = 2, 3 is shown

in Figure 2.21. In both the m = 2, 3 cases the outer set of patches are drawn

towards the inner set and merge to form a co-rotating pair (m = 2) and a tripolar

(m = 3) rotating structure. However, for equilibria with the inner set of patches

close to origin, as shown in Figure 2.22(a), for a ‘2+2’ equilibrium, they merge into

a central patch. Figure 2.22(b) shows a similar unstable evolution for the ‘3+3’

equilibrium with the inner set of patches merge to form a central patch. When

two sets of patches are of ‘comparable’ size and having boundaries not too different

from circular as shown in Figure 2.23 for a ‘3+3’ equilibrium, the patches drift from

alignment and the inner patches contract towards the origin before returning to

alignment with outer patches after which the inner patches rotates 2π/3 relative to
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t=0 t=200 t=250 t=300

t=400 t=470 t=540 t=620

Figure 2.23: Evolution of same-signed aligned ‘3+3’ equilibrium with b1 = 0.2, b2 =
0.5, a1 = 0.8, a2 = 1, ωa = 1 giving convergent ωb = 1.318. Dashed circle indicates
the radial drift of the inner set of patches.

outer patches. This process occurs twice before the rotating structure is irreversibly

destroyed (t = 620).

Recall, for opposite-signed, aligned ‘m + m’ equilibria, only a limited range of

solutions have been found. An opposite-signed equilibrium generally survives a rel-

atively long time in terms of the turnover time for an individual vortex patch and

are not shown here.

Staggered ‘m + m’ equilibria are relatively more stable than aligned ‘m + m’

equilibria. The same-signed, staggered ‘m + m’ equilibria bear similar characteris-

tics to the ‘2m’-polygon co-rotating equilibria. The ‘2+2’ staggered equilibria is the

most unstable structure. Figure 2.24(a) shows the evolution of same-signed ‘2+2’

equilibrium when one set of polygonal patches, large and close to origin, merge into

a central patch which is then eventually destroyed by the other set of patches. But

‘m+m’ configuration for m ≥ 3 with centres of vorticities of each m of the patches
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t=170 t=200t=185t=0

Figure 2.24: (a) Evolution of same-signed, staggered ‘2+2’ equilibrium with b1 =
0.6, b2 = 0.8, a1 = 0.1, a2 = 1, ωa = 1 with ωb = 6.37.

t=0 t=120 t=160 t=190

t=230 t=290 t=400 t=450

Figure 2.25: Evolution of same-signed staggered ‘4+4’ equilibrium with prescribed
a1 = 0.65, a2 = 1, b1 = 0.6, b2 = 0.8, ωa = 1 giving convergent ωb = 1.95.
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t=0 t=450 t=500 t=530

t=600 t=650 t=700 t=900

Figure 2.26: Evolution of opposite-signed staggered ‘3+3’ equilibrium with b1 =
0.2, b2 = 0.7, a1 = 0.8, a2 = 1, ωa = 1 and ωb = −0.09.

of differing sizes lying on circles not far away from each other prove to be robust

even when one set of the patches are large and close to a limiting state. Figure 2.25

shows the evolution of a same-signed, staggered ‘4+4’ equilibrium. Initially, the two

sets of polygonal patches adjust radially with the smaller size inner patches moving

outwards and large size outer patches contracting inwards such that the overall struc-

ture conserves angular momentum. The large size patches are then drawn outwards

when they get too close to origin in the meantime two polygonal patches rotate π/2

relative to the other. The smaller size patches are then in turn drawn towards origin

while the larger set move further away. After a second, similar, process the larger

patches undergo filamentation which eventually destroys the rotating structure.

The opposite-signed staggered ‘m+m’ equilibria with ‘comparable’ sized patches

are robust. When the outer set of polygonal patches are near the limiting states

with sector-like boundaries as in Figure 2.20(a,c), these structures prove to be very

robust since the sector-like vortex patches are relatively weak in strength hence hold
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firmly at their positions in the rotating structure. Near a limiting state instability

does eventually set-in as shown in Figure 2.26.

2.6 Summary

Two distinct families of solutions have been computed for ‘m + 1’ point vortex

- vortex patch equilibria, i.e. same-signed equilibria and opposite-signed equilibria.

The families have limiting states in which the central patch acquires tips or corners.

Linear stability analysis shows that the central patch is most unstable near these

limiting states.

The ‘m+1’ multipolar vortex equilibria, where finite area satellite patches replace

the point vortices, bear many similar properties of the ‘m+ 1’ point vortex - vortex

patch equilibria. Two extra limiting behaviours exist when the satellite patches

form tips. Time-dependent simulations of these multipolar vortex equilibria show

that opposite-signed equilibria are relatively more stable structures than their same-

signed counterparts. Various forms of instability are evident including filamentation

at tips and corners, vortex pairing to form either same-signed or opposite-signed

(propagating) dipoles. In comparison to the ‘m + 1’ point vortex equilibria, it has

been shown that the finite area of the satellite patches plays an important role in the

stability of vortex equilibria. In a ‘m+ 1’ multipolar vortex equilibrium, a relatively

weak central patch is most susceptible to filamentation and distortion as well as

breaking. Increasing the number of satellite patches suppresses the central patch

instability but introduces circular instability of the satellite patches especially in

opposite-signed equilibria. The circular instability is suppressed in a same-signed

‘m + 1’ multipolar equilibrium due to the opposing flow in-between central and

satellite patches.

The ‘m+m’ nested polygonal equilibria consists of aligned or staggered arrange-
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ment of vortex patches, each having same-signed and opposite-signed solutions. Var-

ious limiting shapes have been found along with their streamlines. These equilibria

are typically less stable than the ‘m + 1’ multipolar equilibria. In some solution

regimes, time-dependent integrations have shown the nested polygonal equilibria

evolve into ‘m + 1’ vortex equilibria. The same-signed aligned polygonal equilibria

are less stable than staggered equilibria, and frequently evolve into m-polygon co-

rotating structures. The opposite-signed aligned ‘m + m’ equilibria have a complex

flow fields and only a limited range of normalised solutions have been found. A typ-

ical unstable mechanism of such equilibria results in opposite-signed vortex patches

pairing up and propagating away from their initial location. The staggered polygo-

nal equilibria are more robust structures. Same-signed staggered ‘m+m’ equilibria

are similar to the 2m-polygonal equilibria. The opposite-signed staggered polygo-

nal equilibria survive for longer times in time-dependent evolution, but those near

limiting states undergo vortex merging, breaking and filamentation.



Chapter 3

Beach vortices of exponential

depth with constant PV

3.1 Introduction

Water waves incident on a beach give rise to long-shore currents where energy

is lost but momentum is transferred. Wave breaking, bottom friction and turbulent

horizontal mixing play an important role in the transport of momentum and sedi-

ment in the surf zone. Vortical structures are frequently observed to arise from bores

and breaking waves that propagate along or off shore. Evidence of such surf zone

eddies is given in Peregrine (1998), including opposite-signed eddies which pair up

to form rip currents. A quantitative measure of vorticity generation by bores is also

presented there. Some theoretical and numerical considerations (see Nadaoka and

Yagi, 1993; Allen et al., 1996; Slinn et al., 1998; Özkan-Haller and Kirby, 1999) show

generation and subsequent concentration of vorticity and its propagation under vari-

ous conditions over barred or uniform sloping beaches. Experimental studies (Sancho

and Svendsen, 1998; Oltman-Shay et al., 1989) also demonstrate the existence and

propagation of eddies.

The standard theoretical studies of beach vortices use ‘radiation stress’ for av-

82
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eraged momentum flux introduced by Longuet-Higgins and Stewart (1964). As the

surf zone is shallow and typical flow speeds are small compared to the gravity wave

speed, the zero Froude number (i.e. rigid lid) approximation is frequently adopted.

Hence the alternative theoretical approach adopted here is to use vorticity distribu-

tion. Kelvin’s circulation theorem means for beach vortices the potential vorticity is

conserved. Monopoles and dipoles in constant depth flow have been thoroughly stud-

ied using time-dependent integrations, in, for example contour dynamics simulations

(Dritschel, 1988). This numerical treatment allows merging, splitting and shedding

of vorticity. Motivated by observations, infinitely long steps have been used as a first

approximation to represent barred beaches. This choice of topography implies piece-

wise constant vorticity enabling direct use of Dristchel’s contour dynamics method.

Johnson et al. (2005) found steadily translating monopoles parallel to step topogra-

phy, and that these structures are stable. The dynamics of dipole structures have

also been considered (see for example Johnson and McDonald, 2004; Hinds et al.,

2007a,b) over the step topography.

The present work investigates the two-dimensional monopolar vortex structures

over an exponential topography. Such a choice enables both analytical and numer-

ical progress since the Green’s function for a point vortex can be found explicitly.

A family of steady states is computed numerically. The linear stability of the vor-

tices is considered and time-dependent integrations presented to demonstrate their

robustness. An asymptotic approximation of near circular beach vortex in small

slope limit has been derived and compared to numerical results. It is clear from

works in Johnson et al. (2005) and Bühler and Jacobson (2001) that there are two

contributions to the dipole motion: the mutual advection of the vortices and the self

advection due to sloping topography. The steady states computed here demonstrate

the competition of these two effects. Section 3.2 gives the background and governing

equations for this problem. Section 3.3 describes the various numerical routine used
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and presents the steady state solutions. Section 3.4 derives an asymptotic approxi-

mation for nearly circular beach vortices in the small slope limit. Section 3.5 gives

the linear stability analysis of the steady states. Section 3.6 presents time-dependent

integrations and a summary of results is given in Section 3.7.

3.2 Background and governing equation

In the rigid-lid limit, volume conservation in the shallow water equations gives

∇ · (Hu) = 0, (3.1)

where H(x, y) is the given, fixed fluid depth. Thus there exists a volume flux stream-

function ψ such that

u = − 1

H

∂ψ

∂y
, v =

1

H

∂ψ

∂x
. (3.2)

The remaining shallow water equation is simply the particle-wise conservation of

potential vorticity (PV)

Dq

Dt
= 0, (3.3)

where, in non-rotating flow, the PV is simply q = ζ/H. Here

ζ = (∇× u) · k = ∇ · (H−1∇ψ), (3.4)

is the vertical component of the vorticities. The advection operator can be written

Dq

Dt
= qt + u · ∇q = qt +H−1∂(ψ, q), (3.5)

where ∂(ψ, q) = ψxqy−ψyqx is the Jacobian. Multiplying (3.5) by H and using (3.1)

leads to

ζt +∇ · (Hqu) = 0 or ∇ · (H−1∇ψt +Hqu) = 0. (3.6)
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Now consider the simplest beach vortex where the PV is constant (say q0) inside

some finite region D (bounded by a curve C) and zero outside D. Then

ζ = ∇ · (H−1∇ψ) =


q0H(x, y), in D,

0, outside D.
(3.7)

The stream-function ψ is thus given by

ψ(x, y) =

ˆ
D
q0H(x′, y′)G(x′, y′, x, y) dx′ dy′, (3.8)

where G is the Green’s function satisfying

∇ · (H−1∇G) = δ(x− x′)δ(y − y′). (3.9)

3.2.1 Exponential bathymetry

Now consider a beach vortex above the x-independent, exponential depth profile

of the form

H(x, y) = H0 exp(2βy), (3.10)

where H0 is the depth at the origin and β the topographic slope. Without loss of

generality, the vortex can be taken as centred at the origin. Appendix A shows that

the Green’s function satisfying (3.9) is

G(x′, y′, x, y) = −H0

2π
exp [β(y + y′)] K0

(
β
√

(x− x′)2 + (y − y′)2
)
. (3.11)

The streamfunction in (3.8) can then be written as

ψ(x, y) = −q0H
2
0

2π

ˆ
D

exp[β(y + 3y′)]K0

(
β
√

(x− x′)2 + (y − y′)2
)

dx′ dy′. (3.12)
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Multiplying both sides by exp(−4βy) gives

exp(−4βy)ψ(x, y) = −q0H
2
0

2π

ˆ
D
F (x− x′, y − y′) dx′ dy′, (3.13)

where

F (x, y) = exp(−3βy)K0

(
β
√
x2 + y2

)
. (3.14)

Thus using Green’s theorem

(
∂x

∂y

)
[exp(−4βy)ψ(x, y)]︸ ︷︷ ︸

P (x,y)

=
q0H

2
0

2π

˛
∂D
F (x− x′, y − y′)

(
dy′

− dx′

)
, (3.15)

introducing P (x, y) = exp(−4βy)ψ(x, y). The derivatives of P are thus simple

boundary integrals which can be easily evaluated. The velocities in the form of

(3.2) are related to the function P (x, y) as


u = − 1

H(x,y)
[exp(4βy)Py + 4βψ(x, y)] = − 1

H0
exp(2βy)Py − 4β

H0
exp(−2βy)ψ,

v = 1
H(x,y)

exp(4βy)Px = 1
H0

exp(2βy)Px.

(3.16)

3.2.2 Conserved quantities

The beach vortices governed by (3.1) and (3.3) have various conserved quantities,

which have been derived in Johnson et al. (2005) and their derivations are included

here. Consider a vorticity distribution that vanishes at sufficiently large distances

and introduce the circulation

Γ =

ˆ
D
ζdxdy =

ˆ
D
qdV, (3.17)
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where the volume element dV = Hdxdy and the area integral here and below is

taken over a finite region containing the non-zero ζ. Since

dΓ

dt
=

ˆ
D
ζtdxdy = −

ˆ
D
∇.(uζ)dxdy = 0, (3.18)

the circulation Γ is a constant of the motion.

The other conserved quantity above arbitrary topography is the total kinetic

energy of the flow

2E =

ˆ
D
H|u|2dxdy =

ˆ
D
H−1|∇ψ|2dxdy

=

ˆ
D
∇ ·
(
ψ

H
∇ψ
)
−∇ ·

(
1

H
∇ψ
)
ψdxdy = −

ˆ
D
ψζdxdy, (3.19)

provided the velocity field vanishes sufficiently rapidly at large distances. Differenti-

ate with respect to t and multiplying (3.6) by ψ gives

2Et = −
ˆ
D
ψζtdxdy

= −
ˆ
D
ψ∇ · (Hqu)dxdy

= −
ˆ
D
∇ · (Hqψu)−Hqu · ∇ψdxdy

= 0. (3.20)

Hence E is a constant of motion.

Now consider topography independent of x and introduce

Y (y) =

ˆ y

H(y′)dy′, I =

ˆ
D
Y ζdxdy. (3.21)
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Then

dI
dt

=

ˆ
D
Y ζt dxdy = −

ˆ
Y∇ · (uζ)dxdy = −

ˆ
∇ · (uζY )dxdy +

ˆ
ζu · ∇Y dxdy.

(3.22)

The first integral vanishes as ζ → 0 at large distances and the second gives

dI
dt

=

ˆ
ζvH =

ˆ
(vx − uy)vH =

ˆ [(
1

2
v2H

)
x

− (uvH)y + (vH)yu

]
, (3.23)

since H is a function of y only. The first two terms vanish as the velocity vanishes

at large distances and so by continuity

dI
dt

= −
ˆ
D

(uH)xu dxdy = −
ˆ
D

(
1

2
u2H)x dxdy = 0. (3.24)

Hence the quantity I, the impulse of the vorticity distribution, is conserved through-

out the motion, for topography independent of x.

Since the depth H cannot vanish in the interior of the flow, Y is a strictly mono-

tonically increasing function of y. Thus

Y (ymin)Γ < I < Y (ymax)Γ, (3.25)

where ymin and ymax are the minimum and maximum extents of the vortex distribu-

tion in the y-direction. Again since Y (y) is monotonic, this implies that with given

I and Γ there can be associated a unique value of y, say yc , given by

Y (yc) = I/Γ, (3.26)

with ymin < yc < ymax and this quantity remains constant throughout the motion.

Thus with any vortex distribution there can be associated a unique centre of vorticity
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(xc, yc) above x-independent topography where xc is the usual x-mean

xc =

ˆ
xζdxdy/Γ, (3.27)

and yc is the conserved quantity given by (3.26), lying within the extremes of the

vorticity distribution in the y-direction. For the chosen exponential topography,

these quantities become (with xc = 0 by symmetry)

Y (y) =
H0

2β
exp(2βy), Γ = −q0H0

2β

˛
∂D

exp(2βy)dx, (3.28)

I = −q0H
2
0

8β2

˛
∂D

exp(4βy)dx, yc =
1

2β
log

(
1

2

¸
∂D

exp(4βy)dx¸
∂D

exp(2βy)dx

)
. (3.29)

3.3 Steadily propagating vortices and nu-

merical procedures

Consider a vortex propagating steadily above exponential topography at speed U

in the positive x-direction without change of form. The streamfunction for the flow

has the form

Ψ(x, y, t) = ψ(x− Ut, y), (3.30)

and so satisfies the equation

− Uqx +H−1∂(ψ, q) = 0, i.e. ∂(ψ + ψ0, q) = 0. (3.31)

where the subscripted function

ψ0 = U

ˆ y

H(y′) dy′ =
UH0

2β
exp(2βy), (3.32)
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is the streamfunction for a uniform stream in the negative-x direction. Equation

(3.31) implies that isolines of q and ψ + ψ0 coincide in steady flow, i.e. the patch

boundary ∂D is a streamline of the total flow. This means on ∂D the boundary,

ψ+ψ0 = A for some undetermined constant A. When expressed in terms of P (x, y) =

exp(−4βy)ψ this condition becomes

exp(4βy)P (x, y) +
UH0

2β
exp(2βy) = A, (3.33)

which implies that

P (x, y) = exp(−4βy)

[
A− UH0

2β
exp(2βy)

]
. (3.34)

Recall that the derivatives Px, Py are given by the boundary integrals in (3.15) which

can be transformed using integration by parts into

(
Px
Py

)
=
q0H

2
0

2π

˛ (
y − y′

−(x− x′)

)
β exp(−3β(y − y′)) (3K0(βr)dy′ −K1(βr)dr) .(3.35)

No velocity normal to patch boundary in the translating frame means that

(u− U)
dy

ds
− vdx

ds
= 0, (3.36)

where the velocities (u, v) defined in (3.16) can be written purely in derivatives of

function P (x, y) as


u = − 1

H0
exp(2βy)Py − 4β

H0
exp(−2βy)A+ 2U,

v = 1
H0

exp(2βy)Px,

(3.37)

using the fact that ψ = exp(4βy)P (x, y) and (3.34).

To find the steadily translating beach vortex above an exponential depth profile
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Figure 3.1: The schematic diagram of a steady translating beach vortex where the
patch boundary is discretized using polar coordinates with evenly spaced θ. The
upper and lower boundary points, characterized by R1, RN+1, are prescribed and
uniquely determine a beach vortex. The potential vorticity within the boundary is
a constant q0 and the depth profile is H(x, y) = H0 exp(2βy) with deep and shallow
side as indicated.

as shown in Figure 3.1, first note such a steady state must have for-and-aft symmetry

which means in the numerical treatment that only half of the discretized boundary

points need to be considered. Circular patches are used to initialise the computation

and boundary points are discretized relative to the centre of circle say at (0, y0) where

usually it is sufficient to take y0 = 0. Hence boundary points can be expressed as

(xk, yk) = (Rk cos(θk), Rk sin(θk) + y0), k = 1, 2, . . . , N + 1. (3.38)

where N + 1 is the number of boundary points on half of the patch boundary, here

θk = π(k−1)/N−π/2 so that (R1, θ1) and (RN+1, θN+1) corresponds to the lower and

upper boundary points on the patch boundary as shown in Figure 3.1. At least 300

discretized boundary points are used for computation, that is N = 300. Increasing

the number of points has negligible effect on the accuracy of computation. The

derivatives Px, Py defined in (3.35) are evaluated at (xk, yk) using the mid-point rule

(
Px
Py

)
=
q0H

2
0

2π
β

2N∑
i=1

(yk − yi+1/2, xi+1/2 − xk)
exp(3β(yk − yi+1/2))

(
3K0(βri+1/2)∆yi −K1(βri+1/2)∆ri

)
,

(3.39)
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where fi+1/2 = (fi + fi+1)/2, the term ∆fi = fi+1 − fi and ri = |xk − xi|. These

derivatives Px, Py have also been evaluated from (3.15) using linear interpolation as

described in Appendix B. This requires separation of the integrand into an integrable

log part and non-singular part where Gaussian quadrature can be applied and tends

to be slower and no improvement in accuracy since the discretized velocity is only

second order accurate. The evaluations presented below thus use the mid-point

discretisation.

To find a unique solution, we seek convergent solutions with prescribed parame-

ters and employ Newton iteration to satisfy the boundary conditions. For example,

to find a solution characterized by the two prescribed radii R1, RN+1 for a chosen

value of β, or the unique solution characterized by prescribed centre of vorticity yc

defined in (3.26) and total circulation Γ for chosen value of β, or the unique solution

characterized by prescribed centre of vorticity yc and the lower boundary point R1

for chosen value of β. Three different numerical routines have been used for compu-

tations and they are cross-checked with each other and found to agree. The three

numerical routines described below are based on streamfunction boundary condition

or velocity boundary condition for finding a convergent solution characterized by

R1, RN+1, unique solutions with other prescribed parameters require a minor change

to the equations used for Newton’s iterations and will be skipped here.

3.3.1 Numerical routine 1

This routine uses the streamfunction boundary condition in (3.34), at the n-th

iteration with patch boundary points
(
x

(n)
i , y

(n)
i

)
, i = 1, . . . , N+1. The total deriva-

tives
(
dx

(n)
i /dθ, dy

(n)
i /dθ

)
can be computed using FFT where θ is evenly spaced, the

total derivative of P (n)(r, θ) with respect to θ at
(
x

(n)
i , y

(n)
i

)
is then

dP
(n)
i

dθ
= Px|(x(n)i ,y

(n)
i

) dx(n)
i

dθ
+ Py|(x(n)i ,y

(n)
i

) dy(n)
i

dθ
, i,= 1, 2 . . . , N + 1, (3.40)
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where Px, Py at
(
x

(n)
i , y

(n)
i

)
is evaluated using (3.39). Due to 2π periodicity, inverse

FFT leads to

P
(n)
i = exp

(
−4βy

(n)
i

)
ψ
(
x

(n)
i , y

(n)
i

)
+ C (by definition)

= exp
(
−4βy

(n)
i

) [
A− ψ0

(
x

(n)
i , y

(n)
i , U

)]
+ C, i = 1, . . . , N + 1.

(3.41)

The constant C arises from the inverse FFT integration. The constant A is deter-

mined by equating the total vorticity and the total circulation of the system.

ˆ
D
ζdxdy =

˛
∂D
u dx+ v dy. (3.42)

Integrating over D gives the total vorticity as

ˆ
D
ζdxdy =

¨
q0H(x, y)dxdy = q0H0

¨
exp(2βy)dxdy = −q0H0

2β

˛
exp(2βy)dx.

(3.43)

Total circulation of the system, using (3.37), is

˛
∂D
u dx+v dy =

1

H0

˛
exp(2βy)(Pxdy−Pydx)−A

[
4β

H0

˛
exp(−2βy)dx

]
. (3.44)

where Px, Py are evaluated using (3.39). Equating (3.43) and (3.44) gives value A as

A =

¸
exp(2βy)(Pxdy − Pydx) +

q0H2
0

2β

¸
exp(2βy)dx

4β
¸

exp(−2βy)dx
. (3.45)

Now we seek the unique solution characterised by fixed radii R1, RN+1 (or y1, yN+1).

At these points

P (r1, θ1) = exp(−4βyn1 )

[
An+1 − U (n+1)H0

2β
exp(2βyn1 )

]
+ Cn+1,
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P (rN+1, θN+1) = exp(−4βynN+1)

[
An+1 − U (n+1)H0

2β
exp(2βynN+1)

]
+ Cn+1.

These are coupled equations for U,C with P values given in (3.40) and value of A

given in (3.45). Solving these equations gives U (n+1), C(n+1) which can be inserted

into the rest of the equations in (3.41) to give

P
(n)
i −exp

(
−4βy

(n)
i

)[
A(n+1) − U (n+1)H0

2β
exp

(
2βy

(n)
i

)]
−C(n+1) = ∆i, i = 2, . . . , N,

(3.46)

where the unknowns are Ri, (i = 2, . . . , N). A standard Newton iteration then

gives ∆Ri, (i = 2, . . . , N) and the boundary points are adjusted accordingly. This

procedure is repeated until the convergence condition

max(∆i) < 10−8, for i = 2, 3, . . . , N, (3.47)

is met. To summarise, the steps for this numerical routine is as follows:

1. Compute (xθ, yθ) using FFT and find Pθ using (3.40) which gives P (x, y) at

each boundary point up to a constant C by inverse FFT.

2. Compute Px, Py using (3.39) which are used to update constant A using (3.45)

by equating the total vorticity with total circulation.

3. Update U,C using coupled equations for boundary conditions at R1, RN+1.

Then substitute into boundary conditions giving (3.46).

4. Using a standard Newton iteration compute ∆Ri, (i = 2, 3, . . . , N).

5. Repeat the procedure until convergence.
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3.3.2 Numerical routine 2

A weakness of the first procedure is that when computing the Jacobian to find

∆Ri, both U and C have to be adjusted each time a numerical derivative is computed

during the update process. To avoid integration that gives rise to the constant C, a

second procedure is applied here which also uses streamfunction boundary condition

ψ + ψ0 = A. For convenience set q0 = 1 here.

Define φ = ψ + ψ0 which satisfies on the vortex boundary

φi = A, i = 1, . . . , N + 1.

Again two end points are fixed. The value of A(n+1) is first updated using (3.45)

following same step before. The idea is to start with φ1 = A and integrate for

φi, (i = 2, . . . , N + 1). To find the adjustment ∆Ri,∆U such that

φi(R2 + ∆R2, . . . , RN + ∆RN , U + ∆U) = A, i = 2, . . . , N + 1, (3.48)

use the Taylor expansion and

N∑
j=2

∂φi
∂Rj

∆Rj +
∂φi
∂U

∆U = A− φi, i = 2, . . . , N + 1, (3.49)

given values of ∂φi/∂Rj, ∂φi/∂U,A − φi the set of linear equations (3.49) can be

solved to give ∆Ri,∆U . To compute φi, i = 2, . . . , N + 1, use

dφ ' φi+1 − φi = φrdr + φθdθ, i.e. φi+1 = φi + φ̄irdri + φ̄iθdθi, (3.50)

where f̄i = (fi+1 + fi)/2, to find φr, φθ, since φ = ψ + ψ0 = ψ + UH0e
2βy/2β

φr = ψr + UH0 sin θe2βy, φθ = ψθ + UH0xe
2βy. (3.51)
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Now

ψr = ψx
∂x

∂r
+ ψy

∂y

∂r
= ψx cos θ + ψy sin θ, (3.52)

ψθ = ψx
∂x

∂θ
+ ψy

∂y

∂θ
= ψyx− ψxy. (3.53)

Also ψ + ψ0 = A and the derivatives

ψx = e4βyPx, ψy = e4βyPy + 4βA− 2H0Ue
2βy. (3.54)

Thus

φr = e4βy(Px cos θ + Py sin θ)− UH0 sin θe2βy + 4βA sin θ, (3.55)

φθ = e4βy(Pyx− Pxy)− UH0xe
2βy + 4βAx. (3.56)

Now an approximation to the Jacobian can be computed by finding ∂φi/∂Rj by

introducing small perturbation to the Rj term and update φi using (3.50). Finally,

∂φi/∂U = e2βyi/2β. The matrix equation is then solved to find the adjustment.

3.3.3 Numerical routine 3

The difficulty with algorithm 2 is having to compute φi, i = 1, 2, . . . , N + 1 for

every derivative computed in the Jacobian. So the final and most efficient algorithm

introduced here uses the velocity boundary condition in (3.36). Given
(
x

(n)
i , y

(n)
i

)
, as

before, the constant A is updated first using (3.45). Now using second order accurate

discretisation, the boundary condition is expressed as

(ui+1/2 − U)∆yi − vi+1/2∆xi = 0, i = 1, . . . , N, (3.57)



Chapter 3. Beach vortices of exponential depth with constant PV 97

(a)
-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b)
0 100 200 300 400 500

1

1.02

1.04

1.06

1.08

1.1

1.12

β=0.1

β=0.2

β=0.3

β=0.4 β=0.5

β=0.6

Figure 3.2: (a) Steady state beach vortices for various slopes β=0.1,0.2,. . . ,0.6 that
have R1 = RN+1 = 1. The dashed line gives the unit circle. (b) The radius of
boundary points starting from N = 1 (θ = −π/2) to N = 500 (θ = π/2).

where fi+1/2 = (fi+1 + fi)/2 and ∆fi = fi+1 − fi. This gives N equations in N

unknowns: Ri, (i = 2, . . . , N) and U . The adjustment ∆Ri is computed and the

usual Newton iteration is applied. The steps for this numerical routine is as follows:

1. Compute Px, Py using (3.39) and update A.

2. Compute u, v using (3.37).

3. Use (3.57) and standard Newton iteration to find ∆Ri.

Unique solutions correspond to requiring the centre of vorticity be at yc = 0 and are

obtained simply by incorporating this extra equation into the Newton iteration.

3.3.4 Steady state solutions

The steadily translating beach vortices presented in Figure 3.2(a) and Figure

3.3(a) were produced numerically by prescribing R1 = RN+1 = 1 for various slopes β

from 0.1 to 2.4. They constitute a family of solutions and there exists a limiting slope

β (around 2.7) beyond which no solutions have been found. Accurate treatment of
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Figure 3.3: (a) Steady state beach vortices for various slopes β = 0.6, 0.7, . . . , 2.4
that have R1 = RN+1 = 1. The dash line gives the unit circle. (b) The radius of
boundary points starting from N = 1 to N = 500.

limiting state vortex patches would require sophisticated treatment of the high cur-

vature of its boundary and is not considered here. The family of solutions presented

here shows different monotonic behaviours separated by a certain critical value of

slope β (around 0.6). The behaviours show the competition of two contributing fac-

tors to the shapes of beach vortex: self-induction and bottom slope. Figure 3.2(b)

and Figure 3.3(b) plot the radius of boundary points around the patch boundary

starting at the lowest (θ = −π/2) boundary point N = 1. Figure 3.2(b) shows the

patch boundary expanding outwards from unit circle as β increases from 0.1 towards

a critical value around 0.6. The patch boundary then moves inwards as β increases

further from 0.6 to 2.4 as shown in Figure 3.3(b). Near the limiting state as shown

by the inner most boundary in Figure 3.3(a), the boundary of beach vortex has an

oval shape pointing towards the shallow side of water.

Since the centre of vorticity of a beach vortex is a constant of the motion in

the translational frame, another natural way to present the family of solutions is to

find the steady states with same centre of vorticity yc to obtain a unique solution,

the boundary point defined by R1 is also prescribed. Increasing the sizes of beach

vortices by prescribing larger R1 reveals a family of solutions as shown in Figure
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Figure 3.4: (a) Family of steady states with fixed yc = 0 and R1, the lower boundary
point ranging from 0.1 to 5.0 at steps of 0.1, and also R1 = 5.05. (b) the corre-
sponding translational velocities plotted against mean radius

√
area/π approaches a

constant with increasing radius.

3.4(a). Members of the family have yc = 0 and correspond to solutions with lower

boundary points R1 at 0.1, 0.2, . . . , 5.0, 5.05. These solutions are normalised to have

total circulation π and the constants H0, β have been set to 1. The potential vorticity

q0 is different for each member of the family. To achieve convergence, the boundary of

the vortex is discretized relative to the centre of the circular vortex used to initialise

the computation. This is to make sure that the distance between boundary points

remain relatively uniform. Figure 3.4(b) plots the corresponding velocity against the

mean radius. The steady states expand into shallow water with increasing radius but

the translational velocity of the steady states approaches a constant approximately

0.562. This is due to the exponentially decreasing depth on the shallow side: although

the sizes of beach vortices have expanded, the change in volume of patch is very small.

The patch boundary approaches a limiting state and the local analysis of Overman

(1986) suggests that this limiting state has a corner with angle π/2 at the lowest

boundary point.

To reveal more information and visualise the flow field, the streamlines for three

members of this family solutions are plotted in Figure 3.5. The streamlines for the
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Figure 3.5: Streamlines for three members of the solution family shown in Figure 3.4
in the translational frame. The stars indicate the location of the stagnation points.
(a) R1=1. (b) R1=2. (c) R1=3. The shaded region is the beach vortex. (d) A
magnification of the most extreme case computed (R1 = 5.05) with the location of
the stagnation point.
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convergent configurations in the translating frame are drawn using the fact that

P (x0, y0) = exp(−4βy0)
[
A− UH0

2β
exp(2βy0)

]
is known on the patch boundary, since

A is determined for the particular steady state of interest during computation. The

derivatives Px, Py at any off boundary points can thus be easily computed and so the

values of P (x, y) can be found at points away from the patch by marching from the

patch boundary. This then gives ψ. Specifically, polar coordinates are used and the

partial derivative is evaluated as

∂P

∂r
=
∂P

∂x

∂x

∂r
+
∂P

∂y

∂y

∂r
=
∂P

∂x
cos θ +

∂P

∂y
sin θ, (3.58)

once the r derivative is known, (found using finite difference with a small increment in

r by marching away from the patch boundary) the values of P (x, y) off the boundary

are determined. The streamfunction in the translating frame is then

ψ(x, y) = exp(4βy)P (x, y) +
UH0

2β
exp(2βy). (3.59)

Streamlines are plotted for three members of the family solution having zero centre

of vorticity yc with corresponding R1 = 1, 2, 3 as shown in Figure 3.5. The last frame

presents a magnified section of most extreme case computed (R1 = 5.05). A more

sophisticated numerical routine would need to be developed for the computation of

a limiting state that has high curvature. The streamlines indicate that there exists

an unstable stagnation point on the y-axis below the lowest patch boundary point,

by unstable here it means placing a fluid next to the stagnation point will result in it

being carried away. As the beach vortex approaches its limiting state, the stagnation

point approaches the patch boundary and is expected to meet the lowest boundary

point when the limiting state is achieved. The streamline patterns show that the

velocity is largest on the deep side of the patch and smallest on the shallow side.

The streamlines are compressed near the upper patch boundary compared to the
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Figure 3.6: (a) The bounding streamlines for the beach vortices. (b) Total volume
enclosed by bounding streamline plotted against the mean radius. (c) Trapped fluid
volume between vortex patch and bounding streamline against mean radius.

shallow side of the fluid.

The bounding streamlines that separate different flow regions for the family of

solutions in Figure 3.4 are plotted in Figure 3.6(a). The total volume enclosed by

the bounding streamlines is plotted in Figure 3.6(b) as a function of the mean radius

of the beach vortex and the fluid volume trapped in-between the beach vortex and

bounding streamline is plotted in Figure 3.6(c) against the mean radius. As expected

the total volume approaches a constant and the trapped volume approaches zero as

the patch approaches its limiting state. In the limiting state, the beach vortex

boundary coincides with the bounding streamline.

3.4 Asymptotic Analysis

Analytical progress in finding the streamfunction can be made in the limiting

case of a circular beach vortex when the slope β tends to zero. The asymptotic

expansion and matching method follows from the examples given in Hinch (1991).
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The governing equation can be written as

∇ ·
(

1

H
∇ψ
)

=


q0H, r < R(θ),

0, r > R(θ),

(3.60)

where the boundary for β � 1 is expanded as R(θ) = a + βF1(θ) + β2F2(θ) + · · ·,

where a is the asymptotic circular radius. In polar coordinates

∇2ψ − 2β

(
sin θ

∂ψ

∂r
+

cos θ

r

∂ψ

∂θ

)
︸ ︷︷ ︸

∂ψ
∂y

=


q0H

2
0 exp(4βy), r < R(θ),

0, r > R(θ).

(3.61)

The term F1 if included is found to be zero, an asymptotic approximation is derived

here using F1 = 0 for simplicity. The boundary conditions to apply here are that

velocity is continuous across the patch boundary and the far field velocity tends to

zero, i.e.

(
∂ψ

∂r
,
∂ψ

∂θ

)
, continuous on r = R,(

− 1

H

∂ψ

∂r
,

1

Hr

∂ψ

∂θ

)
→ 0, as r →∞. (3.62)

3.4.1 Regular Expansion

First try expressing ψ as the regular expansion

ψ = ψ0 + βψ2. (3.63)
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Using boundary conditions (3.62) the the leading order term ψ0 is found to be:

ψ0 =


1
4
q0H

2
0 (r2 − a2), r < a,

1
2
q0H

2
0a

2 log(r/a), r > a.

(3.64)

(3.65)

Moving to O(β), the next order solution, ψ2 is found to be

ψ2 =


(A1r + 5

8
q0H

2
0r

3) sin θ, r < a,

(Ar + B
r

+ 1
2
q0H

2
0a

2r log(r)) sin θ, r > a.

(3.66)

However, outside the patch the far field condition cannot be satisfied due to the

presence of r log r term. The reason being, in the region ρ = βr, the β ∂ψ
∂y

term in

(3.61) is no longer small and becomes comparable to the other terms. The solution

in the region ρ must be found and be used for matching.

3.4.2 The ρ = βr region expansion

Consider the solution outside the beach vortex when r > R, in the ρ region the

governing equation is rescaled to be

1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂θ2
− 2 sin θ

∂Ψ

∂ρ
− 2 cos θ

ρ

∂Ψ

∂θ
= 0, (3.67)

where Ψ is the ρ region streamfunction i.e. (r → ∞ region). The solution to this

homogeneous equation is in the form of the Green’s function and its derivatives, the

Green’s function being

G = exp(Y )K0(ρ) = exp(ρ sin θ)K0(ρ). (3.68)
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which satisfies governing equation for ρ 6= 0. Here Y = ρ sin θ. Both derivatives of G

vanishes as the ρ → ∞ and so G satisfies the far field boundary condition. Thus Ψ

is a multiple of G and ∂G/∂Y . In the limit ρ→ 0, the Green’s function G becomes

G→
(
− γ + log 2− log ρ

)
+
(
− γ + log 2− log ρ

)
ρ sin θ +O(ρ2), (3.69)

where γ is the Euler Gamma constant.

3.4.3 Scaling the far field solution

In the regular expansion the log r term in ψ0 behaves in the far field as log(ρ/β) =

− log β + log ρ which suggests a far field expansion must include a log β order term

and a constant term. To match the regular inner expansion, the far field expansion

must be of the form

Ψ = C log β + C1 +D ∗G(ρ, θ) +O(β) + . . . (3.70)

where C,C1, D are constants to be determined through matching. Now the expansion

of function G in (3.69) contains a ρ log ρ sin θ term. This means the regular expansion

must include a β log βψ1 term in order to match two regions and it is easy to deduce

that ψ1 = f(r) sin θ. By solving the streamfunction outside r > R, ψ1 is found to be

ψ1 =
(
Er + F

r

)
. The 1/r term can be matched by ∂G/∂Y in the far field, but the

matching does not give any information about what the constant F is. To determine

this constant, the velocity condition across the patch boundary must be used. In

summary, the regular expansion for the region r > R (outside patch) is in the form

ψ =
1

2
q0H

2
0a

2 log
(r
a

)
+ β log β

(
Er +

F

r

)
sin θ

+β
(
Ar +

B

r
+

1

2
q0H

2
0a

2r log r
)

sin θ. (3.71)
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3.4.4 Matching

Finally, to determine the constants in the regular expansion and ρ region expan-

sion the two solutions are match at intermediate region defined by η being constant

where

η = rβα =
ρ

β1−α , 0 < α < 1. (3.72)

Expanding both solutions gives

ψ =
1

2
q0H

2
0a

2
(

log η − α log β
)
− 1

2
q0H

2
0a

2 log a

+β log βE
η

βα
sin θ

β
(B
η
βα +

1

2
q0H

2
0a

2 η

βα
log

(
η

βα

)
+ A

η

βα

)
sin θ,

(3.73)

and the far field solution as

Ψ = C log β + C1 +D(−γ + log 2)−D
(

log η + (1− α) log β
)

+D(−γ + log 2)β1−αη sin θ −D
(

log η + (1− α) log β
)
β1−αη sin θ.

(3.74)

Now, for different orders, this must be true for all valid α

O(log β) : C −D(1− α) = −α1

2
q0H

2
0a

2,

O(β0) : D(−γ + log 2)−D log η + C1 =
1

2
q0H

2
0a

2(log η − log a),

O(β1−α log β) :−D(1− α)η sin θ = (E − 1

2
q0H

2
0a

2α)η sin θ,

O(β1−α) : D(−γ + log 2)η sin θ −Dη log η sin θ,

=
1

2
q0H

2
0a

2η log η sin θ + Aη sin θ,
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Figure 3.7: The asymptotically approximated translational velocity of near unit cir-
cular beach vortex for various β and the numerically computed translational velocity
for beach vortices with prescribed characteristic radii R1 = RN+1 = 1.

(3.75)

It is found that

D = C = −1

2
q0H

2
0a

2, C1 = −D(−γ + log(2/a)),

E =
1

2
q0H

2
0a

2, A = D(−γ + log 2).

The composite solution is in fact just Ψ since the regular expansion after rescaling

is completely contained in far field expansion. Now setting a = q0 = H0 = 1 gives

ψ =
1

2
log r + β log β

(
1

2
r +

F

r

)
sin θ + β

(
1

2
(γ − log 2)r +

B

r
+

1

2
r log r

)
sin θ + . . .

Ψ = −1

2
log β − 1

2
(γ − log 2)− 1

2
exp(ρ sin θ)K0(ρ) + β2 log βL1

∂G

∂Y
+ β2L2

∂G

∂Y
+O(β)

(3.76)

where L1, L2 are just constants and these terms turns out to be not necessary to

obtain first order approximation. To determine F and B, the boundary condition
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that velocity is continuous across the patch boundary is used. The streamfunction

inside the patch (r < R) is

ψ(inside) =
1

4
q0H

2
0 (r2 − a2) + β log βC1r sin θ + β(A1r +

5

8
q0H

2
0r

3) sin θ. (3.77)

Using continuity of velocity across patch boundary gives F = 0 and B = −3/8. Now

in the translating frame the streamfunction on the patch boundary satisfies

ψ +
U

2β
exp(2βy) = A. (3.78)

Expanding U = −β log βU1 − βU2 + · · ·, and using the boundary condition gives

U = −1

2
β log β − 1

2
β

(
γ − log 2− 3

4

)
= −1

2
β

(
log β + γ − log 2− 3

4

)
. (3.79)

Figure 3.7 compares the asymptotic formula (3.79) for the translational velocity with

the numerically computed results obtained by prescribing R1 = RN+1 = 1 for various

values of slope β. The agreement is excellent for β up to 0.1 after which two results

start to diverge.

3.5 Linear stability analysis

Before investigating the linear stability of the beach vortices over exponential

topography, the well-known linear stability results of a circular patch and Kirchhoff

ellipse in a constant depth profile are reviewed here and reproduced numerically. The

numerical routine used for computation follows Dritschel (1985) and subsequently

the algorithm is modified to compute the linear stability of beach vortices.
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3.5.1 Linear stability of a circular patch of con-

stant vorticity in constant depth

Consider the perturbation of a unit circular patch of constant vorticity in the

form

r = 1 +
N∑
m=1

(am sin(mθ) + bm cos(mθ)) eσt, (3.80)

where am, bm � 1 and σ is the term representing growth and frequency of the

perturbation (in general, a complex number). A point on the boundary stays on the

boundary, so

Dr

Dt
= ur, (3.81)

and the linearised form of (3.81) using (3.80) has the form

σ
N∑
m=1

(am sin(mθ) + bm cos(mθ)) + u0θ

N∑
m=1

(mam cos(mθ)−mbm sin(mθ)) = ûr.

(3.82)

where u0θ = 1
2
w0 is the velocity for circular patch (Rankine vortex), ω0 is the patch

vorticity, and ûr is the perturbation radial velocity. It is straight forward to show

from the integral form of velocity that

ûr =
1

2
w0

N∑
m=1

(am cos(mθ)− bm sin(mθ)) . (3.83)

Plug (3.83) into (3.82) and solve to give the frequency as eigenvalues:

σ = ±im− 1

2
. (3.84)

These are all imaginary, so the circular patch is neutrally stable.
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3.5.2 Linear stability of Kirchhoff vortices in con-

stant depth

The linear stability of an elliptical vortex patch has been given in Love (1893).

Using elliptical coordinates(ξ, η), perturbations of the form

δξ

h0(η)2
=

∞∑
m=1

am cos(mη) + bm sin(mη), (3.85)

where h2
0(η) = a2 sin(η)2+b2 cos(η)2 is the Jacobian of the coordinate transformation,

and δξeist is the perturbation used for linear stability analysis. Here s is the frequency

of the perturbation and a, b are the semi-axes of the elliptical boundary of the vortex.

For the m mode isolated perturbation it is found

s2 =
w2

0

4

[(
2mab

(a+ b)2
− 1

)2

−
(
a− b
a+ b

)2m
]
. (3.86)

The m = 1 mode is always stable, and m = 2 mode of perturbation leads to a larger

sized steady rotating Kirchhoff ellipse which which is stable by nature. For m = 3,

within the range of aspect ratio a/b < 3, the eigenvalues s2 is real and positive so the

patch is linearly stable. Higher frequency modes have a larger critical aspect ratio

that separates the linear stability and instability regions.

Figure 3.8 shows the magnitude of eigenvalues |s| in (3.86) for m mode pertur-

bation to Kirchhoff ellipses of various aspect ratio a/b are plotted as the dashed and

solid lines. As a/b increases from 1 (circular patch) upwards, the eigenvalue σ goes

from pure imaginary (plotted as dashed line) across zero to pure real (plotted as

solid line) i.e. there exists a critical aspect ratio a/b for which the Kirchhoff vortex is

linearly stable. The stars, crosses, circles and squares are the numerically computed

eigenvalues which agree well with the analytical results. The numerical results have

been calculated following the method of Dritschel (1985) who introduces a numeri-
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Figure 3.8: The magnitude of the eigenvalues |s| for perturbations of mode number
m for Kirchhoff ellipses of various aspect ratios. The dashed line and solid lines are
the analytical solution from (3.86) where dashed line gives the oscillatory eigenvalues
(pure imaginary) and solid line gives the eigenvalues having real values. The stars,
crosses, squares and circles are the numerically produced eigenvalues in which 1000
boundary points and 201 modes are used in the perturbation series.
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Figure 3.9: The error in the numerically computed eigenvalues for mode m pertur-
bations for a Kirchhoff ellipse of aspect ratio 2.



Chapter 3. Beach vortices of exponential depth with constant PV 112

10
2

10
3

N number of points

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

e
rr

o
r

201 modes, ratio a/b=2.5

m=3

m=4

m=5

m=6

N
-2

N
-3

Figure 3.10: The error in the numerically computed eigenvalues for mode m pertur-
bations for a Kirchhoff ellipse of aspect ratio 2.5

cal routine to compute the linear stability of m-polygon co-rotating vortex patches.

This method has been described and adapted in Section 2.3.3 to compute the linear

stability of ‘m+ 1’ point vortex - vortex patch equilibria. A series summation of an

orthonormal series in (2.24) has been used to represent the linear perturbation to

the patch boundaries, which upon substituting into the governing linearised bound-

ary equation leads to an eigenvalue problem (2.28). For the computations in Figure

3.8, 1000 boundary points have been used with 201 modes to represent the linear

perturbation, the corresponding eigenvalues for m = 3, 4, 5, 6 modes are found from

the ordered list of the eigenvalues of the 201 modes. Figure 3.9 and Figure 3.10 show

plots of the errors in the numerically computed eigenvalues for mode m perturba-

tions against the number of boundary points N on the Kirchhoff vortex. Comparing

with lines of shape N−2 and N−3, the two figures, one for the Kirchhoff vortex of

aspect ratio 2 the other for the Kirchhoff ellipse of aspect ratio 2.5, indicate that

second order accuracy is achieved. With the accuracy of the numerical procedure

demonstrated, the next section applies the same procedure to determine the stability

of beach vortices over exponential topography.
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3.5.3 Linear stability of beach vortices

Consider a convergent solution for a beach vortex with boundary points x0 =

r0(θ) cos θ, y0 = r0(θ) sin θ where θ are evenly spaced, and subject the boundary to a

perturbation of the form

r = r0 + r̂eσt = r0(θ) + r0(θ)
M∑
m=1

Cmφm(θ)eσt, (3.87)

where the φm(θ) are the orthonormal functions

π
1
2φ =

(
1√
2
, cos θ, cos(2θ), . . . , cos(Pθ), sin θ, sin(2θ), . . . , sin(Pθ)

)
, (3.88)

(M = 2P+1). The coefficients Cm are to be determined. M is the order of truncation.

Now a point on the boundary stays on the boundary, so in the translational frame

D

Dt

(
r0(θ) + r̂(θ)eσt

)
= ur. (3.89)

Linearising (3.89) and collecting terms of the same order gives

σr̂(θ) +
1

r0

∂r0

∂θ
ûθ −

u0θ

r2
0

∂r0

∂θ
r̂ +

u0θ

r0

∂r̂

∂θ
= ûr, (3.90)

base state O(1):
u0θ

r0

∂r0

∂θ
= u0r, (3.91)

where the velocities on the perturbed boundary used for linearisation are

(uθ, ur) = (u0θ + ûθe
σt, u0r + ûre

σt), (3.92)

the first terms on the right side u0θ, v0θ are the base state velocities in the azimuthal

and radial direction and the terms with hats are the perturbation velocities. The
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velocities in the radial and azimuthal directions are

uθ = v cos(θ)− (u− U) sin(θ), (3.93)

ur = (u− U) cos(θ) + v sin(θ), (3.94)

where u, v are the Cartesian components of velocities defined in (3.37) on the per-

turbed boundary and

(u, v) = (u0 + û, v0 + v̂). (3.95)

Note

ûθ = v̂ cos θ − û sin θ, (3.96)

ûr = û cos θ + v̂ sin θ. (3.97)

Using the velocity expression in terms of P (x, y) and its derivatives in (3.16) gives

the perturbation velocities, after linearisation to first order,

û = − 1

H0

exp(2βy0)
[
2r̂β sin(θ)P 0

y + P̂y

]
− 4β

H0

exp(−2βy0)
[
−2r̂β sin(θ)ψ0 + ψ̂

]
,

v̂ =
1

H0

exp(2βy0)
[
2r̂β sin(θ)P 0

x + P̂x

]
, (3.98)

where the superscript 0 means evaluation at (r0, θ), the unperturbed boundary. Now

replace

ψ0 = A− UH0

2β
exp(2βy0),

the constant A comes from the numerical computation as part of the solution of find-

ing convergent vortex patch. The remaining task is to find expressions for P̂x, P̂y, ψ̂,

which have two contributions: the perturbation of the observation point and the

contribution from the perturbation of integration boundary points i.e. the pertur-

bation due to the evaluation of functions at perturbed boundary integrated over
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unperturbed boundary, and the perturbation due to evaluation of functions at un-

perturbed boundary integrated over perturbed boundary.

To find ψ̂, first consider the perturbation of observation points which gives rise

to first order perturbation term:

ψ̂p = r̂
∂ψ

∂r
(r0, θ)

= r̂

[
∂ψ

∂x
(r0, θ) cos θ +

∂ψ

∂y
(r0, θ) sin θ

]
, (3.99)

where ∂ψ/∂x, ∂ψ/∂y can be found through relationship between ψ and P (x, y):

∂ψ

∂x
(r0, θ) = exp(4βy0)P 0

x ,

∂ψ

∂y
(r0, θ) = exp(4βy0)P 0

y + 4βψ(r0, θ), (3.100)

and ψ(r0, θ) comes from ψ + ψ0 = A. The second contribution of perturbation

term in ψ̂ is from the perturbation of the integration boundary points, from the

streamfunction expression (3.12) this is simply

ψ̂i = −q0H
2
0

2π

ˆ 2π

0

r̂′ exp(βy0 + 3βy′0)K0

(
β
√

(x0 − x′0)2 + (y0 − y′0)2
)
r′0dα, (3.101)

where the dashed variables are a function of α, the integrating variable. This integral

is evaluated using the mid-point rule. Summing gives ψ̂ = ψ̂p+ ψ̂i. Substituting into

(3.98) gives

û = − 1

H0

exp(2βy0)
[
r̂
(
6β sin(θ)P 0

y + 4β cos(θ)P 0
x

)
+ P̂y

]
− 4β

H0

exp(−2βy0)
[
r̂2β sin(θ)ψ0 + ψ̂i

]
,

v̂ =
1

H0

exp(2βy0)
[
r̂2β sin(θ)P 0

x + P̂x

]
. (3.102)

Recall that P 0
x , P

0
y are evaluated using the boundary integrals in (3.39). It remains
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to find P̂x, P̂y terms.

The perturbation terms P̂x, P̂y again have two contributions. First, express Px, Py

as the integral

(
Px
Py

)
=
q0H

2
0

2π

ˆ 2π

0

exp(−3β(y − Y ))K0

(
β
√

(x−X)2 + (y − Y )2
)( dY

dα

−dX
dα

)
dα,

where x = x0 + x̂, y = y0 + ŷ, X = X0 + X̂, Y = Y0 + Ŷ . Here subscripts indicate

the steady solution and hatted variables are the perturbation variables. Now Taylor

expand the integrand, use integration by parts to convert one of the integrals and

collect the first order terms to give

(
P̂x

P̂y

)
=

q0H
2
0

2π

[
r̂(θ)

ˆ 2π

0

exp(−3βy01)K0(βr01)

(
dX0

dα
sin θ − dY0

dα
cos θ

)(
0

3β

)]
dα

+
q0H

2
0

2π

[
r̂(θ)

ˆ 2π

0

exp(−3βy01)
K1(βr01)

r01

(
dX0

dα
sin θ − dY0

dα
cos θ

)(
βx01

βy01

)]
dα

− q0H
2
0

2π

[ˆ 2π

0

r̂(α) exp(−3βy01)K0(βr01)

(
dX0

dα
sinα− dY0

dα
cosα

)(
0

3β

)]
dα

− q0H
2
0

2π

[ˆ 2π

0

r̂(α) exp(−3βy01)
K1(βr01)

r01

(
dX0

dα
sinα− dY0

dα
cosα

)(
βx01

βy01

)]
dα,

(3.103)

where x01 = x0−X0, y01 = y0−Y0 and r01 =
√

(x0 −X0)2 + (y0 − Y0)2. Introducing

a similar abbreviation to Dritschel (1985), namely

〈()〉 =
q0H

2
0

2π

ˆ 2π

0

()dα, bx =
x01

r01

, by =
y01

r01

,

Q0 = exp(−3βy01)K0(βr01)

[
dX0

dα
sinα− dY0

dα
cosα

]
,

T0 = exp(−3βy01)K0(βr01)

[
dX0

dα
sin θ − dY0

dα
cos θ

]
,

Q1 = exp(−3βy01)K1(βr01)

[
dX0

dα
sinα− dY0

dα
cosα

]
,

T1 = exp(−3βy01)K1(βr01)

[
dX0

dα
sin θ − dY0

dα
cos θ

]
, (3.104)
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allows the P̂x, P̂y to be abbreviated as

P̂x(θ) = r̂(θ)〈βT1b
x〉 − 〈βr̂(α)Q1b

x〉,

P̂y(θ) = r̂(θ)〈3βT0 + βT1b
y〉 − 〈3βr̂(α)Q0 + βr̂(α)Q1b

y〉. (3.105)

Collecting the perturbation terms in the velocity from (3.102) gives

û = − 1

H0

exp(2βy0)
[
r̂(θ)

(
〈3βT0 + βT1b

y〉+ 6β sin θP 0
y + 4β cos θP 0

x

)]
+

1

H0

exp(2βy0)
[
〈r̂(α)

(
3βQ0 + βQ1b

y
)
〉
]

− 4β

H0

exp(−2βy0)
[
r̂(θ)2β sin θψ0 + ψ̂i(r̂(α), θ)

]
,

v̂ =
1

H0

exp(2βy0)
[
r̂(θ)

(
〈βT1b

x〉+ 2β sin θP 0
x

)
− 〈βr̂(α)Q1b

x〉
]
.

Now express r̂(θ) as

r̂(θ) = r0(θ)γ(θ), where γ(θ) =
M∑
m=1

Cmφm(θ), (3.106)

Then (3.90) can be rewritten in terms of γ, define

ε(θ) = σγ +
u0θ

r0

dγ

dα
− 1

r0u0θ

(ûv0 − v̂u0) 6= 0. (3.107)

Using a Galerkin approach with finite number truncation requires:

ˆ 2π

0

ε(α)φi(α)dα = 0, i = 1, 2, . . . ,M. (3.108)

Substitute these into the governing equation, defining similar matrix variables as in

Dritschel (1985):

B(θ) = − v0

H0u0θ

[
exp(2βy0)

(
〈3βT0 + βT1b

y〉+ 6β sin θP 0
y + 4β cos θP 0

x

)]
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− v0

H0u0θ

[
8β2 exp(−2βy0) sin θψ0

]
− u0

H0u0θ

exp(2βy0)
[
〈βT1b

x〉+ 2β sin θP 0
x

]
,

Dm(θ) =
v0

H0r0u0θ

exp(2βy0)
[
〈φmr0(α)

(
3βQ0 + βQ1b

y
)
〉 − 4β exp(−4βy0)ψ̂i(φmr0(α), θ)

]
+

u0

H0r0u0θ

exp(2βy0)〈βφmr0(α)Q1b
x〉,

Emn =

ˆ 2π

0

dθ
(
B(θ)φm(θ)− u0θ

r0

dφm
dθ

)
φn(θ),

Fmn =

ˆ 2π

0

dθDm(θ)φn(θ),

Amn = Fmn + Emn, (3.109)

reduces the problem to the matrix eigenvalue problem:

σCn =
M∑
m=1

AmnCm, n = 1, 2, . . . ,M. (3.110)

Two constraints must also be imposed for constant depth profile vortex patch: the

area and second momentum constraints. After linearisation they reduce to

M∑
m=1

amCm = 0, am =

ˆ 2π

0

r2
0(θ)φm(θ)dθ,

M∑
m=1

bmCm = 0, bm =

ˆ 2π

0

r4
0(θ)φm(θ)dθ. (3.111)

These constraints are substituted here by choosing two non-zero coefficients say

C1, C2 and expressing them in terms of Cm,m = 3, 4, . . . ,M as

C1 =
M∑
m=3

tmCm , tm =
b2am − a2bm
a2b1 − a1b2

,

C2 =
M∑
m=3

smCm , sm =
b1am − a1bm
a1b2 − a2b1

. (3.112)

Substituting (3.112) into the eigenvalue problem (3.110) reduces the matrix to size
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(M − 2) ∗ (M − 2), i.e.

σCn =
M∑
m=3

Tm−2,n−2Cm , n = 3, 4, · · · ,M, (3.113)

where the new matrix Tmn is

Tm−2,n−2 = Amn + An1tm + An2sm. (3.114)

The matrix problem (3.113) can then be solved in a standard way.

For example, to implement the two constraints for linear stability computation

of a Kirchhoff vortex in Section 3.5.2 note that due to symmetry

ˆ 2π

0

r2
0(θ) sin(nθ)dθ =

(ˆ π
2

0

+

ˆ π

π
2

+

ˆ 3
2
π

π

+

ˆ 2π

3
2
π

)
r2

0 sin(nθ)dθ

=

ˆ π
2

0

r2
0(θ) sin(nθ)dθ +

ˆ π
2

0

r2
0(θ) sin(n(π − θ))dθ

+

ˆ π
2

0

r2
0(θ) sin(n(π + θ))dθ +

ˆ π
2

0

r2
0(θ) sin(−nθ)dθ

= 0,
ˆ 2π

0

r2
0(θ) cos(nθ)dθ =

ˆ π
2

0

r2
0(θ) (cos(nθ) + cos(n(π − θ)) + cos(n(π + θ)) + cos(−nθ))

= 2(1 + (−1)n)

ˆ π
2

0

r0(θ)2 cos(nθ)dθ,

(3.115)

so in the area conservation, only the basis function φn(θ) = cos(nθ) for n even gives

non-zero integrals (as well as the constant basis function). This is also true for the

momentum conservation (by replacing r2
0 by r4

0 in the integral) since the symmetry of

the integrand does not change. These non-zero constant integrals of constraints were

used to reduce the matrix eigenvalue problem and gave results presented in Section

3.5.2.
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Figure 3.11: Left pictures are the steady states and the perturbed boundaries with
β = 1 and right pictures plots the corresponding perturbation against θ. 1000
boundaries points and 201 modes have been used for computation.

For beach vortices over exponential topography, the total circulation and the

impulse defined in (3.17) and (3.21) are conserved. Linearisation leads to

q0H0

ˆ
exp(2βr0 sin θ)r0r̂dθ =

M∑
m=1

Cmq0H0

ˆ
exp(2βr0 sin θ)r2

0φm(θ)dθ = 0,

q0H
2
0

2β

ˆ
exp(4βr0 sin θ)r0r̂dθ =

M∑
m=1

Cm
q0H0

2β

ˆ
exp(4βr0 sin θ)r2

0φm(θ)dθ = 0,

and the above procedure can be applied to implement the two constraints.

Linear stability has been computed for the family of solutions defined by fixed

R1, RN+1 with various β and the family of solutions with prescribed centre of vor-

ticity yc with various R1 for fixed β. For all the computations, a range of boundary

points from 300 to 1000 is used, as well as a different number of perturbation modes

have been used. No growing modes have been found except when the beach vor-

tices are near their limiting states. These growing eigenvalues appear near the end

of the ordered list of eigenvalues computed which suggests they are fictitious grow-
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Figure 3.12: Left pictures are the steady states and the perturbed boundaries with
β = 2 and right pictures plots the perturbation against θ at different phases en-
closed by the envelopes. 1000 boundaries points and 201 modes have been used for
computation.

ing modes generated by numerical inaccuracy. Figure 3.11 and Figure 3.12 shows

the first 5 stable perturbations from the ordered list of imaginary eigenvalues (from

low to high) for beach vortices with R1 = RN+1 = 1. Figure 3.11 is for the beach

vortex with β = 1 and Figure 3.12 is for the beach vortex with β = 2. Left hand

side pictures show the steady states and the boundaries with perturbations in which

the perturbation has maximum modulus 0.2 for illustrations. The right hand side

pictures plot the first 5 perturbations at different phases enclosed by the two en-

velopes. The perturbations look rather flat on two sides and hump-like in the middle

which corresponds to the part of boundary near the lowest boundary point, this is

due to the exponential depth being deep in the positive y direction and shallow in

the negative y direction. This is especially true for larger β which results in bigger

depth difference. Previously in Figure 3.5 when producing the streamlines, it has

been shown the velocities on the patch boundaries are fastest near positive y and

gradually reduces towards the negative y, so the linear perturbation will be swept
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Figure 3.13: A comparison of time advanced beach vortex of unit mean radius after
approximately 20 turnover times with the computed steadily propagating solution.

downwards towards the lowest boundary point. However, as mentioned these are

associated with imaginary eigenvalues, so the beach vortices are linearly stable up

to the near-limiting state.

3.6 Time-dependent evolutions

To test the robustness of the steady state beach vortices, a time-dependent

evolution has been carried out on the family of solutions. A standard 4th order

Runge-Kutta time-advancing scheme is used and at each time step the beach vortex

boundary points are advected and then redistributed using the re-noding scheme of

Dritschel (1988). These re-noded boundary points are then interpolated to boundary

points that have evenly spaced θ relative to the chosen ‘centre’ of the beach vortex.

The derivative

dP

dθ
=
∂P

∂x

dx

dθ
+
∂P

∂y

dy

dθ
, (3.116)

can be evaluated where dx/dθ, dy/dθ are evaluated using Fourier transforms. The

inverse Fourier transform then gives, to within an additive constant, P (x, y) at the
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new boundary points. This constant is eliminated by equating the total vorticity

with the total circulation as was done previously to obtain the value of A in (3.45).

Then the values of ψ(x, y) at the boundary points are known, and can be used

to compute the velocities in (3.16) which are then used to advance the boundary

points. Note this numerical routine only works for smooth boundaries due to the

application of Fourier transforms and becomes inaccurate if the curvature is large.

It is found that the beach vortex moves slightly towards positive y as it translates,

this is a numerical artefact as the patch should translate purely in the x-direction

by momentum conservation . This shift is reduced by having more boundary points

and using smaller time steps observed over the same time interval which suggests

the shift being the result of finite resolution in time and space. Thus after each time

interval, the beach vortex is moved downwards a distance that makes the centre of

vorticity of new patch matching the original one. This effectively ensure conservation

of momentum. Almost all the beach vortices in the family of solutions with fixed yc

and R1 have been observed to survive over 10 turnover times. Figure 3.13 shows the

comparison of a beach vortex of unit mean radius over the exponential profile with

β = 1 after 20 turnover times with the computed steadily propagating solution. 1000

boundary points have been used with the space increment h = 0.01 and time-step

dt = 0.01. The match is good with a slight loss of volume over the long period of

translation. Only those near the limiting state suffer from instability which appears

to be due to insufficient resolution of boundaries with high curvature.

3.7 Summary

A family of steady-state beach vortices over exponential topography have been

computed, which propagate parallel to isobaths. It is shown that there exist a lim-

iting state beyond which no solution exists. The streamlines reveal that due to the



Chapter 3. Beach vortices of exponential depth with constant PV 124

exponential depth profile, there is large adverse velocity on the deep side of fluid

compared to the shallow side of fluid. There exists an unstable stagnation point on

the shallow side of the beach vortex viewed in the translational frame. When a beach

vortex approaches the limiting state, this stagnation point moves closer and closer to

the patch boundary and meets the boundary at the limiting state. Three numerical

routines have been described, all of which have been used to compute the steady

state solutions. The family of solutions with each member having same fixed upper

and lower boundary points demonstrates the competition of self-induction and that

due to changing depth. An asymptotic approximation of a near-circular beach vortex

in the small slope limiting has been derived and shown to give excellent agreement

with the numerically computed results. Using a linear stability analysis modified

from a method introduced in Dritschel (1985), these beach vortices have been shown

to be linearly stable. Time-dependent integration also leads to the conclusion that

beach vortices are robust structures.

The numerical routines used here are second order accurate, and the limiting so-

lution of the solution family here appears to have a 90 degree tangent jump. To inves-

tigate more closely this limiting behaviour, a more sophisticated numerical routine

would be required to handle the large curvature developed on the patch boundary.

Further the time-dependent integration relies on the patch boundaries being smooth,

in order to derive the value of streamfunction on the boundary at each time. The

method is therefore unable to accurately compute the unstable evolution of a beach

vortex. There thus remains further work to be done.



Appendix A

The Green’s function derivation

Equation (3.9) can be written as

∇2G+H∇(H−1).∇G = H(x′, y′)δ(x− x′)δ(y − y′). (A.1)

For the exponential topography (3.10), (A.1) becomes

∇2G− 2βGy = H0 exp(2βy′)δ(x− x′)δ(y − y′). (A.2)

Introducing Ĝ so that G = exp(βy)Ĝ, (A.2) becomes

∇2Ĝ− β2Ĝ = H0 exp(βy′)δ(x− x′)δ(y − y′), (A.3)

which is a standard axisymmetric problem with the well-known solution

Ĝ = −H0

2π
exp(βy′)K0(β

√
(x− x′)2 + (y − y′)2), (A.4)

so the Green’s function G is

G(x′, y′, x, y) = −H0

2π
exp[β(y + y′)]K0(β

√
(x− x′)2 + (y − y′)2). (A.5)

125



Appendix B

Evaluating the boundary integral

using linear interpolation

The idea is to split the Bessel Function K0(βr) into two parts, ‘singular’ and

‘non-singular’ part, and split the integral into different parts accordingly:

¸
c
exp(−3β(y − y′))K0(βr)

(
dy′

dx′

)
=
¸
c
exp(−3β(y − y′)) [(K0(βr) + log(βr)− log(βr)]

(
dy′

dx′

)
=
¸
c
exp(−3β(y − y′))(K0(βr) + log(βr))

(
dy′

dx′

)
−
¸
c
exp(−3β(y − y′)) log(βr)

(
dy′

dx′

)
.

(B.1)

Note that K0(βr) + log(βr) → −γ as r → 0 and so is non-singular. Now for the

linear interpolation

x′ = xn + anp, n = 1 . . . N, (B.2)

y′ = yn + bnp, n = 1 . . . N, (B.3)
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where an = xn+1−xn, bn = yn+1−yn are the gradients between adjacent points. The

first integral in (B.1) can be written as

N∑
i=1

(
bi
ai

) ˆ 1

0

exp(−3β(y − yi + bip))(Ko(βr) + log(βr))dp, (B.4)

this can be done using three point Gaussian integration rule. The second part in

(B.1) can be approximated as

−
N∑
i=1

(
bi
ai

) ˆ 1

0

exp(−3β(y − yi + bip)) log(βr)dp

' −
N∑
i=1

(
bi
ai

)ˆ 1

0

exp(−3β(y − yi))(1 + 3βbip+
9

2
β2p2 + . . .) log(βr)dp. (B.5)

These integrals in (B.5) can be done analytically, retaining integrand up to o(p2 log p).

For example on the interval (xn, xn+1)

ˆ 1

0

p log
[
β
(
(x− xn − anp)2 + (y − yn − bnp)2

)1/2
]
dp

= −1 +
1

en
sn3(fn2 − fn1) + log(βl1/2n2

) +
1

2en
sn1gn, (B.6)

and

ˆ 1

0

p2 log
[
β
(
(x− xn − anp)2 + (y − yn − bnp)2

)1/2
]
dp

= −1

4
− 1

2en
sn3 +

1

e2
n

sn1sn3(fn2 − fn1) +
1

4e2
n

(s2
n1
− s2

n3
)gn, (B.7)

and

´ 1

0
p3 log

[
β ((x− xn − anp)2 + (y − yn − bnp)2)

1/2
]
dp

= −1
9
− 1

6en
sn1 − 1

3e2n
(s2
n1
− s2

n3
) + 1

3e3n
(3sn3s

2
n1
− s3

n3
)(fn2 − fn1)

+1
3

log(βl
1/2
n2 ) + 1

6e3n
sn1(s

2
n1
− 3s2

n3
)gn, (B.8)
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where the en, sn1 , sn2 , sn3 , ln1 , ln2 , fn1 , fn2 are defined as

en = a2
n + b2

n, (B.9)

sn1 = an(x− xn) + bn(y − yn), (B.10)

sn2 = an(x− xn+1) + bn(y − yn+1), (B.11)

sn3 = an(y − yn)− bn(x− xn), (B.12)

ln1 = (x− xn)2 + (y − yn)2, (B.13)

ln2 = (x− xn+1)2 + (y − yn+1)2, (B.14)

fn1 = arctan(sn3/sn1), (B.15)

fn2 = arctan(sn3/sn2), (B.16)

gn = log

[
s2
n1

s2
n2

]
. (B.17)
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