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Abstract. All rings are commutative with identity, and all modules are unital. The pur-
pose of this article is to investigate n-absorbing submodules. For this reason we introduce
the concept of n-absorbing submodules generalizing n-absorbing ideals of rings. Let M be
an R-module. A proper submodule N of M is called an n-absorbing submodule if when-
ever a1 · · · anm ∈ N for a1, . . . , an ∈ R and m ∈ M , then either a1 · · · an ∈ (N :R M)
or there are n − 1 of ai’s whose product with m is in N . We study the basic properties
of n-absorbing submodules and then we study n-absorbing submodules of some classes of
modules (e.g. Dedekind modules, Prüfer modules, etc.) over commutative rings.
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1. Introduction

In this paper, all rings are commutative with non-zero identity and all modules are
unital. Let R be a ring, M an R-module and N a submodule of M . We will denote
by (N :R M) the residual of N by M , that is, the set of all r ∈ R such that rM ⊆ N .
The annihilator of M which is denoted by annR(M) is (0 :R M). An R-module M is
called a multiplication module if every submodule N of M has the form IM for some
ideal I of R. Note that, since I ⊆ (N :R M) then N = IM ⊆ (N :R M)M ⊆ N . So
that N = (N :R M)M [21]. Finitely generated faithful multiplication modules are
cancellation modules [20, Corollary to Theorem 9], where an R-module M is defined
to be a cancellation module if IM = JM for ideals I and J of R implies I = J .
It is well-known that if R is a commutative ring and M a non-zero multiplication
R-module then every proper submodule of M is contained in a maximal submodule
of M and K is a maximal submodule of M if and only if there exists a maximal
ideal p of R such that K = pM [21, Theorem 2.5]. For a submodule N of M , if
N = IM for some ideal I of R, then we say that I is a presentation ideal of N . Note
that it is possible that for a submodule N , no such presentation ideal exists. For
example, assume that M is a vector space over an arbitrary field F with dimF M ≥ 2
and let N be a proper subspace of M such that N 6= 0. Then M has finite length
(so M is Noetherian, Artinian and injective), but M is not multiplication and N
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does not have any presentation. Clearly, every submodule of M has a presentation
ideal if and only if M is a multiplication module. Let N and K be submodules of a
multiplication R-module M with N = I1M and K = I2M for some ideals I1 and I2

of R. The product of N and K denoted by NK is defined by NK = I1I2M . Then
by [4, Theorem 3.4], the product of N and K is independent of presentations of N
and K. Moreover, for a, b ∈ M , by ab, we mean the product of Ra and Rb. Clearly,
NK is a submodule of M and NK ⊆ N ∩K (see [4]).

A submodule N of M is called idempotent if N = (N :R M)N , [2]. It is shown
[2, Theorem 3] that if M is multiplication and (N :R M) is an idempotent ideal of
R then N is idempotent in M . The converse is true if we assume further that M
is finitely generated and faithful. A submodule N of the R-module M is called a
nilpotent submodule if (N :R M)nN = 0 for some positive integer n, and m ∈ M
is said to be nilpotent if Rm is a nilpotent submodule of M , [2]. Assume that
Nil(M) is the set of all nilpotent elements of M ; then Nil(M) is a submodule of
M provided that M is faithful module, and if in addition M is multiplication, then
Nil(M) = Nil(R)M =

⋂
P , where the intersection runs over all prime submodules

of M , [2, Theorem 6]. We recall that a submodule N of M is prime (resp., primary)
if whenever rm ∈ N for some r ∈ R and m ∈ M , then either m ∈ N or rM ⊆ N
(resp., rnM ⊆ N for some positive integer n). If N is a prime (resp. primary)
submodule of M , then p := (N :R M) (resp. p :=

√
(N :R M) ) is a prime ideal of

R. In this case we say that N is a p-prime (resp. p-primary) submodule of M .
Let S be the set of all non-zero divisors of R and RS be the total quotient ring

of R. For a non-zero ideal I of R, Let

I−1 = {x ∈ RS : xI ⊆ R}.
I is called an invertible ideal of R if II−1 = R. Let M be an R-module and

T = {t ∈ S : tm = 0 for m ∈ M implies m = 0}.
T is a multiplicatively closed subset of S, and if M is torsion free then T = S. In
particular, if M is a faithful multiplication R-module then T = S [21, Lemma 4.1].
Let N be a non-zero submodule of the R-module M , and

N−1 = {x ∈ RT : xN ⊆ M}.
N−1 is an R-submodule of RT , R ⊆ N−1 and N−1N ⊆ M . N is said to be an
invertible submodule if N−1N = M , [18].

In [18], Naoum and Al-Alwan generalized the concept of Dedekind domains to
that of modules. An R-module M is a Dedekind module or D-module, if every non-
zero submodule M is invertible and M is said to be a D1-module if every non-zero
cyclic submodule of M is invertible. It is clear that every D-module is a D1-module.
Let M be a faithful multiplication R-module. If M is a Dedekind module then R is
a Dedekind domain, [18, Theorem 3.5]. Let M be a faithful multiplication R-module
over the Dedekind domain R. Then M is a finitely generated Dedekind R-module,
[18, Theorem 3.4]. Let R be an integral domain and M an R-module. M is called
a valuation module if for all nonzero elements m and n of M , either Rm ⊆ Rn
or Rn ⊆ Rm. Equivalently, for any submodules N and K of M , either N ⊆ K
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or K ⊆ N . A valuation module M such that every non-zero prime submodule P
of M is not idempotent, that is, P 6= (P :R M)P , is a discrete valuation module,
[3]. An R-module M is called a Prüfer module, if every non-zero finitely generated
submodule of M is invertible. An R-module M is said to be a Bézout module, if
every finitely generated submodule is a principal submodule of M . Several properties
of these classes of modules can be found in [1, 3] and [18].

In [7], Badawi introduced a new generalization of prime ideals in a commutative
ring R. He defined a nonzero proper ideal I of R to be a 2-absorbing ideal if
whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. This definition
can obviously be made for any ideal of R. This concept has a generalization, called
weakly 2-absorbing ideals, which has been studied in [8]. A proper ideal I of R to
be a weakly 2-absorbing ideal of R if whenever a, b, c ∈ R and 0 6= abc ∈ I, then
ab ∈ I or ac ∈ I or bc ∈ I. Later, Anderson and Badawi [5], introduced the concept
of n-absorbing ideals of R for a positive integer n. A proper ideal I of R is called
an n-absorbing (resp., strongly n-absorbing) ideal if whenever a1 · · · an+1 ∈ I for
a1, . . . , an+1 ∈ R (resp, I1, . . . In+1 ⊆ I for ideals I1, . . . , In+1 of R), then there are
n of the ai’s (resp., n of the Ii’s) whose product is in I. It was shown that these
two concepts agree when n = 2 in [7]. In [5, Corollary 6.9] it is shown that they
agree for Prüfer domains, and it is conjectured that these two concepts agree for all
positive integers n.

The concept of 2-absorbing (resp., weakly 2-absorbing) submodules was intro-
duced and investigated in [22]. Let M be an R-module and N a proper submodule of
M . N is said to be a 2-absorbing submodule (resp. weakly 2-absorbing submodule)
of M if whenever a, b ∈ R and m ∈ M with abm ∈ N (resp. 0 6= abm ∈ N), then
ab ∈ (N :R M) or am ∈ N or bm ∈ N . In this paper, we generalize the concepts
of n-absorbing and strongly n-absorbing ideals of the ring R to that of submodules
of an R-module M . Most of results are related to the reference [5] which have been
proved for n-absorbing submodules. Let n be a positive integer. A proper sub-
module N of M is called an n-absorbing (resp., strongly n-absorbing) submodule
if whenever a1 · · · anm ∈ N for a1, . . . , an ∈ R and m ∈ M (resp, I1, · · · InL ⊆ N
for ideals I1, . . . , In of R and submodule L of M), then either a1 · · · an ∈ (N :R M)
(resp. I1 · · · In ⊆ (N :R M)) or there are n − 1 of ai’s (resp. Ii’s) whose product
with m (resp. with L) is in N .

In this note, we study the concept of n-absorbing submodule, for a positive
integer n. In fact, among the other things we prove that if R is a commutative ring
and N is a 2-absorbing submodule of a faithful multiplication R-module M , then
M -radN is a 2-absorbing submodule of M (see Theorem 1). We show (Theorem 2)
that if Nj is an nj-absorbing submodule of M for every 1 ≤ j ≤ k, then N1∩· · ·∩Nk

is an n-absorbing submodule of M for n = n1 + · · ·+nk. In particular, if N1, . . . , Nn

are prime submodules of M , then N1 ∩ · · · ∩ Nn is an n-absorbing submodule of
M . In Theorem 3, we prove that if N is a p-primary submodule of M such that
pnM ⊆ N , then N is an n-absorbing submodule of M . In particular, if M is a
multiplication module and pnM is a p-primary submodule of M , then pnM is an
n-absorbing submodule of M . Theorem 7 implies that if R is a Noetherian ring
and M a finitely generated R-module, then every non-zero proper submodule of M
is an n-absorbing submodule of M for some positive integer n. In Section 3, we
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study 2-absorbing submodules of multiplication modules. Indeed, if we could give a
positive answer to the Conjecture 1, then many of the results in Section 3 could be
impled for n-absorbing submodules for every positive integer n.

2. Basic results

In this section, we study some basic properties of n-absorbing submodules of the
R-module M . Let n be a positive integer. We recall that a proper submodule N of
M is called an n-absorbing submodule if whenever a1 · · · anm ∈ N for a1, . . . , an ∈ R
and m ∈ M , then either a1 · · · an ∈ (N :R M) or there are n−1 of ai’s whose product
with m is in N . A natural question is that if N is an n-absorbing submodule of
M , whether the ideal (N :R M) is an n-absorbing ideal of R? For the cases where
n = 2 or M is cyclic, we have the following results (compare Proposition 1 with [22,
Proposition 2.9]).

Proposition 1. Let R be a commutative ring and let M be an R-module. Assume
that N is a 2-absorbing submodule of M . Then

(1) For every element a, b ∈ R and every submodule K of M , abK ⊆ N implies
that ab ∈ (N :R M) or aK ⊆ N or bK ⊆ N .

(2) (N :R M) is a 2-absorbing ideal of R.

Proof. (1) Assume that ab /∈ (N :R M), aK * N and bK * N . Then ax /∈ N and
by /∈ N for some x, y ∈ K. As abx, aby ∈ N we have ay ∈ N and bx ∈ N . Now it
follows from ab(x + y) ∈ N that either a(x + y) ∈ N or b(x + y) ∈ N . Consequently,
either by ∈ N or ax ∈ N which are contradictions.

(2) Suppose that abc ∈ (N :R M). Then setting K = cM we have abK ⊆ N . As
N is 2-absorbing, it follows from (1) that ab ∈ (N :R M) or aK ⊆ N or bK ⊆ N .
Hence ab ∈ (N :R M) or ac ∈ (N :R M) or bc ∈ (N :R M).

Proposition 2. Let R be a commutative ring and M a cyclic multiplication R-
module. Then N is an n-absorbing submodule of M if and only if (N :R M) is an
n-absorbing ideal of R.

Proof. Let M be a cyclic R-module generated by m ∈ M . Let N be an n-absorbing
submodule of M . Assume that a1, . . . , an+1 ∈ R with a1 · · · an+1 ∈ (N :R M). For
every 1 ≤ i ≤ n, let âi be the element of R which is obtained by eliminating ai from
a1 · · · an. Assume that âian+1 /∈ (N :R M) for every 1 ≤ i ≤ n. Then âian+1m /∈ N .
So it follows from (a1 · · · an)(an+1m) ∈ N and the fact that N is n-absorbing that
a1 · · · an ∈ (N :R M), that is, (N :R M) is n-absorbing.

Conversely, assume that (N :R M) an n-absorbing ideal of R. Let a1, . . . , an ∈ R
and x ∈ M be such that a1 · · · anx ∈ N . There exists an+1 ∈ R such that x = an+1m.
Thus a1 · · · anan+1m ∈ N . So a1 · · · anan+1 ∈ (N :R m) = (N :R M). But (N :R M)
is an n-absorbing ideal of R, so there are n of the ai’s whose product is in (N :R M).
This implies that either a1 · · · an ∈ (N :R M) or there are n−1 of ai’s whose product
with x is in N , that is, N is n-absorbing.
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Conjecture 1. Let R be a commutative ring and let M be an R-module. If N is
an n-absorbing submodule of M , then (N :R M) is an n-absorbing ideal of R.

Let N be a proper submodule of a nonzero R-module M . Then the M -radical of
N , denoted by M -rad N , is defined to be the intersection of all prime submodules of
M containing N . It is shown in [21, Theorem 2.12] that if N is a proper submodule
of a multiplication R-module M , then M -rad N =

√
(N :R M)M .

Theorem 1. Let R be a commutative ring and M a faithful multiplication R-module.
If N is a 2-absorbing submodule of M , then M -rad N is a 2-absorbing submodule
of M .

Proof. Since N is a 2-absorbing submodule of M then the ideal (N :R M) is a
2-absorbing ideal of R by Proposition 1. Then by [7, Theorem 2.4] we have the two
following cases.

Case (1).
√

(N :R M) = p is a prime ideal of R. Since M is a multiplication
module, then M -rad N =

√
(N :R M)M = pM , where pM is a prime submodule of

M by [21, Corollary 2.11]. Hence in this case M -rad N is a 2-absorbing submodule
of M .

Case (2).
√

(N :R M) = p1 ∩ p2, where p1, p2 are distinct prime ideals of R that
are minimal over (N :R M). In this case, we have M -rad N =

√
(N :R M)M = (p1+

annM)M∩(p2+annM)M = p1M∩p2M , where p1M, p2M are prime submodules of
M by [21, Corollary 2.11, 1.7]. Consequently, M -rad N is a 2-absorbing submodule
of M by [22, Theorem 2.3].

Theorem 2. Let R be a ring and M an R-module. If Nj is an nj-absorbing sub-
module of M for every 1 ≤ j ≤ k, then N1 ∩ · · · ∩Nk is an n-absorbing submodule
of M for n = n1 + · · · + nk. In particular, if N1, . . . , Nn are prime submodules of
M , then N1 ∩ · · · ∩Nn is an n-absorbing submodule of M .

Proof. Let a1, . . . an ∈ R and m ∈ M with a1 · · · anm ∈ N1 ∩ · · · ∩ Nk := N
such that there are not n − 1 of the ai’s whose product with m lies in N . As
a1 · · · anm ∈ N1 ∩ · · · ∩ Nk, so a1 · · · amm ∈ Nj for every 1 ≤ j ≤ k. Therefore
a1 · · · an ∈ (Nj :R M) for every 1 ≤ j ≤ k since Nj is assumed to be an nj-absorbing
submodule of M and nj ≤ n. Therefore a1 · · · an ∈

⋂k
j=1(Nj :R M) = (N :R M),

that is, N is n-absorbing. The “ In particular” statement is clear.

Let N be a proper submodule of an R-module M . It is clear that if N is an
n-absorbing submodule, then it is an m-absorbing submodule of M for every inte-
ger m ≥ n. If N is an n-absorbing submodule of M for some positive integer n,
then define ωM (N) = min{n | N is an n-absorbing submodule of M}; otherwise, set
ωM (N) = ∞ (we will just write ω(N) when the context is clear). Moreover, we define
ω(M) = 0. Therefore, for any submodule N of M , we have ωM (N) ∈ N ∪ { 0,∞},
with ω(N) = 1 if and only if N is a prime submodule of M and ω(N) = 0 if and
only if M = N . Then ω(N) measures, in some sense, how far N is from being a
prime submodule of M . On can ask how ωM (N) and ωR((N :R M)) compare.

Corollary 1. Let M be an R-module.
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(1) If N1, . . . , Nk are submodules of M , then ω(N1∩· · ·∩Nk) ≤ ω(N1)+· · ·+ω(Nk).

(2) ω(N1 ∩ · · · ∩Nn) ≤ n, where N1, . . . , Nn are prime submodules of M .

Notation. Let R be a commutative ring and a1, a2, ..., an ∈ R. We denote by
âi the element a1 · · · ai−1ai+1 · · · an. In this case the definition of an n-absorbing
submodule can be reformulated as: the submodule N of the R-module M is called
n-absorbing if whenever a1, . . . , an ∈ R and m ∈ M with a1 · · · anm ∈ N , then either
a1 · · · an ∈ (N :R M) or âim ∈ N for some 1 ≤ i ≤ n.

Theorem 3. Let M be an R-module and N a p-primary submodule of M such that
pnM ⊆ N . Then N is an n-absorbing submodule of M . Moreover, ω(N) ≤ n. In
particular, if M is a multiplication module and pnM is a p-primary submodule of
M , then pnM is an n-absorbing submodule of M . Moreover, ω(pnM) ≤ n.

Proof. Assume that a1, . . . , an ∈ R and m ∈ M with a1 · · · anm ∈ N such that
âim /∈ N for every 1 ≤ i ≤ n. For every 1 ≤ i ≤ n, as aiâim ∈ N with âim /∈ N and
N is a p-primary submodule of M , we have ai ∈ p. Consequently, a1 · · · an ∈ pn ⊆
(N :R M), that is, N is an n-absorbing submodule of M .

Let R be a ring with identity and M an R-module. Then R(M) = R(+)M
with multiplication (a,m)(b, n) = (ab, an+ bm) and with additition (a,m)+(b, n) =
(a + b,m + n) is a commutative ring with identity and 0(+)M is a nilpotent ideal
of index 2. The ring R(+)M is said to be the idealization of M or trivial extension
of R by M . We view R as a subring of R(+)M via r → (r, 0). An ideal H is said
to be homogeneous if H = I(+)N for some ideal I of R and some submodule N of
M ; whence IM ⊆ N [14].

Theorem 4. Let I be an ideal of R and N a submodule of M . Let I(+)N be an
n-absorbing ideal of R(M) such that I(+)N is a homogeneous ideal of R(M). Then
I is an n-absorbing ideal of R and N is an n-absorbing submodule of M .

Proof. Assume that I(+)N is an n-absorbing ideal of R. Let a1, . . . , an+1 ∈ R
such that a1 · · · an+1 ∈ I, then (a1, 0)(a2, 0) · · · (an+1, 0) ∈ I(+)N . Since I(+)N is
an n-absorbing ideal, then (̂ai, 0) ∈ I(+)N for some 1 ≤ i ≤ n. So âi ∈ I for some
1 ≤ i ≤ n, that is, I is an n-absorbing ideal of R. Now, let a1, . . . , an ∈ R and
m ∈ M be such that a1 · · · anm ∈ M . Since I(+)N is a homogenous ideal of R(M),
we have (a1, 0)(a2, 0) · · · (an, 0)(0,m) ∈ I(+)N . Since I(+)N is an n-absorbing ideal
of R(+)M , either (a1, 0) · · · (an, 0) ∈ I(+)N or there exist n − 1 of (ai, 0)′s whose
product with (0,m) is in I(+)N . Then a1 · · · an ∈ I ⊆ (N :R M) or there are n− 1
of ai’s whose product with m is in N . Hence N is an n-absorbing submodule of
M .

Recall that a proper ideal I of an integral domain R is said to be divided if
I ⊂ Rc for every c ∈ R \ I, [11] and [6]. Generalizing this idea to modules we
say that a proper submodule N of an R-module M is divided if N ⊂ Rm for all
m ∈ M \N , [3].
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Lemma 1. Let R be a commutative ring and let M be a finitely generated faithful
multiplication R-module. If P is a divided prime submodule of M , then (P :R M) is
a divided prime ideal of R.

Proof. [3, Proposition 6].

Theorem 5. Let R be a commutative ring, M a finitely generated faithful multiplica-
tion R-module, and P = pM a divided prime submodule of M , where p = (P :R M)
is a prime ideal of R. If M -rad N = P and N is an n-absorbing submodule of M
for some positive integer n, then N is p-primary.

Proof. Note first that by [21, Theorem 2.12], M -rad N =
√

(N :R M)M . On the
other hand, M -rad N = P = pM by [21, Corollary 2.11]. Moreover, every finitely
generated faithful multiplication module is cancellation. So that p = (P :R M) =√

(N :R M). Assume that am ∈ N but a /∈ p. Then from am ∈ P , a /∈ (P :R M)
and P prime we get m ∈ P . By Lemma 1, p is a divided prime ideal of R. So
p ⊂ Ran−1 since a /∈ p. Therefore P = pM ⊂ Man−1, and hence m = an−1z
for some z ∈ M . Now it follows from anz = am ∈ N and an /∈ (N :R M) that
m = an−1z ∈ N since N is assumed to be n-absorbing. This shows that N is a
p-primary submodule of M .

Theorem 6. Let R be a ring and let M be a finitely generated faithful multiplication
R-module. Let Nil(M) ⊂ P be divided prime submodules of M . Then Pn is a
(P :R M)-primary submodule of M , and thus Pn is an n-absorbing submodule of M
with ω(Pn) ≤ n, for every positive integer n.

Proof. Since M is a faithful multiplication module, we have Nil(M) = Nil(R)M
by [2, Theorem 6]. On the other hand, M is a cancellation module by [21, Theorem
3.1]. Therefore Nil(R) ⊂ (P :R M) are divided prime ideals of R by Lemma 1. It
follows now from [5, Theorem 3.3] that (P :R M)n is a (P :R M)-primary ideal of R.
Hence Pn = (P :R M)nM is a (P :R M)-primary submodule of M by [12, Corollary
2]. Therefore Pn is n-absorbing by Theorem 3.

Corollary 2. Let R be an integral domain and let M be a faithful multiplication
prime R-module. Assume that P is a nonzero divided prime submodule of M . Then
Pn is an n-absorbing submodule of M for every positive integer n.

Proof. Since R is an integral domain and M is a prime module, then Nil(M) = 0
is a divided prime submodule of M by [2, Theorem 6].

Theorem 7. Let R be a Noetherian ring and let M be a finitely generated R-module.
Then every non-zero proper submodule of M is an n-absorbing submodule of M for
some positive integer n.

Proof. Let N be a p-primary submodule of M . So (N :R M) is a p-primary ideal
of R. Since R is a Noetherian ring, there exists a positive integer m for which
pm ⊆ (N :R M). Thus N is an m-absorbing submodule of M by Theorem 3. Now
assume that K is a proper submodule of M . Since M is a Noetherian module, K
is representable. Assume that K = N1 ∩ · · · ∩Nk is a primary decomposition of K,
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where Ni is a pi-primary submodule of M for any 1 ≤ i ≤ n. By the first part, each
Ni (1 ≤ i ≤ n) is an mi-absorbing submodule of M for some positive integer mi.
Now K is an n-absorbing submodule in which n = m1 + · · · + mk. Therefore the
result follows.

Let R be a commutative ring. The concept of strongly n-absorbing ideals of R
was introduced and studied in [5]. A proper ideal I of R is said to be a strongly
n-absorbing ideal of R if whenever I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R, then
the product of some n of the Ii’s is in I. It is clear that a strongly n-absorbing
ideal of R is also an n-absorbing ideal of R, and in [7, Theorem 2.13], it was shown
that these two concepts agree when n = 2. In [5, Corollary 6.9] it is shown that
they agree for Prüfer domains, and it is conjectured that these two concepts agree
for all positive integers n. Now let M be an R-module. It is easy to show that a
proper submodule N of M is prime if and only if whenever IL ⊆ N for an ideal I
of R and a submodule L of M , then either L ⊆ N or I ⊆ (N :R M). Let n be a
positive integer. We say that a proper submodule N of an R-module M is a strongly
n-absorbing submodule, if whenever I1I2 · · · InL ⊆ N for ideals I1, I2, . . . , In of R
and submodule K of M , then either I1I2 · · · In ⊆ (N :R M) or there are n − 1
of the Ij ’s whose product with L is contained in N . Thus a strongly 1-absorbing
submodule is just a prime submodule, and the intersection of n prime submodules
of M is a strongly n-absorbing submodule of M . It is also clear that every strongly
n-absorbing submodule of M is an n-absorbing submodule of M .

If N is a strongly n-absorbing submodule of M for some positive integer n, then
we define ω∗M (N) = min{n| N is a strongly n-absorbing submodule}; otherwise set
ω∗M (N) = ∞ and ω∗M (M) = 0. Then ω∗M (N) = 1 if and only if N is a prime
submodule of M , and ωM (N) ≤ ω∗M (N). Then ω∗M (N) ∈ N ∪ {0,∞}. Also, we
define Ω∗(M) = {ω∗M (N)| N is a proper submodule}; so {1} ⊆ Ω∗(M) ⊆ N ∪ {∞}.
Always ω∗(N1 ∩ · · · ∩Nm) ≤ ω∗(N1) + · · ·+ ω∗(Nm).

3. 2-absorbing submodules in multiplication modules

In this section we study 2-absorbing submodules of some specific modules M(e.g.
Dedekind module, Prüfer module, etc.), where M is a multiplication module.

Lemma 2. Let R be an integral domain and M a Bézout finitely generated faithful
multiplication R-module. If N is a 2-absorbing submodule and P a prime submodule
of M such that M -rad N = P , then P 2 ⊆ N . In particular, this holds if M is a
valuation module.

Proof. Since R is an integral domain and M is a Bézout faithful multiplication
R-module, then R is a Bézout ring by [1, Proposition 2.2]. On the other hand, by
Proposition 1, (N :R M) is a 2-absorbing ideal of R since N is assumed to be a
2-absorbing submodule of M . As M -rad N = P , there exists a prime ideal p or R
with P = pM . As M is a finitely generated faithful multiplication module, we have√

(N :R M) = p by [21, Theorem 2.12, Theorem 3.1]. Consequently, p2 ⊆ (N :R M)
by [5, Lemma 5.1]. Now we have P 2 = p2M ⊆ (N :R M)M = N . The “In
particular” statement is clear.
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The next result shows that 2-absorbing submodules of a valuation module M are
of the form Pm, where P is a prime submodule of M and m = 1 or 2.

Theorem 8. Let R be a an integral domain, and M a finitely generated faithful
multiplication R-module. In addition, if M is a valuation module, then the following
statements are equivalent for a submodule N of M :

(1) N is a 2-absorbing submodule of M .

(2) N is a p-primary submodule of M for some prime ideal p of R with p2M ⊆ N .

(3) N = P or P 2 for some prime submodule P (= M -rad N) of M .

Proof. (1) ⇒ (2) Assume that N is a 2-absorbing submodule of M . Then (N :R M)
is an n-absorbing ideal of R by Proposition 1. Moreover, M is a valuation module, so
R is a valuation domain by [1, Proposition 2.2]. It follows that

√
(N :R M) = p is a

prime ideal of R, and (N :R M) is a p-primary ideal of R with p2 ⊆ (N :R M) by [5,
Lemma 5.5]. Thus N is a p-primary submodule of M with p2M ⊆ (N :R M)M = N .

(2) ⇒ (3) Assume that N is a p-primary submodule of M witp2M ⊆ N . In this
case (N :R M) is a p-primary ideal of R. Moreover, it follows from p2M ⊆ (N :R
M)M that p2 ⊆ (N :R M) by [21, Theorem 3.1]. Now, by [13, Theorem 17.3], (N :R
M) = p or p2 with p =

√
(N :R M). In this case N = (N :R M)M = pMor (pM)2,

where P := pM is a prime submodule of M with P = pM =
√

(N :R M)M by [21,
Theorem 2.12].

(3) ⇒ (1) Assume that N = P or P 2 for some prime submodule P (= M -rad N)
of M . If N = 0, then it is 2-absorbing as M is assumed to be faithful. Moreover,
there will be nothing to prove if N = P . So we may assume that 0 6= N 6= P 2. Since
M is a valuation module, Nil(M) ⊂ P are divided prime submodules of M . In this
case, N = P 2 is a 2-absorbing submodule of M by Theorem 6.

Theorem 9. Let R be a commutative ring and M a faithful multiplication R-module.

(1) If M is a Dedekind module and if N is a 2-absorbing submodule of M , then
either N is a maximal submodule of M or N = N1N2 for maximal submodules
N1, N2 of M .

(2) If M is a Prüfer module and N a nonzero 2-absorbing submodule of M , then
N is a prime submodule of M or N = p2M is a p-primary submodule of M or
N = P1 ∩ P2, where P1 and P2 are nonzero prime submodules of M .

Proof. (1) Assume that M is a Dedekind module. Then R is a Dedekind domain
by [18, Theorem 3.5]. Now assume that N is a 2-absorbing submodule of M . Then
(N :R M) is a 2-absorbing ideal of R by Proposition 1. Consequently, by [5, Theorem
5.1], either (N :R M) is a maximal ideal of R or (N :R M) = m1m2 for maximal
ideals m1,m2 of R. It follows from [21, Theorem 2.5] that either N = (N :R
M)M is a maximal submodule of M or N = N1N2 for maximal submodules N1 =
m1M and N2 = m2M of M .

(2) Since M is a Prüfer faithful multiplication module, R is a Prüfer domain
by [10, Theorem 3.6]. Hence (N :R M) is a 2-absorbing ideal of R by Proposition
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1. It follows now from [7, Theorem 3.14] that (N :R M) is a prime ideal of R or
(N :R M) = p2 is a p-primary ideal of R or (N :R M) = p1 ∩ p2, where p1 and p2

are nonzero prime ideals of R. Hence, by [21, Theorem 2.11] and [12, Corollary 2],
N = (N :R M)M is a prime submodule of M or N = p2M is a p-primary submodule
of M or N = P1∩P2, where P1 = p1M and P2 = p2M are nonzero prime submodules
of M .
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