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ABSTRACT

This thesis focuses on proving a finite domination condition on bounded
chain complexes of finitely generated free R-modules where R is a strongly
Zn-graded ring.
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0. INTRODUCTION
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0.1 Topological and algebraic finite domination

This thesis focuses on an interesting generalisation of the characterisation of
algebraic finite domination of chain complexes. To outline the background
of the result, it seems best to begin by referring to topological finite domi-
nation.

Definition 0.1.1. A topological space X is finitely dominated if it is a

homotopy retract of a finite CW complex, that is if there exists a finite CW

complex K, maps f : X → K, g : K → X and a homotopy gf ' 1: X → X.

In the paper of Ranicki, [Ran95], the author discusses a number of results
pertaining to the finite domination properties of infinite cyclic covers of finite
CW complexes. In particular, by making use of Novikov rings, he produces
the following characterisation of finite domination for an infinite cyclic cover
of a finite CW complex:

Theorem 0.1.2 (Theorem 1 [Ran95]). Let X be a CW complex with uni-

versal cover X̃, and fundamental group π1(X) = π × Z with π a group, so

that Z[π1(X)] = Z[π][z, z−1]. Let C(Y ) be the cellular chain complex of the

CW complex Y . The infinite cyclic cover X = X̃/π is finitely dominated if

and only if X is Z[π]((z))-acyclic and Z[π]((z−1))-acyclic:

H∗(Z[π]((z))⊗Z[π][z,z−1] C(X̃)) = 0 = H∗(Z[π]((z−1))⊗Z[π][z,z−1] C(X̃)).
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The name Novikov ring stems from their use by Sergei Novikov in his
study of Morse theory. The above result of Ranicki is the natural place to
begin the discussion of Novikov rings in this work as it is the topological
equivalent of the algebraic result studied in this thesis. Helpfully, in the
same paper, a related key result of algebraic finite domination is presented.
The key definition of algebraic finite domination, that is investigated in this
work, is the following:

Definition 0.1.3. Let L be a unital ring, and let K be a subring of L. A

chain complex C of (right) L-modules is K-finitely dominated if C, consid-

ered as a complex of K-modules, is a retract up to homotopy of a bounded

complex of finitely generated free K-modules.

Theorem 0.1.4. From [Ran85, Proposition 3.2. (ii)], we know that an L

complex C is K-finitely dominated if and only if it is homotopy equivalent

to a bounded complex of finitely generated projective K-modules.

The relevant result, that transfers [Ran95, Theorem 1] to the algebraic
setting, is the following:

Theorem 0.1.5 (Ranicki [Ran95, Theorem 2]). Let R be a unital ring, and

let R[t, t−1] denote the Laurent polynomial ring in the indeterminate t. Let

C be a bounded chain complex of finitely generated free R[t, t−1]-modules.

The complex C is R-finitely dominated if and only if both

C ⊗
R[t,t−1]

R((t−1)) and C ⊗
R[t,t−1]

R((t))

have vanishing homology in all degrees. Here we write R((t)) = R[[t]][t−1]

for the ring of formal Laurent series in t, and similarly R((t−1)) = R[[t−1]][t]

stands for the ring of formal Laurent series in t−1.

The rings R((t)) and R((t−1)) are called Novikov rings. We state that a
complex of R[t, t−1]-modules C has trivial Novikov homology whenever the
complexes C ⊗R[t,t−1]R((t−1)) and C ⊗R[t,t−1]R((t)) are acyclic. Hence, we
can summarise the result thus: A bounded chain complex of finitely generated
free R[t, t−1]-modules C is R-finitely dominated if and only if it has trivial
Novikov homology. The main result of this thesis generalises Theorem 0.1.5
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and as we progress towards generality we look at more general concepts of
trivial Novikov homology.

It therefore is necessary to spend some time discussing what Novikov
rings actually are in these higher generalities, beginning with the simplest
case of polynomial rings. The above rings R((t)) and R((t−1)) are the versions
built upon a Laurent polynomial ring in one indeterminate. These can be
seen as localisations of power series R[[t]], R[[t−1]] where R is a division ring.

When extending to Novikov rings in two indeterminates we have more
choices than just orientation. Starting with a Laurent polynomial ring
R[x, x−1, y, y−1] we have a collection of power series

R[[x, y]], R[y, y−1][[x]], R[x, x−1][[y]].

Let R∗((x, y)) be the ring with elements in the set

{
∞∑

a,b≥t
ra,bx

ayb : t ∈ Z, ra,b ∈ R}.

The following rings constitute the Novikov rings that correspond directly to
the Novikov homology of a chain complex of R[x, x−1, y, y−1]:

R[x, x−1]((y)) R[x, x−1]((y−1))

R[y, y−1]((x)) R[y, y−1]((x−1))

R((x, y)) R((x−1, y−1))

R((x, y−1)) R((x−1, y)).

There are also similar rings, such as R((x))((y)) which are not directly asso-
ciated to the definition of Novikov homology but feature in the proof given
in [HQ15]. In fact, trivial Novikov homology for a chain complex with sat-
isfactory conditions on it will imply that the tensor product of the complex
with any of these rings are acyclic as an implication. Specifically, these rings
are:

R((x))((y)) R((x))((y−1))

R((x−1))((y)) R((x−1))((y−1))

and similar ones with x and y swapped. The first extension of [Ran95,
Theorem 2] by my supervisor Thomas Hüttemann and David Quinn was to
the two dimensional case:
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Theorem 0.1.6 (Hüttemann and Quinn[HQ15, Main Theorem 1.1.2]). Write

L = R[x, x−1, y, y−1]. Let C be a bounded chain complex of finitely generated

free L-modules. Then the following two statements are equivalent:

1. The complex C is R-finitely dominated, i.e., C is homotopy equivalent,

as an R-module chain complex, to a bounded chain complex of finitely

generated projective R-modules.

2. The eight chain complexes listed below are acyclic (all tensor products

are taken over L):

C ⊗R[x, x−1]((y)) C ⊗R[x, x−1]((y−1))

C ⊗R[y, y−1]((x)) C ⊗R[y, y−1]((x−1))



 (0.1.6.1a)

C ⊗R((x, y)) C ⊗R((x−1, y−1))

C ⊗R((x, y−1)) C ⊗R((x−1, y))



 (0.1.6.1b)

Condition 2 outlines the concept of Novikov homology for rings with two
indeterminates.

In a different direction, Thomas and myself extended Theorem 0.1.5 to
bounded chain complexes of strongly Z-graded ring modules. To even state
the result in this context, we need to quickly note the definition of a Z-graded
ring.

Definition 0.1.7. A Z-graded ring is a (unital) ring R equipped with a

direct sum decomposition into additive subgroups R =
⊕

k∈ZRk such that

RkR` ⊆ Rk+` for all k, ` ∈ Z, where RkR` consists of the finite sums of ring

products xy with x ∈ Rk and y ∈ R`. The summands Rk are called the

(homogeneous) components of R; elements of Rk are called homogeneous of

degree k. — Following Dade [Dad80] we call R a strongly Z-graded ring if

RkR` = Rk+` for all k, ` ∈ Z.

The Z-graded ring is a generalisation of a Laurent polynomial ring in one
indeterminate. For a Laurent polynomial ring T [x, x−1], T is the ground ring
and hence the ring that the relevant chain complex will be finitely dominated
over is the ring T itself. For the Z-graded ring R the subring that plays this
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role is R0, the component of R indexed by 0, which is known to be a unital
ring when R is itself unital [Dad80, Proposition 1.4].

Next, we need to discuss the analogue of Novikov rings. For one di-
mension, this is fairly simple — we have two, R∗((t)) =

⊕
t<0
Rt ⊕

∏
t≥0
Rt and

R∗((t−1)) =
∏
t<0
Rt ⊕

⊕
t≥0
Rt. Trivial Novikov homology in this case is related

to tensoring with these rings over R.

Theorem 0.1.8 (Hüttemann and Steers [HS16, Theorem 1.3]). Let R =
⊕

k∈ZRk be a strongly Z-graded ring, and let C be a bounded chain complex

of finitely generated free R-modules. The complex C is R0-finitely dominated

if and only if both

C ⊗
R
R∗((t−1)) and C ⊗

R
R∗((t))

have vanishing homology in all degrees.

Thomas and myself have also worked on the case where the ring is a
strongly Z2-graded ring, which has produced a paper that is at the time of
writing being finalised. The eight Novikov rings associated with a Z2-graded
ring correspond with the eight Novikov rings seen in condition 2 of Theorem
0.1.6.

This paper deals with the analogous case for when R is a strongly Zn
graded ring. As the number of indeterminates grows, we will make sense of
the collection of Novikov rings for a Laurent polynomial of n indeterminates
by associating each ring with a flag of faces of a cube S = [−1, 1]n. Thomas
and David worked on the case with a Laurent polynomial in n indetermi-
nates. The result can be seen in [HQ16, Theorem III.6.4], broadly speaking
it deals with a more general collection of homological conditions but with a
class of rings more specific than that looked at in this thesis.

Another result that looks at a similar case is from Schütz.

Theorem 0.1.9 (Schütz [Sch06, Theorem 4.7]). Let G be a group and C be

a bounded chain complex of finitely generated free R[G]-modules. Let

R̂Gχ = {f : G→ R|∀t ∈ R : #
(

supp(f) ∩ χ−1
(
[t,∞)

))
<∞}.

Suppose that N is a normal subgroup of G with quotient G/N ∼= Zn a free

Abelian group of finite rank. The complex C is R[N ]-finitely dominated if
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and only if for every character χ : G→ R which is trivial on N the complex

C ⊗
R[G]

R̂Gχ is acyclic.

This result effectively uses infinitely many conditions, while this paper
has managed to express a similar result in finitely many conditions. Pre-
cisely, the ring R[G/N ] is a specific strongly Zn-graded ring.

0.2 Structure of the thesis

The first chapter introduces the two key definitions required for the main
result. Firstly, I define strongly Zn-graded rings and their properties, includ-
ing a number of key characterisations and the partition of unity. Secondly,
the definition of the generalised Novikov ring. These are the analogues of
Novikov rings and power series for the polynomial case in the graded ring
case.

The second chapter involves proving one direction of the actual result,
that trivial Novikov homology implies finite domination, introducing a num-
ber of concepts to better explain Novikov rings to this end. This section will
feature a canonical resolution of R0, for a strongly Zn-graded ring R.

The third chapter deals with setting conventions and forming a category
whose objects can be totalised as iterated mapping cones of maps in a cate-
gory of chain complexes of R-modules, this will have left and right adjoints
to the category of chain complexes of R-modules. The objects of these map-
ping cone categories, N -cubes, will be of central use in the final section,
when proving that finite domination implies that the Novikov homology is
trivial.

The fourth chapter goes through the other direction, making use of the
N -cube definition. This section will feature a canonical resolution of R for
a given strongly Zn-graded ring.

Finally, the Appendix consists of a reproduction of the paper worked on
by my supervisor and myself.

0.3 Setting conventions

We take a moment to set a few conventions. Firstly, given a map between
two direct sums f : A⊕B → C ⊕D we consider f as a matrix

f =

(
w x
y z

)
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with

w : A→ C x : B → C

y : A→ D z : B → D.

That is we view elements of A ⊕ B as a column vector with the matrix f
acting on the left.

It is worth taking a moment to explain, for the total avoidance of doubt,
what a chain complex is. For a ring R, given a collection of R-modules
(Ck)k∈Z and maps dk : Ck → Ck−1 satisfying dkdk−1 = 0, a chain complex
C is a pair:

C = (Ck, d)

where Ck is the module at position k. In particular, due to potential confu-
sion later on, we avoid using any suspension definition, rather I will express
chain complexes where the index of the modules have changed explicitely.

Mapping cones feature heavily in this paper. I settle on the following
sign convention.

Definition 0.3.1 (Mapping cone). Let f : C → D be a chain map between

two chain complexes. The mapping cone of f , written cone(f), is a chain

complex (
Ck−1 ⊕Dk,

(
dCk−1 0

fk−1 −dDk

))
.

Note that this is a non-standard convention, but a mapping cone us-
ing this convention is isomorphic to the more standard convention (i.e.,(
−dCk−1 0
fk−1 dDk

)
).

Definition 0.3.2. Let C be a right R-module andD a left R-module. Define

the tensor product of the chain complexes over R, C ⊗
R
D, as the complex

with modules

(C ⊗
R
D)n =

∑

k+`=n

Ck ⊗D`

and boundary

d(x⊗ y) = d(x)⊗ y + (−1)deg(x)x⊗ d(y).

We define double complexes and their totalisations.
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Definition 0.3.3. Define a double complex as a collection of R-modules

Ca,b, indexed over Z2, and maps

dh : Ca,b → Ca−1,b, dv : Ca,b → Ca,b−1

that satisfy

dhdh = 0 = dvdv

and

dhdv = −dvdh.
This convention provides that the boundaries anti-commute. This en-

sures that the obvious candidate for totalisation is a chain complex.

Definition 0.3.4. Given a double complex C = {Ca,b, dh, dv}, define the

totalisation of the double complex, Tt(C), as the complex with module at

degree k ⊕

a+b=k

Ca,b

and boundary consisting of

dh + dv

applied to each summand Ca,b.

Remark 0.3.5. For a double complex C, the boundary map of Tt(C) sat-

isfies (dh + dv)(dh + dv) = dhdh + dhdv + dvdh + dvdv = 0, hence Tt(C) is a

chain complex.

Both of these definitions follow [HQ15], so that we can lift the following
result from it for later use.

Lemma 0.3.6. Let f : C → D be a map of double complexes which are

concentrated in finitely many columns. If f is a quasi-isomorphism on each

column or on each row, then the induced map

Tt(f) : Tt(C)→ Tt(D)

is a quasi-isomorphism.

Proof. Seen in [HQ15, Lemma 2.2.2].



1. DEFINITION OF GENERALISED NOVIKOV RINGS

As noted in the introduction, we are interested in a generalised case of
polynomial rings in n indeterminates, strongly Zn-graded rings. We now
need to define and investigate the Novikov rings that are used to encode the
condition of trivial Novikov homology in the strongly Zn-graded case. After
defining strongly Zn-graded rings we move onto defining Novikov rings in
this case.

1.1 Strongly Zn-graded rings

This section’s purpose is to introduce the Zn-graded rings. We can define
a broad collection of rings, G-graded rings, where G is a general group.
However we are mainly interested in Zn-graded rings.

Definition 1.1.1. For n ∈ N, a Zn-graded ring is a (unital) ring R equipped

with a direct sum decomposition into additive subgroups R =
⊕

k∈Zn Rk

such that RkR` ⊆ Rk+` for all k, ` ∈ Zn, where RkR` consists of the finite

sums of ring products xy with x ∈ Rk and y ∈ R`. The summands Rk

are called the (homogeneous) components of R; elements of Rk are called

homogeneous of degree k. If R satisfies RkR` = Rk+` for all k, ` ∈ Zn then

we call R a strongly Zn-graded ring.

The paramount case is the Laurent polynomial ring V [x1, x
−1
1 , ..., xn, x

−1
n ]

in n variables over a ring V , which for ρ =
∑n

1=jmjej ∈ Zn has homogenous
component

V [x1, x
−1
1 , . . . , xn, x

−1
n ]ρ = {vxm1

1 xm2
2 , . . . , xmnn : v ∈ V }

for mj ∈ Z. This is, in particular, a strongly Zn-graded ring.
This definition can be extended from Zn to general groups, but generally

we will focus only on Zn-graded rings in this work. All rings used in this
thesis will be unital, on which note the following ought to be stated.
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Remark 1.1.2. Whenever R is unital, R0 = R0Zn is a unital ring [Dad80,

Proposition 1.4].

Definition 1.1.3. Given two Zn-graded rings R,R′, we call a ring homo-

morphism f : R→ R′ a Zn-graded map if f respects the grading, that is for

all k ∈ Zn, f(Rk) ⊆ R′k.

A characterisation of strongly Zn-graded is needed next.

Definition 1.1.4 (Partition of unity of type (−ρ, ρ)). Given a Zn-graded

unital ring R and some ρ ∈ Zn, an expression of the form

1 =

q∑

j=1

ujvj ,

where uj ∈ R−ρ, vj ∈ Rρ, is called a partition of unity of type (−ρ, ρ).

Proposition 1.1.5 (Characterisation of strongly graded rings). The follow-

ing statements are equivalent:

1. The ring R is strongly graded.

2. For every ρ ∈ Zn there is at least one partition of unity of type (ρ,−ρ).

3. There is at least one partition of unity of each of the types (ek,−ek)
and (−ek, ek) for all ek in a basis ek : 1 ≤ k ≤ n of Zn.

Proof. For the equivalence of statements (1) and (2) see Proposition 1.6 of

[Dad80]. That (2) implies (3) is trivial.

For the converse, suppose that 1 =
∑

j ±kuj ±kvj is a partition of unity

of type (±ek,∓ek) for all 1 ≤ k ≤ n.

For all 1 ≤ k ≤ n let ±ku be the association

±ku : a 7→
∑

j

±kuja±kvj .

In particular ±ku(1) = 1, making it a partition of unity of type (±ek,∓ek).
It follows that ±kup(1) is a partition of unity of type (±pek,∓pek).
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For a general ρ =
∑n

k=1mkek ∈ Zn, where δk = |mk|/mk,

δ11u
m1

δ22u
m2 . . . δnnu

mn(1)

is a partition of unity of type (ρ,−ρ).

Proposition 1.1.6. If R is strongly graded, then each Rk is finitely gener-

ated projective as both a right and left R0-module.

Proof. See Proposition 1.6 of [HS16].

Now I want to add the definition of a Zn-graded module. We will need
to use these later on in the proof.

Definition 1.1.7 (Zn-Graded R-module). For a unital Zn-graded ring R,

a Zn-graded right R-module is an R-module M with a direct sum decompo-

sition into right R0-modules

M =
⊕

ρ∈Zn
Mρ

such that

∀ρ, ` ∈ Zn : MρR` ⊆Mρ+`.

Call
⊕
ρ∈Zn

Mρ the Zn-grading of M , and Mρ the ρ-component of M . When

MρR` = Mρ+` for all ρ, ` ∈ Zn, we call M a strongly Zn-graded R-module.

We want to give some examples of strongly Zn-graded rings that are not
Laurent polynomial rings.

Example 1.1.8. Let K be a field. Consider the Z-graded ring

K = K[A,B,C,D]/AB + CD − 1

with Z-grading resulting from letting A,C have degree 1 and B,D have

degree −1. That the ring is strongly Z-graded follows immediately by the

fact that the relation AB+CD−1 = 0 makes AB+CD a partition of unity

of type (1,−1) and, due to commutativity of indeterminates, there is also
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a partition of unity BA + DC of type (−1, 1). It can be shown via ideas

from Gröbner basis theory that K is not a Laurent polynomial ring in one

indeterminate as it does not contain a unit of degree 1.

Consider the strongly Zn-graded ring

K̂ =
n−times

K ⊗
K0

K ⊗
K0

. . . ⊗
K0

K

which can be seen to have a strongly Zn-graded structure as the strong

grading of K provides that the necessary partitions of unity are present as

in point (3) of Proposition 1.1.5. It also follows that K̂ is not a Laurent

polynomial ring in n indeterminates.

Example 1.1.9. For a group G and a ring R let R[G] be the group ring of

G over R where for g ∈ G,

R[G] =
⊕

g∈G
R · g.

Taking the same situation as Theorem 0.1.9, that is let there be a normal

subgroup N of G such that G/N = Zn, we see that the ring R[G/N ] is a

Zn-graded ring with grading where for [g] = a ∈ Zn,

R[G]a =
⊕

n∈gN
R · n

and in particular

R[G]0 = R[N ].

1.2 Generalised Novikov Rings

Now we define the collection of generalised Novikov rings. The main defini-
tion of this section will cover a larger collection of rings than those pertaining
directly to what we will come to refer to as Novikov homology. Once we
have set the definition we can state the result that is the main concern of
this thesis.

We begin by setting some notation, all of which will feature in the def-
inition of a generalised Novikov ring. Let S be the n-dimensional cube
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[−1, 1]n ⊂ Rn and let {ek : 1 ≤ k ≤ n} be the standard basis of Zn. We are
concerned with the collection of non-trivial subfaces F of S.

Let ηF be the sum of inward pointing normal vectors of length 1 of the
(n− 1)-dimensional faces that contain F . Also set ηS = 0.

Example 1.2.1. Let S = [−1, 1]2 and label the faces like so:

vtl
εt

vtr

S

vbl

εl

εb
vbr

εr

where v stands for vertex, ε stands for edge and S stands for square. Then

ηvbl = (1, 1), ηεb = (0, 1) and ηS = 0.

Remark 1.2.2. For general n, the polytope S = [−1, 1]n is a simple poly-

tope and any given face F is contained in precisely codim(F ) many faces of

dimension n− 1.

Let R be a Zn-graded ring for n ∈ N. Consider the collection A of maps

f : Zn → R =
⊕

a∈Zn
Ra

such that f(a) ∈ Ra for all a ∈ Zn. The ring R can be thought of as the
subcollection of A where for all f ∈ R, the support supp(f) of f is a finite
subset of Zn. By considering subcollections of A whose maps satisfy other
conditions, we can form rings that are the analogue of the Novikov rings
and power series rings associated with polynomial rings.

Before we can actually present the definition of Novikov rings we still
have a few more definitions to go through.

Definition 1.2.3. Let F be a non-empty face of S. For a set A ⊆ Rn, define

pos(A) as the set of linear combinations of elements of A with non-negative

coefficients, that is pos (A) = {∑i λiai : ai ∈ A, λi ≥ 0}. Let

BF = pos
(
{(s− f) : s ∈ S, f ∈ F}

)
⊆ Rn

which we call the barrier cone of F in relation to S, and TF = BF ∩Zn the

barrier lattice of F in relation to S for all faces F ⊆ S.
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Example 1.2.4. Again let S = [−1, 1]2, then TS is Z2.

For the bottom edge εb = {vbl, vbr} of the square S, Tεb is the intersection

of the upper half plane of R2 with Z2.

For the bottom left vertex vbl of S, Tvbl is the top right quadrant of R2

intersected with Z2.

Remark 1.2.5. For any n − 1 dimensional face G where ηG = eG, it can

be shown that

TG = {ρ =
n∑

i=1

ρiei ∈ Z : ρG ≥ 0},

i.e., the half space of Zn with positive coefficients of eG. Similarly for −G
which will satisfy η−G = −eG,

T−G = {ρ =
n∑

i=1

ρiei ∈ Z : ρG ≤ 0}.

Remark 1.2.6. If F ⊆ F ′, then the definition of the barrier cone immedi-

ately informs us that BF ⊆ BF ′ and hence TF ⊆ TF ′ . In fact, if F = ∩iF ′i ,
then one can show that TF = ∩iTF ′i .

Definition 1.2.7. We call a collection F of faces of S with the following

property F = {F0 ⊂ F1 ⊂ ... ⊂ F`}, F0 6= ∅, 0 ≤ m ≤ n a flag of faces of S.
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Definition 1.2.8. For a given face F ⊆ S, define the caterpillar of F as

CP(F) = {non-empty faces F of S | Fi−1 ⊆ F ⊆ Fi, for some i, 0 ≤ i ≤ `}

with F−1 = ∅.

Example 1.2.9. Firstly note that for any n where S = [−1, 1]n CP({S})
is the collection of every non-empty subface of S including itself. Now let

S = [−1, 1]2 be labelled as above. Then:

• CP({S}) = {vtl, vtr, vbr, vbl, εt, εr, εb, εl, S}.

• CP({vtl, εt, S}) = {vtl, εt, S}.

• CP({εt, S}) = {vtl, vtr, εt, S}.

• CP({εt}) = {vtl, vtr, εt}.

• CP({vtl, S}) = {vtl, εt, εl, S}.

• CP({vtl}) = {vtl}.

The caterpillar has a largest face that is precisely the largest face of
the flag. Generally speaking, the more faces in the flag and the lower the
dimension of the largest face, the fewer faces are in the caterpillar. At the
extremes, for a vertex v, CP({v}) = {v} while CP({S}) is the set of all non-
trivial subfaces of S. If a flag contains a face at every dimension 0 ≤ i ≤ n
then the caterpillar contains only the faces of the flag. We see the same
picture if a flag contains a face of every dimension smaller than its largest
face.

Definition 1.2.10. Call a flag F = {F0 ⊂ F1 ⊂ · · · ⊂ F`} maximal if ` = n.

In particular F is maximal if and only if there is a face of each dimension

within the flag, in particular S ∈ F .

It follows that for F maximal, CP(F) = F .
Now we can write down the key definition of this section, based on private

communication with David Quinn.
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Definition 1.2.11 (Generalised Novikov Group). Let S ⊆ Rn be the n-

dimensional cube [−1, 1]n and F = {F0 ⊂ F1... ⊂ F`}, 1 ≤ ` ≤ n a flag

of faces of S with ∅ 6= F0, 0 ≤ m ≤ n. The generalised Novikov group

associated with F , denoted R∗((F)), is the set of maps

f : Zn → R

such that f(k) ∈ Rk for all k ∈ Zn satisfying the following condition in two

parts:

(1) The support of f is in the barrier lattice of the largest face of F , i.e.

supp(f) ⊆ TF` .

For each F ∈ CP(F):

(2-F ) For all q ∈ Zn there exists k � 0 such that

kηF +
((
q + (−TF )

)
∩ supp(f)

)
⊂ TF .

Example 1.2.12. For n = 1, the three faces of S, {vl, vr, S} form the

following diagram

vl
S

vr

and there are five flags of faces F that can be formed from the three faces.

Note that ηvl = 1, ηvr = −1 and Tvl = Z≥0 = −Tvr , Tvr = Z≤0 = −Tvl .
Hence given a general Z-graded ring R there are five generalised Novikov

groups R∗((F)) that can be formed.

• Firstly for the flag {S} all three faces of S are contained within the

caterpillar. Condition (1) is trivial in this case as TS = Z2 so there is

no restriction on the support. Similarly, (2-S) has no effect. Condition

(2-vl) means that a element f of R∗(({S})) must have a lower bound

on its support within Z. If not, then there will be no k such that the

k +
(
q + (−Tvl)

)
∩ supp(f) is contained within Tvl , the non-negative
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values of Z. Dually, (2-vr) ensures that the support of every element

of R∗(({S})) has an upper bound. Hence R∗(({S})) = R and this will

also follow for any Zn graded ring and any n.

• For the two flags {vl} and {vr} we only have a single face within the

caterpillar, the one face within the flag. In both cases the condition (1)

is the strongest. For example, for an element of R∗(({vl})), (1) tells us

that the support must be contained within the non-negative part of Z.

We have already discussed that condition (2-{vl}) puts a lower bound

on the support at some point hence fixing it at 0 is clearly stronger

so there is nothing left to think about. Hence R∗(({vl})) =
∏
t≥0
Rt. If

we let R = V [x, x−1], then in this case R∗(({vl})) = V [[x]]. Dually,

R∗(({vr})) =
∏
t≤0
Rt and for R = V [x, x−1] then R∗(({vr})) = V [[x−1]].

These are precisely the power series.

• Finally for the flags {vl, S} and {vr, S} there are in both cases two

faces in the caterpillar. Considering R∗(({vl, S})), note that (1) and

(2-S) are trivial. The only condition that implies there is a bound-

ary on the support of an element of the ring is (2-vl). We know this

puts a lower bound on the support of an element. Hence, we can

write R∗(({vl, S})) =
⊕
t<0
Rt ⊕

∏
t≥0
Rt. If we let R = V [x, x−1], then

R∗(({vr, S})) = V ((x)), Dually, for the flag {vr, S} then R∗(({vl, S})) =
∏
t≤0
Rt ⊕

⊕
t>0
Rt and for R = V [x, x−1], R∗(({vr, S})) = V ((x−1)). These

two cases are precisely the Novikov rings that encode Novikov homol-

ogy in the case where R is a strongly-Z-graded ring.

We now will discuss the collection of generalised Novikov groups for
R = V [x, x−1, y, y−1], a Z2-graded ring with Ra,b = {vxayb : v ∈ V }. Let
S = [−1, 1]2 be labelled as before.

Let’s consider the generalised Novikov groups associated to the flag con-
sisting of F = {εb, S} where εb is the bottom face of S. The caterpillar has
precisely 4 faces (meaning condition 2 has to be considered for 4 different
faces) — εb, S and the two vertices contained within εb, namely vbl and vbr.
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Condition (1) is trivial in this case as S ∈ F . Condition (2-S) is also trivial.

Condition (2-εb) tells us that for any q = (qx, qy), we can find k such that
the subspace q + (−Tεb) ∩ supp(f), which is contained within the bottom
half of the plane Z2 below the line y = qy inclusive, can be shifted by (0, k)
until being entirely contained within εb, the half of the plane above y = 0
inclusive. As an implication, for any given element r ∈ R∗((F)), for the
collection of subspaces of Z2 over y ∈ Z

{(x, y) : x ∈ Z}

there is some p ∈ Z such that for y ≤ p the intersection of the support of r
and this subspace is empty. This is a global bound on the support of r.
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Condition (2-vbl) tells us that for any given element r ∈ R∗((F)) and
any fixed point q = (qx, qy) we can generate some k such that the subspace
q + (−Tvbl), which is precisely the set

{(x, y) : x ≤ qx, y ≤ qy},

intersected with the support of an element r can be shifted by kηvbl = k(1, 1)
and it will be completely contained within the top right quadrant

{(x, y) : x, y ≥ 0}.

In particular, for a given element r and q, we can find γx, γy ∈ Z such that
the sets

{(qx, y) ∈ Z2 : y ≤ γy}
and

{(x, qy) ∈ Z2 : x ≤ γx}
have empty intersection with the support of r, that is, the points can only
be shifted finitely often in the directions of x or y before they are no longer
contained within the support of r. In the y direction, this condition is
strictly weaker than that of (2-εb). However, in the x direction this is a new
condition. Together, (2-εb) and (2-vbl) tell us that for a fixed r ∈ R∗((F))
and fixed y, there is a lower bound on the possible values of x such that
(x, y) is contained within the support of r. However there need not be a
global lower bound on the possible values of x across the entire ring.
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Similarly, (2-vbr) tells us that for any given element r ∈ R∗((F)) and
any fixed point q = (x, y) we can generate some k such that the subspace
q + (−Tvbr), which is precisely the set

{(x, y) : x ≥ qx, y ≤ qy},

intersected with the support of an element r can be shifted untill it is com-
pletely contained within the top left quadrant

{(x, y) : x ≤ 0, y ≥ 0}.

It also puts a local upper bound on values of x for fixed y. Taken
together, (2-vbl) and (2-vbr) show that for all b ∈ Z, the horizontal lines

{(x, b) : x ∈ Z}

have finite intersection with the support of any element of R∗((F)). The
ring R∗((F)) can therefore be seen to be a generalised analogue of a power
series in y over a Laurent polynomial in x over a ring. For example if
R = V [x, x−1, y, y−1] then R∗(({εb, S})) would be the ring V [x, x−1]((y)). To
see an example of the distinction between global bounds and local bounds,
observe that

∑
`≥0 x

`y` ∈ V [x, x−1]((y)) while
∑

`≥0 x
` /∈ V [x, x−1]((y)).

In general, the collection of generalised Novikov groups forR = V [x, x−1, y, y−1],
up to orientation, are the following:

• R∗(({S})) = V [x, x−1, y, y−1].
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• R∗(({εb, S})) = V [x, x−1]((y)).

• R∗(({εb})) = V [x, x−1][[y]].

• R∗(({vbl, S})) = V ((x, y)).

• R∗(({vbl})) = V [[x, y]].

• R∗(({vbl, εb, S})) = V ((x))((y)).

• R∗(({vbl, εb})) = V ((x))[[y]].

It is clear that R∗((F)) will form an abelian group under addition of
maps. However we want the generalised Novikov groups to be rings. The
next step is to show the obvious candidate of ring action is satisfactory for
general Zn-graded rings.

Lemma 1.2.13. Let F be a maximal flag. For all f, g ∈ R∗((F)), the sum

(f · g)(t) =
∑

t=a+b

f(a) · g(b)

involves only finitely many non-zero terms for every t ∈ Zn.

Proof. Begin, for clarity, by considering the case for Z2. Specifically we look

at the associated group to the flag consisting of the whole square, the lower

edge εb and the lower left vertex vbl, that is

R∗(({vbl, εb, S})).

Let f, g ∈ R∗(({vbl, εb, S})). I argue that for all t ∈ Z2, (f · g)(t) is a finite

sum. This is done by observing that there are only finitely many possible

values of b = t − a such that f(a) · g(t − a) is non-zero. Condition (2-εb)

tells us that for every individual element there is a global lower bound fy

on the y-coordinates of elements in the support of f . Similarly (2-εb) tells

us there is a lower bound gy for g. Let uy = fy + gy. If t ∈ Z2 is such that

the y-coordinate ty of t satisfies ty < uy, then (f · g)(t) = 0 as either the

y-coordinate of a is below fy or otherwise the y-coordinate of t− a is below

uy − fy = gy since the sum of the y-coordinates of a and t − a must equal
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the y-coordinate of ty, which is strictly smaller than uy. Therefore we can

restrict attention to ty ≥ uy.
So assume that ty ≥ uy. We argue that for elements a = (ax, ay), there

is finitely many ay such that the product f(a) · g(t − a) is non-zero. Let

py < min(fy, gy). Note that ty − py ≥ uy − py > uy − gy > fy. Whenever

ay < py, f(a) = 0 and whenever ay > ty − py, it follows that g(t− a) = 0 as

ty − ay < ty − (ty − py) = py < gy. Hence ay must be contained between py

and ty − py.
For q = (tx, ty−py) find large enough kf , kg that satisfy the condition (2-

vbl) for f and g respectively. Recall that ηvbl = (1, 1). Let k = max(kf , kg).

Then, for all r = (rx, ry) ∈ Z2 where ry is bounded by py and ty − py,

if rx ≤ −k then f(r) = 0 and if rx ≥ tx + k then g(t − r) = 0, as the

condition (2-vbl) tells us that, beneath y = ty − py, elements of the supports

of both f and g have x values bounded below by −k. This means that the

x-coordinates of a and b must be between −k and t+ k to make f(a) · g(b)

non-zero. Hence, for a given t, there are only finitely many pairs a, t−a such

that f(a) · g(t − a) providing the result. Other two dimensional, maximal

flag cases follow with similar arguments.

Now, to show the result in the Lemma for any n, we argue using induc-

tion. Let F be a maximal flag, and let σ be the ordering of n such that σi is

the index of the unique member (unique, as the flag is maximal) of the set

{±ej : 1 ≤ j ≤ n}

such that only one of eσi or −eσi are contained in TF but both ±eσi are

contained within the barrier lattice of any higher dimensional face in the

flag. We can follow the argument for Z2 above to show that for a given

t the set of choices of a such that f(a) · g(t − a) is non-zero has bounds

in the directions ±eσn ,±eσn−1 . If we know that the possible a satisfying

f(a) · g(t − a) 6= 0 are bounded in the directions ±eσn , ...,±eσz for a fixed

2 ≤ z ≤ n − 1 , then an similar argument to before will show that there

are bounds in the ±eσz−1 directions as well (i.e., for the face F of dimension
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z − 1 contained within the maximal flag, generate k′ for a satisfactory q′

with (2-F )).

Hence we know from induction that there is a finite number of a satisfying

the non-zero condition, making the sum
∑

a+b=t

f(a) · g(b) finite for all t ∈
Zn.

Lemma 1.2.14. When F is maximal, R∗((F)) is a ring under the operation

R∗((F))×R∗((F))→ R∗((F)),

(f · g)(k) =
∑

k=a+b

f(a) · g(b).

Proof. The only non-trivial thing we need to show is that f · g ∈ R∗((F)) for

f, g ∈ R∗((F)), distributivity and associativity will follow immediately from

the structure of R. Let f, g ∈ R∗((F)) for a maximal flag F . To see that

closure is satisfied, begin by noting that condition (1) is trivially satisfied

for any map Zn → R including f · g as S ∈ F , as is the case for (2-S).

As we have done for Lemma 1.2.13, we will look at the case of n = 2 for

explanatory purposes, again specifically for the maximal flag

{vbl, εb, S}

(the whole square, the lower edge and the lower left vertex). Given two

elements f, g ∈ R∗((F)), we argue that f · g satisfies the conditions (2-S),

(2-εb) and (2-vbl). Firstly, we look at condition (2-εb). The cone Tεb is the

entire upper half plane. Note that ηεb = ey. We can find kf , kg ≥ 0 such

that the supports of f and g have no support within the sets

{(a, j), a, j ∈ Z, j ≤ −kf}

and

{(a, j), a, j ∈ Z, j ≤ −kg}

respectively. Let k = kf + kg. I argue that the support of f · g has −k as

a global lower bound on the second index, i.e., (a, j) ∈ supp(f · g) implies

j ≥ −k.
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Let (a, b) ∈ supp(f · g) such that b < −k. Then, owing to the def-

inition of composition, there is some bf , bg such that bf + bg = b and

bf ∈ supp(f), bg ∈ supp(g). So b = bf + bg > −kf − kg = −k which is

a contradiction.

Now we look at the condition (2-vbl). Note ηvbl = ex + ey. Fix q =

(qx, qy), and note that we can find kf,q, kg,q ≥ 0 such that the condition is

met for f and g respectively and the y co-ordinate of kf,qηvbl (respectively

kg,qηvbl) is greater than kf (respectively kg) that satisfy condition (2-εbl)

for f and g respectively (simply increase kf,q and kg,q until satisfied). Let

kq = kf,q + kg,q ≥ k. Then using the same argument as used to show that

−k = −kf − kg was a lower bound for the y coordinates, −kq is a lower

bound of the x coordinates of elements in the support of f · g below the line

y = qy. That is, by shifting (q + (−Tvbl)) ∩ supp(f · g) by k′qηvbl such that

k′q is larger than kq we find it completely contained within Tvbl as −kq is a

lower bound in both the x and y coordinates respectively for the support of

f · g within q + (−Tvbl). Hence f · g is also contained within

R∗(({vbl, εb, S}))

making it a ring.

Now, to show for any n, we argue using induction. Let F be a maximal

flag, and let σ be the ordering of n such that σi is the index of the unique

member (unique, as the flag is maximal) of the set

{±ej : 1 ≤ j ≤ n}

such that only one of eσi or −eσi are contained in TF but both ±eσi are

contained within the barrier cone of any higher dimensional face in the flag.

We know that the conditions for Fn−1 and Fn−2 satisfy closure as we can

repeat the argument for the two dimensional case but, for example, rather

than the condition for Fn−1 being that each element’s support can be shifted

into the upper half plane, we have that the support can be shifted into the
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space bounded below by the n−1-dimensional subspace where the coefficient

of eσn is 0.

Recall that Fn = S for a maximal flag hence (2-Fn) is trivial. Fix

2 ≤ z ≤ n − 2. Assume that there is closure for the conditions taken

together for the faces Fz ⊆ F ⊆ Fn−1 so that for a fixed q each condition

provides some (kF )q ≥ 0 that satisfies (2-F ). Let kq = max({(kF )q : Fz ⊆
F ⊆ Fn−1, F ∈ F}). We want to show that adding the condition for Fz−1

also keeps closure. For a given q ∈ Zn, −kqηFz is a bound (upper or lower,

depending on the orientation of Fz) in the support of f · g parallel to the

axes eσn , ..., eσz within the cone q+(−TFz−1) via the inductive assumption as

TFz−1 ⊆ TFj for z ≤ j ≤ n. A similar argument for the two dimensional case

gives the result, firstly find a satisfactory kq = kf,q + kf,q ≥ kq for a (lower

or upper) bound in the supports of f and g in the eσz−1 axis within the cone

q + (−TFz−1), by using the condition (2-Fz−1) for f and g. Then choosing

k′q larger than kq will satisfy the condition (2-Fz−1) as required.

For a flag F containing S, let MF(F) be the subset of the set of flags of
faces in CP(F) consisting of maximal flags.

Example 1.2.15. For a flag F = {S} where S = [−1, 1],

MF({S}) = {{vl, S}, {vr, S}}.

Lemma 1.2.16. For all flags F where S ∈ F ,

R∗((F)) =
⋂

G∈MF(F)

R∗((G)).

Proof. That the condition (1) for F is equivalent on both sides follows triv-

ially as S ∈ F and S ∈ G for all G ∈ MF(F). The second collection of

conditions are equivalent, by observing that a face is within a flag of MF(F)

if and only if it is contained within CP(F), so the collection of conditions

(2-F ) are the same on both sides of the equation.

Proposition 1.2.17. Let F be a flag that does not contain S but does have

faces of dimension 0 to n− 1. Then R∗((F)) is also a ring.
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Proof. We know that F ∪ {S} is a maximal flag hence R∗((F ∪ {S})) is a

ring. It follows that, since the only difference between the conditions on

R∗((F ∪ {S})) and R∗((F)) is that (1) is no longer non-trivial and (2-F ) for

the case F = S is lost, which is itself trivial, the only thing that needs to

be checked is the first condition for the new case, that supp(f · g) ∈ TFn−1 .

However, it is clear that this satisfies closure hence there is nothing else to

show.

Proposition 1.2.18. Let F be a flag with a face of dimensions 0 to m for

m < n− 1. Then R∗((F)) is a ring.

Proof. Beginning with a flag F ∪ G, where G has a face at every dimension

from m+ 1 to n. Then iterate the argument of Proposition 1.2.17 to arrive

at the result.

When the largest dimension of face a flag F is some m lower than n,
this face is the largest dimension of face contained within CP(F) also. Let
MFm(F) be the collection of flags of faces of CP(F) such that there is a face
at every dimension 1 to m. Proposition 1.2.18 tells us that R∗((G)) is a ring
for all G ∈ MFm(F).

Proposition 1.2.19. Let F be a flag with maximal face of dimension m.

Then R∗((F)) is a ring.

Proof. For every flag G inside MFm(F), R∗((G)) is a ring. Now apply the

same argument as Proposition 1.2.16 to show that

R∗((F)) =
⋂

G∈MFm(F)

R∗((G)).

Finally, Proposition 1.2.19 tells us that for all possible flags F , R∗((F))
is a ring. Henceforth, we use the term generalised Novikov rings to refer to
these objects.
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Remark 1.2.20. We can form generalised NovikovR∗((F))-modulesM∗((F))

from an R-module M , analogous to the ring versions. That the R∗((F))-

action is well defined and satisfies the conditions follows a similar argument

to what has been seen in this section for proving that the ring R∗((F)) has

a valid ring action.

We make another important note of the properties of these rings.

Lemma 1.2.21. Let F ⊆ F ′. Then there is an inclusion map R∗((F)) →
R∗((F ′)).

Proof. Whenever the largest face of F is precisely the same face as the

largest face of F ′, the result is clear since condition (1) is the same for both

and the caterpillar of the latter is strictly contained within the caterpillar of

the former making conditions (2-F ) for F ∈ F ′ a sub-collection of the total

collection of conditions for F .

Whenever the largest face of F , say F , is strictly smaller than the largest

face of F ′, F ′ the argument follows with more effort. Firstly, from the

difference between condition 1 for both flags, namely that since TF ⊆ TF ′ ,

(1) is strictly stronger for F than F ′. The face F is contained in both flags.

For faces of dimension dim(F ) and below that are contained within F , we

see in a similar fashion to the first case that those within the caterpillar of

F ′ are also contained within the caterpillar of F .

However for faces G within the caterpillar of F ′ that are of dimension

dim(F )+1 and above, we argue that each possible condition (2-G) is satisfied

by the condition (1) for the flag F . This is immediately obvious, in fact since

the support of an element f ∈ R∗((F)) is contained within TF from condition

(1) for F , then for any strictly larger face F ⊆ G, it is immediate that (2-G)

is satisfied by a choice of k = 0 as for all q, (q+ (−TG))∩TF is either empty

or a fully bounded subspace of TG and by (1) of F , supp(f) ⊆ TF .
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1.3 Novikov homology and the main theorem

We will now specify the Novikov Rings that will be the focus of the main
result.

Definition 1.3.1. Let F be a flag of faces of S = [−1, 1]n. Whenever

F = {F, S}, where F is a face distinct from S, we call R∗((F)) a Novikov

Ring.

The main theorem can now be stated.

Theorem 1.3.2. Let R be a strongly Zn-graded ring and write R0Zn = R0.

Let S = [−1, 1]n and C be a bounded complex of finitely generated free R-

modules. The complex C is R0-finitely dominated if and only if for every

flag F of the form F = {F ⊂ S}, the complexes

C ⊗
R
R∗((F))

are acyclic.

Whenever we say a chain complex C has trivial Novikov homology, we
are referring to the above acyclicity condition on the complexes C⊗

R
R∗((F))

where F = {F ⊂ S}.

Remark 1.3.3. Note that this is specifically an acyclicity condition, not

a contractibility condition. However, in our case, since we are focusing

on a bonded complex of finitely generated free R-modules, assuming C ⊗
R

R∗((F)) is acyclic as abelian groups and observing that C ⊗
R
R∗((F)) is a

bounded finitely generated free complex of R∗((F))-modules provides us with

a contraction on C ⊗
R
R∗((F)).

This is the explicit result, but the acyclicity condition listed here has a
key implication that can be stated immediately.

Lemma 1.3.4. Let R be a strongly Zn-graded ring. Let S = [−1, 1]n and C

be a bounded complex of finitely generated free R-modules. If for every flag

F of the form F = {F ⊂ S}, the complexes

C ⊗
R
R∗((F))
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are acyclic, then for all flags F ′ that contain S and at least one other face

the complexes

C ⊗
R
R∗((F ′))

are acyclic also.

Proof. As per Remark 1.3.3, let c be the contraction of C ⊗
R
R∗((F)). By

noting from Lemma 1.2.21, that since F ⊆ F ′, that R∗((F)) ⊆ R∗((F ′)) and

hence R∗((F ′)) is a R∗((F))-R∗((F))-bimodule. It follows that

C ⊗
R
R∗((F ′)) = C ⊗

R
R∗((F)) ⊗

R∗((F))
R∗((F ′)),

the latter of which has contraction c ⊗ id, as if c : id ' 0, then c ⊗ id '
0⊗ id = 0.

1.4 Skeleton of a flag

The definition of a generalised Novikov Ring deserves a detailed discussion.
Perhaps the easiest way to consider this is as the natural evolution of the
one dimensional Novikov ring, which can be seen by taking S = [−1, 1].

The way to discern what happens is to work out what elements ±ek for
a standard basis of Zn {ek : 1 ≤ k ≤ n} are contained within TFi for Fi ∈ F ,
which is ultimately related to what faces of dimension n − 1 the face Fi is
contained in. Let E be the collection of elements ±ek.

Remark 1.4.1. From Remarks 1.2.5 and 1.2.6, we note that for a given

flag F = {F0, . . . F`}, for all k one of the three possibilities must be true:

1. ±ek ∈ TF0 .

2. +ek ∈ TF0 while −ek /∈ TF0 .

3. −ek ∈ TF0 while +ek /∈ TF0 .

Lemma 1.4.2. If, for a given k, 2. is true, then:

• There is a maximal a in the flag such that +ek ∈ TFa while −ek /∈ TFa.
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• For any larger face in the flag Fa ⊆ F , both ±ek ∈ TF .

• For all smaller faces in the flag G ⊆ Fa, we have +ek ∈ TG while

−ek /∈ TG.

• The face Fa itself is contained in the unique n− 1 dimensional face H

such that ηH = ek.

• For any larger face in the flag Fa ⊆ F , the face F is not contained

within H.

Proof. Using Remark 1.2.5 to see which half plane TH corresponds to each

n− 1 dimensional face H and Remark 1.2.6 to represent each face as an in-

tersection of n−1 dimensional faces, one simply notes the inclusion property

of the faces of a flag to see this.

A dual Lemma holds for when 3. is true for a given k.
Now we need to consider a few facts about these faces that are invaluable

when proving anything with their flags.

Remark 1.4.3. Note firstly that each subface F of S = [−1, 1]n is an unique

intersection of faces of dimension n− 1. In particular, if TF contains ek but

not −ek then F ⊂ Gk where Gk is the unique n − 1 dimensional face such

that ηGk = ek (there is a dual result when −ek ∈ TF and ek /∈ TF ). If we let

G′k be the n− 1 dimensional face such that ηG′k = −ek and sgn(F )k be the

sign of ek that is contained within TF , then we can write

F =
( ⋂

sgn(F )ki=1

Gki
)
∩
( ⋂

sgn(F )kj=−1

G′kj
)

noting that the total number of Gki , G
′
kj

is precisely codim(F ). We will

very often intersect faces with certain n − 1 dimensional faces based on

what pairs ±ek are contained within their barrier lattices, to form useful

faces in future proofs. Also we will represent smaller faces as larger faces

intersected by the correctly orientated faces of dimension n−1. These ideas

will be fundamental in tackling a number of the proofs we see later on in

the work.
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We now wish to set a bit of notation.

Remark 1.4.4. Given a flag F , let sgn(F)k be the unique sign on ek such

that sgn(F)kek ∈ TF0 and −sgn(F)kek /∈ TF0 if it exists (i.e., both ±ek are

not in TF0 . If F does not contain a vertex, then not all sgn(F)k will be

defined, specifically those such that both ±ek ∈ TF0 . That is:

sgn(F)k =





1 when ek ∈ TF0 , −ek /∈ TF0 .

−1 when − ek ∈ TF0 , ek /∈ TF0 .

undefined otherwise, that is when± ek ∈ TF0 .

Evidentally when F0 is a vertex, sgn(F)k is defined for all 1 ≤ k ≤ n. Hence.

we can also define sgn(v)k for every vertex v.

These ultimately provide the information that encodes what the Novikov
rings actually are. We will always be interested in the collection of signs
sgn(F)k and the smallest face Fa such that ±ek ∈ F for Fa ⊂ F . We
now claim that we can discard a considerable number of the faces of CP(F)
without weakening the definition of a Novikov ring.

Proposition 1.4.5. Let F = {F0 ⊂ · · · ⊂ F`} be a flag. The collection of

conditions

{(1), (2-F ) : F ∈ CP(F)}

is implied by the subcollection of conditions

{(1), (2-F ) : F ∈ CP(F), dimF = dimFi − 1, Fi ∈ F}.

Proof. Begin by letting S ∈ F (making (1) trivial) and take a face F`−1 ⊆
F ⊂ S with codim(F ) = p. Note by Remark 1.2.6 TF =

⋂
mj
TGmj , 1 ≤

j ≤ p, 1 ≤ m ≤ n for faces of dimension n − 1. Since F ⊆ Gmj ⊂ S, it

follows that Gmj ∈ CP(F). It can be seen that for all faces G within CP(F)

of dimension n − 1, ηG = sgn(F)rer for some r. For a fixed q ∈ Zn, the

conditions (2-Gmj ) generate a selection of kGmj that satisfy them. If we let

k = max{kGmj , 1 ≤ j ≤ p}, we can write

kηGmj +
((
q + (−TGmj )

)
∩ supp(f)

)
⊂ TGmj .
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Hence

k
∑

j

ηGmj +
((
q + (−

⋂

j

TGmj )
)
∩ supp(f)

)
⊂
⋂

j

TGmj

which is precisely

kηF +
((
q + (−TF )

)
∩ supp(f)

)
⊂ TF

i.e., (2-F ) is satisfied.

Now let F`−2 ⊆ F ⊂ F`−1 with F`−1 =
⋂
tG
′
mt and

F = (
⋂

t

G′mt) ∩ (
⋂

j

Gmj )

for some distinct faces G′mt , Gmj of dimension n − 1. Clearly, F`−1 is not

contained within Gmj while F ⊆ Gmj for all j (recall that a face F is

contained in codim(F ) many faces of dimension n−1). It follows that while

each of the faces G′mt are contained within CP(F), each of the faces Gmj

are not contained within CP(F).

However, observe that for each j there is a face F ⊆ Lj ⊂ F`−1 of

dimension dim(F`−1) − 1 such that Lj = (
⋂
tG
′
mt) ∩ Gmj . Precisely this is

the face L such that ηLj = ηGmj +
∑

t ηG′mt , which is a face of dimension

dim(F`−1)−1. If we combine the conditions (2-Lj) of faces Lj for each Gmj

with the conditions (2-G′mt) for each G′mt , we see the following is satisfied

k
∑

j

ηLj + k
∑

t

ηG′mt +
((
q +

(
−
(⋂

j

TLj
)
∩
(⋂

t

TG′mt

) ) )
∩ supp(f)

)

⊂
(⋂

j

TLj
)
∩
(⋂

t

TG′mt

)
.

Firstly note that

(⋂

j

TLj
)
∩
(⋂

t

TG′mt

)
=
⋂

j

((⋂

t

TG′mt

)
∩TGmj

)
∩
(⋂

t

TG′mt

)

= TF ∩ TFi+1 = TF .
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Since k
∑

j ηLj + k
∑

t ηG′mt is just a linear combination of ηG′mt and ηGmj ,

it follows that given k
∑

j ηLj + k
∑

t ηG′mt we can find k′ such that

k′(
∑

t

ηG′mt +
∑

j

ηGmj ) = k′ηF > k
∑

j

ηLj + k
∑

mt

ηG′mt

hence satisfying the below condition

k′ηF +
((
q + (−TF )

)
∩ supp(f)

)
⊂ TF

which is precisely (2-F ) as required.

We continue in the same manner, for faces Fi−1 ⊆ F ⊂ Fi, we see that

the conditions (2-G) where G ∈ CP(F) are of dimension dim(Fx) − 1 for

x ≥ i imply the conditions (2-F ). Eventually, we see that for a flag S ∈ F
and any face F within the caterpillar CP(F), the collection of conditions

(2-G) for faces G of dimension dim(Fx)− 1 for certain 0 ≤ x ≤ ` will imply

(2-F ) as required. At this point, we have shown the required result for

whenever S ∈ F . If S /∈ F so that F` 6= S, let F` =
⋂
wGmw for faces

of dimension n − 1. Now simply note that (1) in this case will be stronger

than (2-Gmw) and therefore a similar method to the above will provide the

required result.

We will now adapt the definition of the Novikov ring as we can limit our
concern to faces within CP(F) of certain dimensions.

Definition 1.4.6. Given a flag F = {F0 ⊂ · · · ⊂ F`} of faces of S = [−1, 1]n,

define the Christmas tree of F as the following:

CT(F) = {F ∈ CP(F), dim(F ) = dim(Fi)− 1, 0 ≤ i ≤ `}.

The new definition of the Generalised Novikov rings therefore only covers
conditions (2-F ) for F ∈ CT(F).

As a result of Proposition 1.4.5, given a flag F = {F0 ⊂, · · · ⊂ F`} and
a Zn-graded ring R, to understand the structure of R∗((F)) we are only
interested in those faces in CP(F) that are precisely one dimension lower
than a face in the flag itself. The nature of the faces of dimension dim(Fi)−1
for some Fi ∈ F in CT(F) depend on what elements of the form sgn(F)kek
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have Fi−1 as the maximal face as per Lemma 1.4.2 (that is, what k satisfies
sgn(F)kek ∈ TFi−1 and for Fj ⊃ Fi−1, ±ek ∈ TFj ). Precisely this condition
dictates what faces of dimension n − 1 can be intersected with Fi to form
the faces of dimension dim(Fi)−1 that are within the caterpillar, and hence
the Christmas tree of F .

Not only are we interested in the orientation, we are also interested in
the dimension of the maximal face for a given basis element ek. For a given
k, the bound on the support is stronger in either the ek or −ek direction the
larger the maximum face that does not contain both ±ek in its barrier cone
is, simply because the larger the face, the stronger the condition. Recall, for
example, that faces of n − 1 dimension give global bounds on the support,
but only in the relevant direction (opposite to the inward normal vector).

We now use the above simplification to encode the information, both per-
taining to orientation and the strength of the condition in a given direction,
in an enlightening way.

Definition 1.4.7 (Skeleton of a flag). Given a flag F = {F0, . . . , F`}, of

length ` where 0 ≤ ` ≤ n let E be the set of elements E = {±ek, 1 ≤ k ≤ n}
(where ek form a standard basis of Zn) and sgn(F)k be as in Remark 1.4.4.

Define the following collection of sets of elements of E:

• P = {±ek : ± ek ∈ TF0}.

• Ai = {sgn(F)kek : sgn(F)kek ∈ TFi , −sgn(F)kek /∈ TFi , ±ek ∈ TFi+1}.

• W = {sgn(F)kek : sgn(F)kek ∈ TF` , −sgn(F)kek /∈ TF`}.

The skeleton of F , SK(F) is the following collection of sets:

{P,A0, ..., A`−1,W}.

Each skeleton corresponds to a unique flag, and hence a unique generalised

Novikov ring. Note that when F` = S, W = ∅ and when F0 is a vertex,

P = ∅.

Remark 1.4.8. The skeleton can be used to quickly state the nature of the

faces of a flag in the following manner. For a flag F , the face Fi is precisely
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the intersection of Fi+1 with the n− 1 dimensional faces Gju ,

Fi = Fi+1 ∩ (
⋂

u

Gju)

such that ηGju = sgn(F)jueju ∈ Ai. The set W will tell us the nature of the

largest face, precisely:

F` = (
⋂

b

Gjb)

for n−1-dimensional faces Gjb such that ηGjb = sgn(F)jbejb ∈W in particu-

lar, W = ∅ implies F` = S. We see that no face within F is contained within

G or −G such that ±ηG are in P . Again, these ideas will be repeatedly used

in later proofs.

The skeleton attempts to boil down the flag to only the important in-
formation pertaining to Novikov rings. Let sgn(F)k be as in Remark 1.4.4,
that is the unique sign of ek such that sgn(F)kek ∈ TF0 if one exists, other-
wise it is undefined. For k where sgn(F)k is defined there will be some Ai,
or W , that contains sgn(F)kek. The bound conditions on the support for
a given direction, always −sgn(F)kek, is stronger whenever sgn(F)kek ∈ Ai
for larger i. There are always as many faces in CP(F) of dimension Fi+1−1
as there are elements in Ai. In the case that the element is in Ai, the faces of
dim(Fi+1)− 1 are key. For elements in W condition (1) is key. For elements
in P , it is the faces of dimension dim(F0)−1 that are important. Here, there
is again a face within CP(F) of dimension dim(F0)− 1 for each element of
P , specifically there are two faces for each pair of elements ±ej ∈ P .

We use the following results to attempt to visualise what structure the
generalised Novikov rings actually have.

Proposition 1.4.9. Let F be a flag and F ⊂ [−1, 1]n a face of the flag. Let

F =
⋂
tGjt for faces Gjt of dimension n − 1 with ηGjt = sgn(F)jtejt. The

condition (2-F ) implies that for an element f ∈ R∗((F)) and fixed q ∈ Zn,

the subspace

F ∗q = {q +
n∑

j=1

mjej : mj ∈ Z, mj = 0 if j = jt for some t}

of Zn can be shifted only finitely often in the directions −sgn(F)jtejt before

having no intersection with supp(f).
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Proof. Begin by observing that, for q = 0, F ∗0 ⊆ TF and F ∗0 ⊆ −TF as

{
n∑

j=1

mjej : mj ∈ Z, mj = 0 if j = jt for some t} ⊂ TGjt

for all t where TF =
⋂
t TGjt . Furthermore, F ∗q ⊂ q + (−TF ). Immediately

we can see that for all t,

⊕

k≥0

F ∗q−k sgn(F)jtejt
⊆ q + (−TF ).

Now argue by contradiction. If there was no k such that for a fixed t′

and all k′ ≥ k, the plane

F ∗q−k′sgn(F)jt′ ejt′
=

{q +
n∑

j=1

mjej − k′sgn(F)jt′ejt′ : mj ∈ Z, mj = 0 if j = jt for some t}

would have empty intersection with supp(f), then (2-F ) could never be

satisfied as k′ηF +
(⊕
k≥0

F ∗q−k sgn(F)jt′ ejt′
∩ supp(f)

)
would never be within TF

for any k′. Hence there must be some k that will ensure that for large enough

shifts the intersection of the shifted planes with the support is empty.

This hopefully gives a little more visual representation onto the abstract
bones of the Novikov ring definition. We already know that we are not
particularly interested in the flags within CP(F) not of dimension dimFi−1
for Fi ∈ F . For those faces of dimension dimFi−1, it is precisely the skeleton
of the flag that tells us what planes have bounds and in what direction.

Remark 1.4.10. Let

SK(F) = {P,A0, ..., A`−1,W}

and fix Fi such that for 1 ≤ k ≤ n, ±ekp ∈ P, sgn(w)kaeka ∈
⋃

0≤x≤i−1Ax.

We can rewrite (Fi)
∗
q as the following:

(Fi)
∗
q = {q +

∑

k=kp,ka

mkek : mk ∈ Z}
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and can observe that for a given element r ∈ R∗((F)) the plane can be shifted

only finitely often in the directions −sgn(F)kek ∈ (
⋃
x≥j Ax) ∪W until the

intersection with the support is trivial. However, we only care about faces

of dimension dimFi − 1. Let F = dimFi − 1 and F ∈ CP(F), then there is

some G′t such that F = Fi ∩G′t, ηG′t = sgn(F)tet ∈ Ai−1. We can write F ∗q
as the following:

(F )∗q = {q +
∑

k=kp,ka

mkek : mk ∈ Z, mt = 0}

and note that this subspace can be shifted only finitely often in the direc-

tions −sgn(F)kek ∈ (
⋃
x≥j Ax) ∪W and −sgn(F)tet before having trivial

intersection with the support of an element.

We will refer to the condition that a subspace can be shifted only finitely
often in a certain direction, say −sgn(F)kek, as having the subspace bound
condition in −sgn(F)kek.

Note that there is a face of dimension dimFi−1 for every element within
Ai−1. We will use this shifted plane argument to help understand what
precisely these Novikov rings are. The above gives a good description of
what happens for Ai, but W and P need to be discussed too.

What W tells us. For the elements of W the support of a given r ∈ R∗((F))
is infinite and bounded into either the non-negative or non-positive hyper-
plane, depending on sgn(F)k for sgn(F)kek ∈W . This is from condition (1).
From observing the definition of the Novikov ring, we see that this translates
to global lower or upper bounds by zero on the supports of elements in the
ring for these directions within Zn. When W = ∅ it follows that S ∈ F and
hence condition (1) of the Novikov ring definition is trivial.

What Aj tells us. These are the ‘typical’ Novikov conditions. The element
sgn(F)kek ∈ Aj gives the orientation, there is no bound in the direction
of sgn(F)kek but some kind of local bound condition in the direction of
−sgn(F)kek. If there is a bound the larger j is the stronger the bound on the
support is in that direction. Namely, letting ±ekp ∈ P and sgn(F)kaeka ∈⋃

0≤x≤j−1Ax, for each sgn(F)tet ∈ Aj , the plane

(F )∗q = {q +
∑

k=kp,ka

mkek : mk ∈ Z, mt = 0}
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can be shifted only finitely often in the directions −sgn(F)kek ∈ (
⋃
x≥j Ax)∪

W and −sgn(F)tet. Note that we do not take all the elements of Aj at once
when we assess our plane conditions, in fact we do not take more than one at
once. This is because it is the faces of dimension dimFj+1 − 1 that provide
the conditions here, and each one is associated with a different element of
Aj .

What P tells us. In a similar manner as Ai, there is again one face of
dimension dimF0 − 1 for every element of P , this time however we have
pairs of elements ±ek. Letting ±ekp ∈ P , begin by considering the condition
on the subspace

(F0)∗q = {q +
∑

k=kp

mkek : mk ∈ Z}

from (2-F0), which implies there is a plane bound condition in the directions
of −sgn(F)kek ∈ (

⋃
x≥0Ax) ∪W .

Now, we consider the effect of the faces of dimension dimF0−1. Consider
that for two faces F = F0 ∩Gt and F ′ = F0 ∩G−t where ηGt = et = −ηG−t ,

F ∗q = (F ′)∗q = {q +
∑

k=kp

mkek : mk ∈ Z, mt = 0}.

It is immediately apparent that F ∗q = (F ′)∗q has the plane bound condition
in the both of the directions +et and −et by considering the plane bound
conditions derived from (2-F ) and (2-F ′). Taking across all the elements of
P , we see that for any fixed q the following subspace will always have finite
intersection with the support of an element of R∗((F))

{q +
∑

k=kp

mkek : mk ∈ Z}.

As a final observation for this section, whenever P is non-empty and has
k many pairs of elements ±et, we in actuality see a ring that is precisely a
Novikov ring over an n− k-graded ring.

Remark 1.4.11. For F a k-dimensional face let X = span{x−y : x, y ∈ F}.
There is a projection map

γ : Rn → Rn/X ∼= Rn−k

that has an obvious splitting as X is a coordinate subspace, i.e., there is δ

such that γδ = id. There is a similar map Zn → Zn−k. The ring R can be,
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therefore, understood as a Zn−k ring U where Uρ =
⊕

z∈γ−1(ρ)

Rz. Consider

the image of S = [−1, 1]n by γ, this is the cube [−1, 1]n−k. For any flag G

within S containing F , we can define γ(G) where δγ(G) = G. Given a flag

F = {F0 ⊂ · · · ⊂ F`} contained within NF , which are precisely those faces

that contain F , we can define a flag γ(F) = {γ(F0) ⊂ · · · ⊂ γ(F`)}. We

can also understand the ring R∗((F)) as the ring U∗((γ(F))). Here outside

γ(Zn) the support of any element is locally finite, that is each component of

U∗((γ(F))) for ρ ∈ Zn−k is still
⊕

z∈γ−1(ρ)

Rz, matching what occurs for those

elements ±ej ∈ P for the skeleton of F as discussed earlier.



2. CONTRACTIBILITY OF NOVIKOV HOMOLOGY IMPLIES

FINITE DOMINATION

Having set out what trivial Novikov homology actually means, we can begin
to tackle the actual main result. We begin by assuming a bounded chain
complex of finitely generated free R-modules C, for a unital, graded module
R, has trivial Novikov homology and we will now work towards a proof that
C is R0-finitely dominated.

2.1 Čech complexes of diagrams

We can define diagrams with entries in the category of R0-modules indexed
by given posets P (that is, functors P → R0-mod). Genrally speaking we
can equip P with a strictly order reversing rank map

rk: P → Z≤0

and a (potentially trivial) incidence function

[−,−] : P × P → Z

such that [x : y] for x, y ∈ P satisfies the following conditions:

• (DI1) [x : y] = 0 unless x < y and rk(x)− 1 = rk(y).

• (DI2) for all x < z with rk(x)− 2 = rk(z), the open interval I(x : z) =
{y ∈ P |x < y < z} is finite, and we have

∑

y∈I(x : z)

[y : z] · [x : y] = 0.

• (DI3) for z ∈ P with rk(z) = −1 the set I(< z) = {y ∈ P |y < z}
(noting that there is only one level below z) is finite and we have

∑

y∈I(<z)
[y : z] = 0.
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In this paper we will affix specific P with known rank and incidence
functions which will be described later.

We can use the poset, these two maps and an associated diagram to
define a chain complex.

Definition 2.1.1. Let X be an additive category and P a poset equipped

with a strictly order reversing rank map rk: P → Z≤0 and an incidence

function [−,−] : P × P → Z as above. For a diagram Φ: P → X with

structure maps ϕp,q : Φ(p) → Φ(q), define the Čech complex Γ(Φ) as the

collection of objects indexed by i ∈ Z≤0 where

Γ(Φ)i =
⊕

rk(p)=i

Φ(p)

is the direct sum of the objects of Φ with rank i and structure maps are

di =
⊕

rk(p)=i

rk(q)=i−1

[p : q]ϕp,q.

It can be shown that the conditions (DI1) (only non trivial maps are of
degree -1) and (DI2) (composition of d is trivial) ensure the Ĉech complex
of Φ, Γ(Φ), is a chain complex. The condition (DI3) will ensure certain
maps we will define later are chain complex maps. All diagrams in this
paper will have objects that are either R0-R0-modules or chain complexes
of R0-R0-modules. The act of forming a Čech complex ‘preserves quasi-
isomorphisms’.

Lemma 2.1.2. For two diagrams Φ,Ψ: P → X with P finite, max(rk(P )) =

0 and min(rk(P )) = k, and a map χ : Φ → Ψ such that for each p ∈ P the

component χ(p) is a quasi-isomorphism, the induced map Γ(χ) : Γ(Φ) →
Γ(Ψ) is also a quasi-isomorphism.

Proof. Let TrΓj(Φ) be the truncation of Γ(Φ) below and including j. Also

let Γ(Φ)j be the jth chain level of Γ(Φ), thought of as a chain complex

concentrated at the jth level. Note that Γ(Φ)j =
⊕

rk(p)=j Φ(p). For all j

there is a quasi-isomorphism

⊕

rk(p)=j

χ(p) : Γ(Φ)j → Γ(Ψ)j .
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Noting that TrΓk(Φ) = Γ(Φ)k, we have a short exact sequence of chain

complexes

0→ TrΓk(Φ)→ TrΓk+1(Φ)→ Γ(Φ)k+1 → 0

that combined via the 5-lemma tell us that there is a quasi-isomorphism

TrΓk+1(Φ)→ TrΓk+1(Ψ).

Next, note the following short exact sequence of chain complexes:

0→ TrΓk+1(Φ)→ TrΓk+2(Φ)→ Γ(Φ)k+2 → 0

shows that there is a quasi-isomorphism

TrΓk+2(Φ)→ TrΓk+2(Ψ).

Iterate this argument to find that Γ(χ) : Γ(Φ)→ Γ(Ψ) is a quasi-isomorphism

as claimed.

Remark 2.1.3. For a diagram of chain complexes Ξ, where for each p ∈ P
Ξ(p) is a chain complex we define Γ(Ξ) as the double complex with objects

Γ(Ξ)j,n =
⊕

rk(p)=j

Ξ(p)n

where the ‘horizontal’ boundary is
⊕

rk(p)=j [p : `]ξp,` for the structure maps

ξp,`, effectively the Čech complex of a chain level of Ξ, and the vertical is
⊕

rk(k)=j(−1)jdΞk . Hence, Γ(Ξ) has anti-commutative differentials making

its totalisation a chain complex by our convention. Write Γ̌(Ξ) to denote

the totalisation of the double complex Γ(Ξ).

2.2 The quasi-coherent diagram D(k)

We wish to define a specific diagram with special properties that will be
of use to us. Specifically, the Čech totalisation of this diagram will be a
resolution of R0. Before we can do so, we need to go through another short
round of definitions first.
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Definition 2.2.1 (Shifted barrier lattices). For a given k ∈ Z, we define

shifted barrier lattices

(kF +BF ) ∩ Zn = {kf + t|f ∈ F, t ∈ BF } ∩ Zn

with (0F +BF ) ∩ Zn = TF . Write k ◦ TF := (kF +BF ) ∩ Zn.

Example 2.2.2. Observing that εb = {(x, y) : − 1 ≤ x ≤ 1, y = −1}, note

that (εb +Bεb) is the set

{(x, y) ∈ R2, y ≥ −1},

the upper half plane shifted down by one in the y direction. Similarly, noting

that vbl = (−1, 1), (vbl +Bvbl) is the set

{(x, y) ∈ R2, x, y ≥ −1},

the upper right quadrant shifted diagonally by (−1,−1).

Definition 2.2.3 (The shifted cone submodule of R). Let R∗[k ◦ TF ] be

the collection of elements of R that have finite support in k ◦ TF , called

the shifted cone submodule of R. This is a left and right R0-module and

R∗[0 ◦ TF ] = R∗[TF ] is a ring. Also, R∗[TS ] = R. Given two faces F ⊆ G,

note that TF ⊆ TG, and hence R∗[k ◦ TF ] ⊆ R∗[k ◦ TG] for k ∈ TF .

Example 2.2.4. If we consider R = V [x, x−1, y, y−1] for a ring V , then:

R∗[Tvbl ] =V [x, y]. R∗[Tvbr ] = V [x−1, y].

R∗[Tεb ] = V [x, x−1, y].

also, for k ∈ Z:

R∗[k ◦ Tvbl ] = x−ky−kV [x, y]. R∗[k ◦ Tvbr ] = xky−kV [x−1, y].

R∗[k ◦ Tεb ] = y−kV [x, x−1, y].
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Remark 2.2.5. For any flag F such that F is the largest face, R∗((F))

has an R∗[TF ]-R∗[TF ] bimodule structure, as the support of the elements of

R∗((F)) are contained within TF . In particular for every F that contains S

the ring R∗((F)) has an R-R bimodule structure.

Definition 2.2.6 (Quasi-coherent diagram of modules). For S = [−1, 1]n let

S be the category of faces of S with inclusions as maps. Let Q : S→ R0-mod

be a diagram where Q(S) is an R-module, for faces F ⊂ S, Q(F ) is a module

over R∗[TF ] and for F ⊂ G ⊆ S the map γF,G : Q(F ) → Q(G) is a R∗[TF ]-

linear structure map for all F ⊂ G with compositions γG,HγF,G = γF,H for

all F ⊂ G ⊂ H. If Q satisfies the condition for all F ⊂ G that the adjoint

map of γF,G

Q(F ) ⊗
R∗[TF ]

R∗[TG]→ Q(G), r ⊗ s→ rs

is an isomorphism of R∗[TG] modules we call it a quasi-coherent diagram of

modules.

We have the definitions we need, we now ensure the diagram we will
construct satisfies the adjoint map condition.

Proposition 2.2.7. For all k ∈ Z, F ⊆ S, the R∗[TG]-linear maps

αk,F,G : R∗[k ◦ TF ] ⊗
R∗[TF ]

R∗[TG] - R∗[k ◦ TG], r⊗ s 7→ rs

are isomorphisms provided the ring R is strongly Zn-graded.

Proof. Suppose R is strongly graded. For j where only one of +ej ,−ej is

contained within TF , let sgn(F )jej ∈ TF . Then ηF =
∑
j

sgn(F )jej . Then we

may choose a partition of unity of type (−kηF , kηF ), say 1 =
∑

` u`v` with

u` ∈ R−kηF and v` ∈ RkηF , so that u` ∈ R∗[k ◦ TF ] and for r ∈ R∗[k ◦ TG],

v`r ∈ R∗[TG]. The R∗[TG]-linear map

βk,F,G : R∗[k ◦ TG] - R∗[k ◦ TF ] ⊗
R∗[TF ]

R∗[TG], r 7→
∑

`

u`⊗ v`r
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satisfies αβ(r) =
∑

` u`v`r = r so that αβ = id. Also

βα(r⊗ s) = β(rs) =
∑

`

u`⊗ v`rs =
(∗)

∑

`

u`v`r⊗ s = r⊗ s

(where the equality labelled (∗) is true since v`r ∈ R∗[TF ] for any r ∈
R∗[k ◦ TF ]), hence βα = id.

Definition 2.2.8 (The quasi-coherent diagram D(k)). Given a Zn-graded

ring R and k ≥ 0, let D(k) be the diagram with D(k)(F ) = R∗[k ◦ TF ] and

all maps inclusions ι. We see that this diagram is a quasi-coherent diagram

of modules with the adjoint map assumptions satisfied via Proposition 2.2.7.

Consider a pair of faces F, F ′ such that dim(F ) + 1 = dim(F ′). Assume
F = F ′ ∩ Gj for some n − 1 dimensional face Gj . We know that there is
precisely one j such that ±ej ∈ TF ′ but only one of +ej or −ej is contained
within TF . Let

yF,F ′ =

{
0 when ej ∈ TF .
1 when− ej ∈ TF .

Let LF,j be the number of ei, 0 ≤ i < j such that both ±ei ∈ TF . Equip S
with the rank map rk(F ) = −dim(F ).

We now need to apply satisfactory signs so that we can form the Čech
complex of D(k).

Lemma 2.2.9. Let the map [−,−] : S × S → Z be such that [F : F ′] is the

following sign:

[F : F ′] =





(−1)yF,F ′+LF,j when dim(F ) + 1 = dim(F ′).

0 otherwise.

This map satisfies conditions (DI1),(DI2) and (DI3).

Proof. The map [−,−] : S × S → Z satisfies condition (DI1) trivially. Let

F,G satisfy dim(F ) + 2 = dim(G), so that rk(F ) − 2 = rk(G). Then there

are precisely two faces A,B ∈ I(F : G), and two indices a, b such that

• ±ea,±eb ∈ TF .
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• sgn(a)ea ∈ TA, −sgn(a)ea /∈ TA for some sgn(a) ∈ {−1, 1},±eb ∈ TA.

• sgn(b)eb ∈ TB, −sgn(b)eb /∈ TB for some sgn(b) ∈ {−1, 1},±ea ∈ TB.

• sgn(a)ea, sgn(b)eb ∈ TG, −sgn(a)ea,−sgn(b)eb /∈ TG.

Hence, there are only two summands [A : G][F : A], [B : G][F : B] to check

in relation to condition (DI2). Note that

yF,A + yA,G = yF,B + yB,G

as yF,A = yB,G, yA,G = yF,B. Without loss of generality, let a ≤ b. Then

we know that LF,b + 1 = LA,b, as ±ea ∈ TF but −sgn(a)ea /∈ TA, and

LF,a = LB,a. The products [A : G][F : A] = (−1)yF,A+LF,a+yA,G+LA,b and

[B : G][F : B] = (−1)yF,B+LF,b+yB,G+LB,a have trivial sum as

yF,A + LF,a + yA,G + LA,b = yF,B + LF,b + 1 + yB,G + LB,a

which makes the signs in this case differ so (DI2) is therefore satisfied.

Finally, note that for a given face F of dimension 1, there is only one

j such that ±ej ∈ TF and two vertices such that v, v′ ⊂ F . Note that

Lv,i = 0 = Lv′,i for all 1 ≤ i ≤ n. The signs of [v : F ] = (−1)yv,F+Lv,j and

[v′ : F ] = (−1)yv′,F+Lv′,j differ, as if ej ∈ Tv then −ej ∈ Tv′ so yv,F = 0 and

yv′,F = 1. Similarly if −ej ∈ Tv then ej ∈ Tv′ so yv,F = 1 and yv′,F = 0.

Hence (DI3) is satisfied also.

Remark 2.2.10 (Čech complex of D(k)). The complex Γ(D(k)) is the

complex with entries indexed with faces of dimension i at level −i, that is

the sum of

Γ(D(k))−i =
⊕

dimF=i

R∗[TF ]

and maps

[F : F ′]ι : R∗[TF ]→ R∗[TF ′ ]

where for F ⊂ F ′, dim(F ) + 1 = dim(F ′), [F : F ′] is the following sign:

[F : F ′] = (−1)yF,F ′+LF,j
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and is 0 otherwise. Since the objects indexed by F,A,B, F ′ form a commu-

tative square consisting of inclusions, the sum of maps

[A : F ′]αA,F ′ [F : A]αF,A + [B : F ′]αB,F ′ [F : B]αF,B

must equal zero. Hence the satisfaction of (DI2) implies that the maps
∑

dim(F )=k

[F : G]αF,G are boundaries as the composition is the sum of pairs of

maps [A : F ′]αA,F ′ [F : A]αF,A + [B : F ′]αB,F ′ [F : B]αF,B = 0.

2.3 The homology of the Čech complex of D(k)

We now wish to find the homology of the Čech complex of D(k). We will
see that Γ(D(k)) is homotopy equivalent to a complex that will be used as
the components of the chain levels of a bounded complex of finitely gener-
ated projective R0-modules, hence playing an important role in the finite
domination result.

To begin we prove something in a greater generality than required, so
that we can use special cases in a number of situations.

Note that for any group G and any set S of elements of G, and unital
G-graded ring

⊕
g∈G

Rg, RidG is also an unital ring and the sum of homogenous

components with index in S,
⊕
s∈S

Rs is an RidG-RidG-bimodule. Note that

whenever a unital G-graded ring is strongly graded, there are still partition
of unities for all g ∈ G (a consequence of Proposition 1.6 of [Dad80], which
is more general than Zn-graded rings).

Proposition 2.3.1. Let X be a strongly G-graded ring for a group G. Con-

sider sets A,B contained within G that satisfy A ∩ B = {idG} and the

condition for all a, a′ ∈ A, b, b′ ∈ B,

ab = a′b′ if and only if a = a′ and b = b′. (2.3.1.1)

Let AB = {ab : a ∈ A, b ∈ B} and XI =
⊕
i∈I
Xi be the restriction of X to any

subset I of G. The following maps

πa,b : Xa ⊗
XidG

Xb → Xab, xa ⊗ xb 7→ xaxb



2. Contractibility of Novikov homology implies finite domination 52

form an isomorphism as XidG-XidG bimodules:

π : XA ⊗
XidG

XB
∼= XAB.

Proof. Given xi ∈ Xi and a ∈ A, b ∈ B the maps

π : XA ⊗
XidG

XB → XAB

where

πa,b : Xa ⊗
XidG

Xb
∼= Xab, xa ⊗ xb 7→ xaxb

and

β : XAB → XA ⊗
RidG

XB

where

βa,b : Xab → Xa ⊗
XidG

Xb, xab 7→
∑

j

xabuj ⊗ vj

for a partition of unity
∑
j
ujvj of form (−b, b) are the required isomorphisms.

Firstly observe that the maps π, β map summands on each side in a one-to-

one relation as A and B satisfy Condition 2.3.1.1. That π is a RidG-RidG

balanced bimodule map is clear, β is clearly a left RidG-morphism, to see it

on the right:

β(xabxidG) =
∑

j

xabxidGuj ⊗ vj =
∑

i

∑

j

xabuivixidGuj ⊗ vj

=
∑

i

∑

j

xabui ⊗ vixidGujvj =
∑

i

xabui ⊗ vixidG

= β(xab)xidG .

The composition is the identity as πβ = id trivially and βπ = id due to

xa ⊗ xb 7→ xaxb 7→
∑

j

xaxbuj ⊗ vj = xa ⊗ xb

from the fact that xbuj ∈ RidG . Hence π and β are mutual isomorphisms as

required.
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Call the maps πa,b the product maps and βa,b the splitting maps.
Throughout this work, when such an isomorphism is required, the sets

A,B will be of the form A′ × {id}, {id} × B′ hence satisfying Condition
2.3.1.1 immediately.

Lemma 2.3.2. The map βa,b is independent of the choice of partition of

unity.

Proof. Let βa,b and β′a,b be two splitting maps using two different partitions

of unity
∑q

j=1 ujvj and
∑q′

k=1 u
′
kv
′
k of form (−b, b). Then βa,b = β′a,b, as

q∑

j=1

ruj ⊗ vj =

q∑

j=1

q′∑

k=1

ruj ⊗ vju′kv′k

=

q∑

j=1

q′∑

k=1

rujvju
′
k ⊗ v′k =

q′∑

k=1

ru′k ⊗ v′k

as vju
′
k ∈ R0. This tells us that the map βa,b is independent of the choice

of partition of unity.

Definition 2.3.3. For a given Zn-graded ring R, let R(j) =
⊕
m∈Z

Rmej , where

R
(j)
m = Rmej , be the restriction of R to the jth axis, itself a (strongly) Z-

graded ring when R is a (strongly) Zn-graded ring. There are one sided

versions, R(j+) =
⊕
m≥0

Rmej and R(j−) =
⊕
m≤0

Rmej that are R0-R0-bimodules.

Let Θj = {R(j), R(j+), R(j−)}. Consider the collection of R0-R0 bimod-
ules

H1 ⊗
R0

H2 . . . ⊗
R0

Hn,

for Hj ∈ Θj . I claim that there is an one-to-one association between the
collection of these tensor products and the collection R∗[TF ] for faces F
of S = [−1, 1]n, which is indicated by isomorphisms between associated
objects.

Lemma 2.3.4. Every R∗[TF ] is isomorphic to the tensor product of the

form

H1 ⊗
R0

H2 . . . ⊗
R0

Hn,
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where Hj ∈ Θj is:

1. Hj = R(j) when ±ej ∈ TF .

2. Hj = R(j+) when +ej ∈ TF .

3. Hj = R(j−) when −ej ∈ TF .

In addition the dimension of the face F is precisely the number of times Hj

are of the form R(j) in the tensor product.

Proof. Note that for any Hi, Hj , i 6= j, the underlying sets of the supports

satisfy Condition 2.3.1.1 and have intersection {0}. Let Q be the R0-R0-

module

Q =
⊕

mi,mj∈Z
Rmiei+mjej .

From Proposition 2.3.1 there is an isomorphism

β : Q ∼= R(i) ⊗
R0

R(j) , βmiei,mjej : r →
∑

`

ru` ⊗ v`

for partition of unities of type (−mjej ,mjej). The inverse of β is the map

π : a⊗ b→ ab.

Given a tensor product H1 ⊗
R0

H2 . . . ⊗
R0

Hn we can repeat the process of

applying π for all 1 ≤ j ≤ n, so that there is an isomorphism

H1 ⊗
R0

H2 . . . ⊗
R0

Hn
∼= Q,

where Q is an R0-R0-module consisting of sums of certain homogenous com-

ponents of R =
⊕
ρ∈Zn

Rρ.

We look at the support of an element r =
∑

ρ∈supp(r)

rρ ∈ Q, ρ =
∑

1≤j≤n
mjej ∈

Zn. For all j there are three possible constraints on each of the mj :

1. mj ∈ Z when Hj = R(j).

2. mj ≥ 0 when Hj = R(j+).
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3. mj ≤ 0 when Hj = R(j−).

It is now a matter of observation that the support of such an element has

precisely the same restrictions as the support of an element within R∗[TF ]

where F is the unique face such that:

1. ±ej ∈ TF when Hj = R(j).

2. +ej ∈ TF when Hj = R(j+).

3. −ej ∈ TF when Hj = R(j−).

Hence Q is equal to R∗[TF ] for a certain face. It remains to note that the

dimension of the face is precisely the number of j such that both ±ej ∈ TF ,

that this number is precisely the number of Hj of the form R(j) provides the

result.

Now let Θk
j = {R(j),

⊕
m≥−k

Rmej ,
⊕
m≤k

Rmej}. We can see from Proposition

2.3.1 in a similar manner to Lemma 2.3.4:

Lemma 2.3.5. Every R∗[k ◦TF ] is isomorphic as an R0-R0 bimodule to the

tensor product of the form

H1 ⊗
R0

H2 . . . ⊗
R0

Hn,

where Hj ∈ Θk
j . In addition the dimension of the face F is precisely the

number of times Hj are of the form R(j) in the tensor product.

Proof. Again, an assessment of the conditions on the support provides the

result as in Lemma 2.3.4. Note that for any Hi, Hj , i 6= j, the underlying

sets of the supports satisfy Condition 2.3.1.1 and have intersection {0}. Take

a face F of dimension n− 1 such that ej ∈ TF , −ej /∈ TF . Then the face is

the subspace

{ρ =
∑

1≤i≤n
miei ∈ Zn : − 1 ≤ mi ≤ +1, mj = −1}
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for some j. Therefore, k ◦ TF is bounded below by the subspace

{ρ =
∑

1≤i≤n
miei ∈ Zm : mj = −k}

and unbounded elsewhere, which is precisely the condition on the support

of elements of the tensor product

R(1) ⊗
R0

R(2) . . . ⊗
R0

( ⊕

m≥−k
Rmej

)
. . . ⊗

R0

R(n).

A similar observation can be made for other choices of face F . Finally,

we note that the dimension of F is precisely the number of j such that

±ej ∈ TF , which is also the number of j such that Hj is of the form R(j) as

required.

Let Ωk
j be the complex concentrated in levels 0 and −1

(⊕

m≤k
Rmej ⊕

⊕

m≥−k
Rmej

)
−ι+ι→ R(j)

where ι are inclusions. Since R(j) is a Z-graded ring, we know from Propo-
sition 2.6 of [HS16] that

⊕
i∈[−kej ,kej ]

Ri ' Ωk
j via the inclusion of

⊕
i∈[−kej ,kej ]

Ri

into both summands of (Ωk
j )0, i.e., the diagonal map inclusion, written ∆j ,

with a map ρj such that ∆jρj ' id, ρj∆j ' id.

Lemma 2.3.6. There is an isomorphism of chain complexes of R0-R0 bi-

modules Γ(D(k)) ∼= Ωk
1 ⊗
R0

Ωk
2 . . .Ω

k
n.

Proof. For ease of writing, let H1 ⊗
R0

H2 . . . ⊗
R0

Hn = H. For the complex

Γ(D(k)), non-zero only for indexes 0 to −n, note that at the −i, 0 ≤ i ≤ n

chain degree we see precisely the sum of R∗[TF ] for faces of dimension i in

particular at the −nth level we see R. By quoting Lemma 2.3.5, we observe

an isomorphic construction levewise on the right of the isomorphism.

It remains to argue that the chain maps are the same. The isomorphism

H ∼= R∗[TF ], that is the repeated application of maps π : a ⊗ b 7→ ab, will
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have no effect on the signs of the inclusion maps of the complex. On the

right, any given map ι : H → H
′
between summands has sign precisely equal

to that of Γ(D(k)). This is best seen by considering the effect of tensoring

onto the left of Ωk
n by Ωk

n−1, then each Ωk
j from n− 2 to 1.

Fix 1 ≤ j ≤ n. Firstly note that, in agreement with yF,F ′ , there is a

negative sign in Ωk
j for ι : R(−j) → Rj . By observation of the convention

of Definition 0.3.2, the sign of any map changes only when the individual

summand of the tensor product has an entry of degree −1 tensored onto

the left, i.e., precisely whenever there is R(j) in the summand where i < j,

in agreement with LF ′\Gj ,j for the map R∗[TF ′\Gj ] → R∗[TF ′ ] where Gj is

an n − 1 dimensional face such that ηGj ∈ {ej ,−ej}. Hence, the sign on

a given map between summands on the right H
′ → H is precisely [F, F ′]

where H ∼= R∗[TF ], H
′ ∼= R∗[TF ′ ] and F = F ′ ∩ Gj , aligning with the sign

on the corresponding map within Γ(D(k)).

Lemma 2.3.7. The complex Ωk
1 ⊗
R0

Ωk
2 ⊗
R0

. . . ⊗
R0

Ωk
n is homotopy equivalent to

( ⊕

i∈[−ke1,ke1]

Ri

)
⊗
R0

( ⊕

i∈[−ke2,ke2]

Ri

)
⊗
R0

. . . ⊗
R0

( ⊕

i∈[−ken,ken]

Ri

)
.

Proof. Note that for all j,

∆jρj ' id, ρj∆j ' id

from Proposition 2.6 of [HS16]. Also note that ∆`ρ`⊗∆jρj = (∆`⊗∆j)(ρ`⊗
ρj) and ρ`∆` ⊗ ρj∆j = (ρ` ⊗ ρj)(∆` ⊗∆j) for all ` 6= j. Use Corollary 9.2

of [ML95] to see that

∆1ρ1 ⊗∆2ρ2 ⊗ · · · ⊗∆nρn ' id

(simarly for tensor products of ρj∆j) hence the map consisting of n ∆j maps

tensored together form a homotopy equivalence from
( ⊕

i∈[−ke1,ke1]

Ri

)
⊗
R0

( ⊕

i∈[−ke2,ke2]

Ri

)
⊗
R0

. . . ⊗
R0

( ⊕

i∈[−ken,ken]

Ri

)
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to Ωk
1 ⊗
R0

Ωk
2 ⊗
R0

. . . ⊗
R0

Ωk
n as required.

Proposition 2.3.8. The complex of R0-R0- bimodules

0→
⊕

i∈[−k,k]n

Ri → Γ(D(k))→ 0

with the non-trivial map being inclusions of
⊕

i∈[−k,k]n
Ri into each summand

of Γ(D(k))0 =
⊕

dim(F )=0

D(k)(F ) is exact for k ≥ 0.

Proof. Firstly, note that:

⊕

i∈[−k,k]n

Ri ∼=
( ⊕

i∈[−ke1,ke1]

Ri

)
⊗
( ⊕

i∈[−ke2,ke2]

Ri

)
. . .
( ⊕

i∈[−ken,ken]

Ri

)

via applications of maps of the form of β from Proposition 2.3.1 for the sets

[−kej , kej ],
( ⊕

i∈[−ke1,ke1]

Ri

)
⊗
( ⊕

i∈[−ke2,ke2]

Ri

)
. . .
( ⊕

i∈[−ken,ken]

Ri

)
' Ωk

1 ⊗ Ωk
2 ⊗ · · · ⊗ Ωk

n

using the tensor product of maps ∆j from Lemma 2.3.7 and

Ωk
1 ⊗ Ωk

2 ⊗ · · · ⊗ Ωk
n
∼= Γ(D(k))

via applications of a⊗ b→ ab from Lemma 2.3.6. The composition of these

maps can easily be seen to be the claimed inclusions. The result is thus

proven.

2.4 Extending a complex of modules of graded rings to a complex of

quasi-coherent diagrams

The next construction is to take a bounded chain complex of finitely gener-
ated free R-modules and form a bounded chain complex of quasi-coherent
sheaves.

From this point there will be a number of diagrams that have chain
complexes at each entry in the poset, that is they are chain complexes of
diagrams. For the sake of clarity, given such a diagram Φ, we write Φ(p)
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as the chain complex seen at the point indexed by p in the poset while we
write Φj for the diagram at the jth chain level and Φ(p)j for the jth level
of the complex at p.

Proposition 2.4.1. Let C be a bounded chain complex of finitely generated

free R-modules. We can form a complex of sheaves where in the centre we

have the original complex C and at each level we have a sheaf of the form

D(kj)
mj for some kj ≥ 0,mj ∈ Z, kj ≥ kj+1.

Proof. Given C and j ∈ Z, note Cj = Rmj for somemj ∈ N. Given k ≥ 0, we

have a collection of modules C(F )j = R∗[k ◦ TF ]mj formed from restricting

the support of C to the R0-R0 bimodule R∗[k ◦ TF ]. The obvious inclusions

satisfy the adjoint map condition of the structure maps of a quasi-coherent

diagram. Hence we can always form a sheaf level-wise for any k ≥ 0 of the

form D(k)mj . We need to show that a chain complex of sheaves can be

formed.

Consider that for all j, the boundary map of C, dj , is an mj × mj−1

matrix of maps that do not respect the grading of the ring. However, each

of these maps will map every homogenous component Rp of the ring R to a

finite selection of components in the image based on the image of the identity

element of the ring. For each map we can find a number kj−1 large enough

such that the support of the image of Rp is contained in a n-dimensional

cube of sides 2kj−1 centered on p and a cube of this size will be enough

to contain the image of every component Rp, p ∈ Zn. It follows that given

a restriction C(F )j for the domain restriction of the boundary to be well

defined the image must contain every component in the image of each of the

components on the edge of the restriction.

For example, if we were looking at C(v)j = R∗[0◦Tv]mj for a vertex v, it

would be possible to map into the module R∗[kj−1◦Tv]mj−1 with the obvious

inclusion. It follows that the sheaf D(kj−1)mj−1 is a suitable codomain for

the extension of the boundary map dj : Cj → Cj−1 to the sheaf D(0)mj ,

hence we have a new map D(0)mj → D(kj−1)mj−1 . Boundedness of C
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allows a process of iteration to generate a chain complex with D(ki)
mi at

point i with ki increasing as i decreases. Showing that the maps satisfy the

boundary map condition follows from the fact that the central map dj is

a boundary and the other maps are restrictions of this map that commute

with inclusion maps. Hence we have the complex of sheaves Yj = D(kj)
mj

where for all F we can form a chain complex Y(F ) = C(F ) consisting of

each of the C(F )j , j ∈ Z and restrictions of the boundary maps dj at the

point indexed by F .

Note that from this point Y is assumed to have a bounded chain complex
of finitely generated free R-modules Y(S) = C at the point indexed by S.

By applying the same rank and incidence functions as used in Remark
2.2.10, the Čech complex Γ(Y) of Y can be written. This will be a chain bi-
complex with commutating differentials, considering the horizontal level to
be the Čech complex of the relevant level of Y. Let Γ̌(Y) be the totalisation
of Γ(Y).

Corollary 2.4.2. The complex Γ̌(Y), considered as the totalisation of the

Čech complex of Y where Yj = D(kj)
mj , is homotopy equivalent to the

complex D with modules

Dj =
⊕

1≤p≤mj


 ⊕

i∈[−kj ,kj ]n
Ri




and maps consisting of restrictions of the boundary map d of C.

Proof. We can see D is a chain complex for the same reason that Y is.

Consider the map that levelwise is precisely sums of the map in Proposition

2.3.8. These will commute with the boundary maps as they are injective and

the boundary of D is a further restriction of the boundary of C beyond that

of Γ(Y) and will ensure that each row of D → Γ(Y) is exact by Proposition

2.3.8, hence it follows from Lemma 0.3.6 that the totalisation of Γ(Y), the

chain complex Γ̌(Y), is homotopy equivalent to D.

Remark 2.4.3. Observe that D is a bounded complex of finitely generated

projective R0-modules as, levelwise, it is a finite sum of finitely generated
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projective R0-modules [HS16, Proposition 1.6]. Boundedness follows as C is

bounded. We will use D as our finite domination by showing C is a retract

up to homotopy of D and noting that D itself is a retract of a bounded chain

complex of finitely generated free R0-modules.

2.5 The diagram EF

In this section we introduce the diagram EF and its Čech complex Γ(EF )
which will be important for the proof later on.

Definition 2.5.1 (Star of a face). For F ⊂ S, define the star of F , st(F ),

as the set of faces of S that contain F .

Definition 2.5.2 (Nerve of st(F )). Let NF be the simplicial complex con-

sisting of flags F = {F0 ⊂ · · · ⊂ F`} where each face Fi is contained within

st(F ), that is each face contains F .

Lemma 2.5.3. For every F ∈ NF , the ring R∗((F)) admits a R∗[TF ]-R∗[TF ]

bimodule structure.

Proof. Generally speaking, we only need to consider flags where S /∈ F . A

flag with S in it admits a generalised Novikov ring that can have support

across Zn and since R∗[TF ] only has elements with finite support there is no

possibility of any finiteness conditions being broken.

It remains to show for when F has a largest face G ⊂ S. Condition

(1) becomes a requirement that the support of an element is in TG. Since

F ∈ NF , then TF ⊆ TG and since TG is closed under addition immediately

we see that we can always define a well-defined closed R∗[TF ]-action on the

left or right as required.

We define a diagram for each F ⊆ S:

EF : NF → R0-Mod, EF (F) = R∗((F))

where the structure maps αF ,F ′ , F ⊆ F ′ are inclusions, this follows from
Lemma 1.2.21.
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This diagram admits a Čech complex whenever NF is given a rank map
rk(F) = 1 − dim(F) (which has values 0 to n − dim(F ) = codim(F )) and
an incidence function as detailed below.

Lemma 2.5.4. For a flag F = {F0 ⊂ · · · ⊂ Fj ⊂ · · · ⊂ F`} and a face Fj,

let

[−,−] : NF ×NF → Z

be the map where:

• [F \ {Fj},F ] = (−1)j.

• 0 otherwise.

This map satisfies the three conditions (DI1),(DI2),(DI3).

Proof. Condition (DI1) is satisfied trivially. Condition (DI2) follows as for

two flags F ,F ′ such that dim(F) + 2 = dim(F ′), there are two faces Fg, Fg′

contained within F ′ = {F0, . . . , Fg, . . . Fg′ , . . . Fk} that are not contained

in F , and precisely two flags F ∪ Fg,F ∪ Fg′ contained within I(F : F ′).
Without loss of generality, let g′ > g. Now see that [F∪Fg : F ′][F : F∪Fg] =

(−1)g
′
(−1)g and [F ∪ Fg′ : F ′][F : F ∪ Fg′ ] = (−1)g(−1)g

′−1 hence the sum

is trivial and (DI2) is satisfied. Finally consider flags F = {F ⊂ F ′} with

only two faces. The set I(< F) contains only two flags. Then [{F ′} : F ]

and [{F} : F ] have opposite signs making the sum trivial hence (DI3) is

satisfied.

The above collection of signs allow us to form a Čech complex Γ(EF ).

Definition 2.5.5. Given EF , define Γ(EF ) as the complex with the sum
⊕

dim(F)=k

R∗((F)) at level 1− k and boundary map d1−k consisting of sums of

[F \ {Fj},F ]αF\{Fj},F : EF (F \ {Fj})→ EF (F)

over the collection of F with dimension k and all Fj ∈ F for each F .
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Remark 2.5.6. Lemma 2.5.3 tells us that Γ(EF ) is a left-right R∗[TF ]-

bimodule.

The following Theorem is a major step in the proof of the main result
of this chapter.

Theorem 2.5.7. The diagram EF indexed by elements NF , where for F ∈
NF the entry is R∗((F)), has Čech complex quasi isomorphic to R∗[TF ]

via the R∗[TF ]-R∗[TF ]-bimodule map induced by σF : EF → R∗[TF ] where

σF ({S}) is the projection R∗(({S})) = R → R∗[TF ] and σF is trivial other-

wise.

In solving 2.5.7 we follow a similar proof as seen in [HQ15], that is we split
the diagram Ev into 2n-many diagrams corresponding to the 2n collection of
orthants of Zn represented by Tw where w is a vertex of S. The rest of this
section is spent managing EF to bring a bit more clarity to this diagram.

The first goal is to justify limiting our interest only to those EF for F a
vertex of S. Specifically, for a larger dimensional face G we will see that a
similar proof of Proposition 2.5.7 for the diagram Ev where v is a vertex of
[−1, 1]n−dim(G) will work for EG.

Lemma 2.5.8. Given a Zn-graded ring R and a face F ∈ S = [−1, 1]n of

dimension k there is a Zn−k graded ring U such that for a vertex w, EF is

the same diagram as E′w where (E′w)(F) = U∗((F)).

Proof. If k = 0 there is nothing to prove, so let k > 0. Using Remark 1.4.11,

we generate a ring U such that for all F ∈ NF , there is a flag γ(F) ∈ Nγ(F )

where U∗((γ(F))) = R∗((F)).

So, we restrict our treatment of Proposition 2.5.7 only to Ev where v is
a vertex.

Next we present how EF can be split into the 2n diagrams.

Definition 2.5.9 (Intersection Rings of R∗((F)) with M). For a flag F and

set M ⊆ Zn closed under addition of Zn, write R∗((F ∩M)) for the collection

of elements of R∗((F)) with support entirely contained within M .
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If we naively divide each (EF )(F) = R∗((F)) into R0-R0 bimodules with
support in each Tw for vertices w, we will not find that

⊕
w
R∗((F ∩ Tw)) is

equal to R∗((F)), for example R0 will appear in each summand rather than
in only one. So we need to replace Tw with some specifically shifted cones
to make this splitting argument work.

Definition 2.5.10. Fix two vertices w and v. Let Fv,w be the unique lowest

dimensional face such that both v and w are contained within Fv,w. Let

η′w,v = ηw − ηFv,w

and define the shifted cone of w in relation to v as

η′w,v + Tw.

Example 2.5.11. Going back to S = [−1, 1]2, if we take v = vbl, w = vtl,

then Fvtl,vbl = εl and η′vtl,vbl = ηvtl − ηεl = (1,−1) − (1, 0) = (0,−1). More

generally, for all n we have η′v,v = ηv − ηv = 0 and η′−v,v = η−v − ηS = η−v.

If Fw,v is a 1 dimensional face then η′w,v is either et or −et for some t.

What these do is shift Tw depending on how it is aligned with a fixed
Tv. Now, what we claim is that

⊕

w

R∗((F ∩ (η′w,v + Tw))) = R∗((F))

as R0-R0 bimodules. We argue this by showing that Zn =
⋃
w

(η′w,v + Tw) for

disjoint sets η′w,v + Tw.

Proposition 2.5.12. For a fixed v, the sets Zn and
⋃
w

(η′w,v +Tw) are equal

and each η′w,v + Tw are disjoint with one another.

Proof. Pick ρ = ρtet ∈ Zn such that each ρt 6= 0. Then there is a unique

vertex w such that ρ ∈ Tw, precisely the choice of w such that for all t,

sgn(w)t = |ρt|/ρt. Since we set each ρt to be non-zero, and the effect of η′w,v
only removes some elements ρ′ of Tw such that at least one ρ′t is zero, ρ is

still contained within η′w,v + Tw.
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Now let there be k > 0 many ρui , 1 ≤ i ≤ k such that ρui 6= 0 and n− k
many ρxi , 1 ≤ i ≤ n − k such that ρxi = 0. It is immediately clear that ρ

is contained within Tw whenever |ρui |/ρui = sgn(w)ui for all 1 ≤ i ≤ k. For

every vertex z where |ρui |/ρui = sgn(z)ui it follows that ρ ∈ Tz. Whenever z

satisfies sgn(z)xi = −sgn(v)xi , it follows that ρ /∈ w′z,v ◦Tz as η′z,v is a sum of

elements sgn(z)tet, one of which will be −sgn(v)xiexi . Hence, ρ is contained

in the barrier lattice of the unique vertex w where sgn(w)ui = |ρui |/ρui for

all 1 ≤ i ≤ k and sgn(w)xi = sgn(v)xi for all 1 ≤ i ≤ n − k. Since we can

see that every element of Zn is contained within a unique set on the right of

the equation and that each η′w,v + Tw is a subset of Zn we have shown the

result.

Corollary 2.5.13. For a fixed vertex v and a flag F ,

⊕

w

R∗((F ∩ (η′w,v + Tw))) = R∗((F)).

Proof. Immediate from Proposition 2.5.12.

For any v, w define Ev ∩ (η′w,v + Tw) as the diagram indexed by flags of
faces of Nv where for F ∈ Nv,

(Ev ∩ (η′w,v + Tw))(F) = R∗((F ∩ (η′w,v + Tw))).

Corollary 2.5.14. For a fixed vertex v,

⊕

w

(Ev ∩ (η′w,v + Tw)) = Ev.

Proof. Immediate from Corollary 2.5.13.

What we will find is that whenever w 6= v, Γ(Ev ∩ (η′w,v + Tw)) will
have trivial homology while Γ(Ev ∩ (η′v,v + Tv)) = Γ(Ev ∩ Tv) is homotopy
equivalent to R∗[Tv] as R∗[Tv]-R∗[Tv] bimodules.

Definition 2.5.15. We call the R0-R0 module R∗((F ∩ (η′w,v + Tw))) the

intersection module of R∗((F)) with η′w,v + Tw, or just intersection module.

From this point onward, we fix v and write η′w,v + Tw = T ′w and hence

R∗((F ∩ (η′w,v + Tw))) = R∗((F ∩ T ′w))
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and Ev ∩ (η′w,v + Tw) = Ev ∩ T ′w. Also T ′v = Tv.

Finally, note that a number of the (Ev ∩ Tw)(F) = R∗((F ∩ T ′w)) are in
fact trivial.

Proposition 2.5.16. Let F = {F0 ⊂ · · · ⊂ F`} ∈ Nv be such that the

skeleton has non empty W (i.e., so that S /∈ F). If sgn(w)k = −sgn(v)k for

at least one k where sgn(w)kek ∈W , then R∗((F ∩ T ′w)) = 0.

Proof. An element r of R∗((F)) must have support contained within TF`

by condition (1) of the original Novikov definition. In particular, for ρ =
∑

j ρjej to be in the support of r, we require that |ρk|/ρk = sgn(w)k. That is,

ρk is non-positive or non-negative, without loss of generality let sgn(w)k = 1

so that ρk ≥ 0. However, for this element to also be within R∗((F ∩ T ′w)),

then the support must be within T ′w. Since sgn(w)k = −sgn(v)k, the inter-

section of Tv with Tw is a subspace such that for a ρ ∈ Tv ∩ Tw, we need

ρk = 0. The application of η′w,v on Tw is precisely to remove this intersection

as η′w,v is a linear combination containing sgn(w)kek. It follows that Tv ∩T ′w
is empty, making R∗((F ∩ T ′w)) = 0 as required.

2.6 Rough skeletons of intersection modules

We now need to describe R∗((F ∩ T ′w)) in an enlightening way, particularly
since two different flags may have the same intersection with T ′w for a given
w. I begin by representing w as a collection of signs

{sgn(w)k, 1 ≤ k ≤ n}

such that sgn(w)kek ∈ Tw. Whenever sgn(w)k is +1, the support of an
element of R∗((F ∩ T ′w)) is bounded such that the coefficient of ek is never
negative, the opposite case occurs when sgn(w)k = −1. Note that whenever
F ∈ Nv and ek /∈ P , it follows that sgn(F)k = sgn(v)k. Since we are only
concerned with flags contained within a given Nv (it is all we need to solve
Proposition 2.5.7) we now will tend to use sgn(v) in place of sgn(F).

For a vertex w, consider the collection of maps Aw

f : T ′w → R
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such that f(a) ∈ Ra. Similar to the Novikov ring definition, we form a
precise definition of these intersection modules by restricting the collection
Aw by applying conditions, specifically restrictions of the original Novikov
ring definitions.

For a given face F , we consider a new collection of conditions that com-
bine both (2-F ) and the need for the support to be within T ′w.

Definition 2.6.1. For a given face F ⊂ S and vertex w, let (2-F ∩T ′w) refer

to the following condition:

A map f ∈ Aw satisfies (2-F ∩ T ′w) if for all q ∈ Zn there exists k � 0

such that

kηF +
((
q + (−TF )

)
∩ supp(f)

)
⊂ TF .

That is, though we restrict our immediate attention to elements with
support contained within T ′w, we still require the ability to shift the inter-
section with the support into the relevant barrier lattice, even if T ′w and
TF are completely different. I hope it is clear that whenever T ′w ⊆ TF ,
the condition (2-F ∩ T ′w) is trivial, since

(
q + (−TF )

)
∩ supp(f) ⊆ T ′w as

supp(f) ⊆ T ′w from the definition of Aw so k = 0 is satisfactory.
Note that condition (1), that the support of an element is contained

within the barrier lattice of the largest face of a flag, is either an implication
of the requirement that the support is within T ′w, or directly opposed to it. In
the latter case we get a trivial module R∗((F ∩ T ′w)), incidentally this occurs
if and only if when there is some element of W such that sgn(F )kek ∈ W
and sgn(F )k 6= sgn(w)k (Proposition 2.5.16). We can discuss these ideas in
terms of n− 1-dimensional faces.

Definition 2.6.2. Call a face G of dimension n− 1 w-aligned if T ′w ⊆ TG,

making (2-G∩ T ′w) trivial. Conversely, if T ′w is not contained within TG call

G w-unaligned. Since we understand each vertex to be the intersection of n

many faces of dimension n−1, there can be no situation where G is not one

or the other. We only refer to n−1 dimensional faces with this terminology.

While (2-G ∩ T ′w) is trivial for w-aligned G, we see that the condition is
not trivial otherwise. When G is w-unaligned, (2-G ∩ T ′w) will put a global
bound on the support of an element so that for ρ =

∑
j ρjsgn(w)jej ∈

supp(f) it follows that ρG ≤ kηG for some k > 0. This bound is in the
opposite direction to that provided by T ′w (ρG > 0).
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Now we put this discussion to work. The first thing we do is ascertain
the orientation of the flag F in relation to Tw, in effect working out whether
or not the n− 1-faces that have faces in CT(F) contained within them are
w-aligned or w-unaligned.

Like for the Novikov rings themselves, we seek to represent what the
intersection modules R∗((F ∩ T ′w)) are with a skeleton structure, firstly we
begin by just encoding the orientation of the flag in relation to w.

Definition 2.6.3 (Rough skeleton of the intersection module). Given a flag

F = {F0, . . . F`} ∈ Nv and a vertex w, consider the collection of sets

RSK(F ∩ T ′w) := {APmin, A
W
0 , AP0 , . . . A

W
`−1, A

P
`−1, A

W
max}

where:

• APmin contains elements −sgn(w)kek of P (we discard sgn(w)kek), for

0 ≤ i ≤ n.

• AWi contains elements in Ai where sgn(v)k = sgn(F)k = sgn(w)k while

conversely.

• APi contains elements in Ai where sgn(v)k = sgn(F)k 6= sgn(w)k.

• Finally AWmax contains elements of W where sgn(v)k = sgn(F)k =

sgn(w)k.

We call RSK(F∩T ′w) the rough skeleton of the intersection module R∗((F ∩ T ′w)).

Note that for all i, either APi or AWi must be non-empty.

Remark 2.6.4. Once again, the rough skeleton tells us the nature of the

faces in a similar way as the skeleton does as described in Remark 1.4.8

However, we have added information. for a flag F , such that RSK(F ∩ T ′w)

has, for some i, non zero APi and AWi sets, then

Fi = Fi+1 ∩ (
⋂

ja

Ga) ∩ (
⋂

ju

Gu)
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where Ga are w-aligned such that ηGa ∈ AWi while Gu are w-unaligned such

that ηGu ∈ APi . The set AWmax will tell us the nature of the largest face,

precisely:

F` = (
⋂

jb

Gb)

for w-aligned faces Gb such that ηGb ∈ AWmax in particular, W = ∅ implies

F` = S. The set APmin is more interesting. We discard half of the elements

of P when forming APmin, to take into account the two-sided boundedness

condition from the Novikov ring itself. We see that no face within F is

contained within G or −G such that either ηG or η−G are in APmin.

Example 2.6.5. For APi , A
W
i we begin by discussing a case for Z2. Using

the naming conventions from Section 1, consider the flag F = {vbl, S} with

CT(F) = {εb, εl}, the vertex vtl and the intersection modules R∗((F ∩ T ′vtl)).
Then:

SK(F) = {A0 = {ex, ey}}

while

RSK(F ∩ T ′vtl) = {AW0 = {ex}, AP0 = {ey}}.

The condition of F in the direction ex aligns with the condition from T ′vtl ,

so the only bound on the support in this direction is that any coefficient on

ex must be non-negative. That is, given an element r of R∗((F ∩ T ′vtl)) and

fixed q ∈ Z2, the subspace

{q +myey : my ∈ Z}

can be shifted infinitely often in the direction of ex and, in general, the

intersection of the subspace and the support of r will be non-trivial.

Conversely, the condition of F in the direction ey does not align with

the condition from T ′vtl . So, as well as any coefficient on ey needing to be

non-positive, there is an additional condition to consider for the intersection

that comes from (2-εb ∩ T ′vtl) due to εb being vtl-unaligned. Namely, that
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given an element r the subspace

{q +mxex : mx ∈ Z}

can be shifted finitely often in the direction of −ey until the intersection of

the subspace and the support is trivial. This is akin to a polynomial ring

over a power series, e.g., V [[x]][y−1]. Note that this is a stronger condition

that a similar condition on a single point q, that is the condition that q can

only be shifted finitely often in the direction of −ey until the intersection of

the subspace and the support is empty.

The former is a stronger condition on an entire line within Z2, which

provides a global bound on values of y, while the latter is a condition on

individual points. The latter, weaker condition is what is seen when taking

the intersection of F ′ = {el, S} with T ′vtl , where

SK(F) = {P = {±ey}, A0 = {ex}}

and

RSK(F ∩ T ′vtl) = {APmin = {ey}, AW0 = {ex}}

in this case the intersection will look like the power series of a polynomial,

e.g., V [y−1][[x]]. The order of the sets in the intersection skeletons, like with

the skeletons, are highly important. Note that since the set P contains both

the positive and negative elements ek, we pick the direction that matches

−sgn(w)k, and hence the other APi , to make the direction clear.

While there is a one-to-one correspondence between flags and rough in-
tersection skeleton, there are potentially multiple flags with the same in-
tersection, for example R∗(({S} ∩ T ′w)) = R∗[T ′w] while for any other flag F
such that RSK(F ∩ T ′w) satisfies AWi = ∅ for all 0 ≤ i ≤ ` − 1 and satisfies
AWmax = ∅ it also follows that R∗((F ∩ T ′w)) = R∗[T ′w]. We will aim to simplify
these skeletons so that there is a one-to-one correspondence between simpli-
fied flags and intersections. Firstly, we will take a moment to explore the
structure by considering the subspace bound conditions (Remark 1.4.10).
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What AWmax tells us. We can observe immediately from Proposition 2.5.16
that if there are elements of W that are not placed within AWmax, then
R∗((F ∩ T ′w)) is 0. So, from this point we assume that the signs sgn(v)k
of the elements ek of W agree with those of w. There are no bounds as-
sociated to the support of the elements of the intersection module in these
directions. As asides, note that if the flag contains S, the intersection is
never trivial, and for w = v, the intersections are never trivial.

What APmin tells us. For 1 ≤ k ≤ n, let −sgn(w)kpekp ∈ APmin. For the
original generalised Novikov ring R∗((F)), for ±ekp ∈ P , the support of a
general element of the ring will have a finiteness condition in the directions
of ±sgn(w)kpekp . Specifically that is for each j where ±ekj ∈ P

{q +
∑

k=kp

mkek : mk ∈ Z, mkj = 0}

has the subspace bound condition in both ±ekj directions. When taking an
element of the intersection module the above subspace will have finiteness
conditions in the directions of sgn(w)kjekj for sgn(w)kjekj ∈ APi while in the
directions −sgn(w)kjekj there will be a bound by the subspace

{
n∑

k=1

sgn(w)kmkek : mkj = 0, mk ≥ 0}

as the support must be contained within T ′w. This is akin to a polynomial in
a single indeterminate as opposed to two sided (i.e., Laurent) polynomial.

What APi , A
W
i tell us, general case. More generally, for APi , A

W
i we focus

on sgn(v)kaeka ∈ Ai, note that the faces Gka of dimension

|P |+ (
∑

1≤j≤i+1

|Aj |)− 1

are the relevant faces within CT(F) such that

sgn(v)kaeka ∈ TGka , −sgn(v)kaeka /∈ TGka .

Some of these conditions will place a bound in the same direction as the
bound of Tw, others will not. If sgn(v)ka = sgn(w)ka for some a, then the
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conditions align, and taking the intersection will replace the local finiteness
condition in the −sgn(w)ka direction with a global bound by the subspace

J = {
n∑

k=1

sgn(w)kmkek : mka = 0, mk ≥ 0}

above or below depending on whether or not sgn(w)ka is +1 or −1, this is
analogous to a power series condition. If sgn(v)ka 6= sgn(w)ka , then not only
is the support bounded by the plane J but there will be a local bound in
the opposite direction, akin to a typical polynomial condition.

Therefore the result of intersecting with Tw can be understood in terms
of the skeleton. That is, the elements of Ai are split into two groups. The
elements sgn(v)kaeka ∈ AWi are those such that sgn(v)ka = sgn(w)ka . Let
Gka be the n−1 dimensional face where ηGka = sgn(w)ka , where for a given
r ∈ R∗((F)), and each sgn(v)kaeka ∈ AWi , the subspace (Fi+1∩Gka)∗q cannot,
in general, be shifted in the direction sgn(w)aea until the intersection of the
support of r and the plane is empty. The elements −sgn(w)kaeka ∈ APi are
those such that sgn(v)ka 6= sgn(w)ka , and (Fi+1 ∩ Gka)∗q can be shifted in
the direction sgn(w)kaeka until the intersection of the support of r and the
plane is empty.

Explaining the order of sets. Let |Ai| = 2 for some 1 ≤ i ≤ ` − 1, with
sgn(v)jej ∈ AWi , sgn(v)j′ej′ ∈ APi and n − 1 faces Gj , Gj′ with ηGj =
sgn(v)jej , ηGj′ = sgn(v)j′ej′ so that Gj is w-aligned and Gj′ is w-unaligned.

Let±ekp ∈ APmin, sgn(v)kaeka ∈
⋃
x≤i−1Ax. Noting that Fi = Fi+1∩Gj∩Gj′ ,

then CT(F) has two faces whose conditions are relevant to the elements
within Ai, Fi+1 ∩Gj and Fi+1 ∩Gj′ .

Consider the condition associated with the face Fi+1 ∩Gj . This tells us
that given an element r ∈ R∗((F ∩ Tw)), the subspace (Fi+1 ∩ Gj)∗q can be
shifted only finitely often in the direction sgn(w)jej . However, (Fi+1∩Gj′)∗q
has no such bound in the direction sgn(w)jej . This means that the condition
is analogous to a polynomial of a power series (e.g., something like V [[x]][y]),
rather than the other way round. If we add a face between Fi and Fi+1 there
are two choices, one of which makes no change to the intersection module
and another that does. If we add Fi+1 ∩ Gj′ , then while Fi+1 ∩ Gj′ is still
within CT(F ∪{Fi+1 ∩Gj′}), Fi+1 ∩Gj is not within CT(F ∪{Fi+1 ∩Gj′})
or CP(F ∪ {Fi+1 ∩ Gj′}), however we will see later that (2-Fi+1 ∩ T ′w) will
imply (2-(Fi+1 ∩Gj)∩ T ′w). Let the rough intersection skeleton of F be the
following:

{APmin, A
W
0 , AP0 , . . . A

W
i , A

P
i , . . . A

W
`−1, A

P
`−1, A

W
max}.
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The rough intersection skeleton of F ∪ {Fi+1 ∩ Gj′} can be seen to be the
following collection of sets:

{APmin, A
W
0 , AP0 , . . . A

W
i , (A

′)Pi+1, . . . (A
′)W` , (A

′)P` , A
W
max}

wherefore all j ≥ i, APj = (A′)Pj+1 and for j ≥ i+ 1, AWj = (A′)Wj+1 i.e., the
only change is in the numbering of a few of the sets, which we will see is no
change at all in relation to the intersection module.

If we add Fi+1 ∩ Gj , then we will see the following rough intersection
skeleton for F ∪ {Fi+1 ∩Gj}

{APmin, A
W
0 , AP0 , . . . (A

′′)Wi , A
P
i , (A

′′)Wi+1, . . . (A
′)W` , (A

′)P` , A
W
max}

where (A′′)Wi+1 = AWi and (A′′)Wi = ∅. Now we get a change, the face
Fi+1 ∩ Gj′ is no longer in the caterpillar. Instead, the largest subspace
such that the associated subspace bound condition provides a bound in
the direction −sgn(w)jej is associated with the face Fi ∩ Gj as opposed
to Fi+1 ∩ Gj , making the condition strictly weaker. This means that the
condition is analogous to a power series of a polynomial (e.g., something
like V [y][[x]]) in contrast to the case for F .

A similar pattern occurs when |Ai| > 2. It follows that when writing
out the rough skeleton of the intersection RSK(F ∩ T ′w), we write the AWi
to the left of the APi . We will formally justify this idea later on.

2.7 Simplifying the rough skeletons

Now that we have put work into explaining theR0-R0 bimodulesR∗((F ∩ T ′w))
using the rough intersection skeletons RSK(F∩T ′w), we wish to simplify these
skeletons to further understand what these modules are. Recall that there
can be multiple flags, and hence rough skeletons, that correspond to a partic-
ular intersection module. This section will introduce a system of simplifying
the rough skeletons, so that there is a one-to-one correspondence between
the collection of skeletons and the collection of intersections modules.

From the discussion in the previous section, as long as ‘P’ elements do
not swap order with ‘W’ elements, we are free to add or take away faces as we
wish with no change to the intersection. For example if Ai has two elements
both of which are in APi , we can add precisely one face splitting APi into two
pieces. Depending on the choice of face we can split APi two ways. The choice
of face has an effect on the associated Novikov ring but not the intersection.
For Ai with both non-empty APi and AWi , we can add faces as long as there
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is no face within the flag that, for at least one of sgn(v)kek ∈ AWi and one
of sgn(v)k′ek′ ∈ APi , ±sgn(w)k′ ∈ TF and −sgn(w)k /∈ TF .

Also note, that if there is ±ej ∈ P such that sgn(v)j = sgn(w)j then
adding new faces of lower dimension than what is there can change the
intersection - namely if a face is added that places sgn(v)jej into A0 of the
original skeleton, then taking the intersection with T ′w will put it into AW0 .
Evidentally, swapping a bounded condition with a trivial one changes the
intersection non-trivially.

I will now consider what faces can be added or removed from a flag
F = {F0 ⊂ · · · ⊂ F`} whose rough intersection skeleton satisfies a certain
condition without changing the intersection with T ′w itself. Broadly speak-
ing, we can remove faces from the flag without changing the intersection
whenever there are sets AP? , A

W
? that are empty within the rough skeleton.

Lemma 2.7.1. For a given flag F = {F0 ⊂ · · · ⊂ F`} ∈ Nv and vertex

w such that RSK(F ∩ T ′w) satisfies AP`−1 = ∅, we have R∗((F ∩ T ′w)) =

R∗((F \ {F`} ∩ T ′w)). Similarly, for J = {J0 ⊂ · · · ⊂ Jm} not containing S,

we can add at least one face of larger dimension than Jm without changing

the intersection ring, in particular S itself.

Proof. The rough skeleton tells us that F`−1 is an intersection of w-aligned

n − 1 faces, and hence so is every face it is contained within. It follows

that every condition (2-H ∩ T ′w) for F`−1 ⊆ H is trivial and condition (1)

for F`−1 is satisfied as T ′w ⊆ T`−1. Hence, removing F` swaps conditions

implied by the requirement of the support to be in T ′w with other conditions

that are also implied by this requirement, hence the intersection will not

change. Similarly, adding a face strictly containing Jm will not remove a

condition from the tree that is not already weaker than the requirement that

the support is within T ′w. In particular, we can add S.

The following proposition is needed for the case where some APi is empty.

Proposition 2.7.2. Let G be a w-aligned n − 1-dimensional face. Then

for a face F not a subface of G or −G, the condition (2-F ∩ T ′w) implies

(2-(F ∩G) ∩ T ′w).



2. Contractibility of Novikov homology implies finite domination 75

Proof. Assume (2-F ∩T ′w) is true, then for a fixed q there exists some k > 0

where

kηF +
((
q + (−TF )

)
∩ supp(f)

)
⊂ TF .

Since T ′w ⊂ TG, condition (2-G ∩ T ′w) is true for any k. Also note that for

all t ∈ Z, tηG ∈ TF . It follows that we can combine the two conditions thus:

kηF + kηG +
((
q +

(
− (TF ∩ TG)

))
∩ supp(f)

)
⊂ TF ∩ TG

which is precisely (2-(F ∩G) ∩ T ′w) as kηF + kηG = kηF∩G as required.

Lemma 2.7.3. For a given flag F = {F0, . . . , F`} ∈ Nv and vertex w such

that RSK(F ∩ T ′w) satisfies APi = ∅ for some i < `, we have R∗((F ∩ T ′w)) =

R∗((F \ {Fi+1} ∩ T ′w)).

Proof. Immediately note that R∗((F \ {Fi+1})) ⊆ R∗((F)), so

R∗((F \ {Fi+1} ∩ T ′w)) ⊆ R∗((F ∩ T ′w)).

Only the other direction remains. Comparing CT(F) and CT(F \ {Fi+1}),
we see that by removing the face Fi+1, we remove some faces of dimension

dim(Fi+1) − 1 = Q from CT(F) and replace them with faces of dimension

dim(Fi+2)−1 = Q′. No other changes will occur, so we focus on the faces of

dimension Q and Q′. It is enough to show that every condition associated

to faces within CT(F \ {Fi+1}) is implied by conditions associated with

faces of CT(F). Hence we restrict our consideration to faces of dimension

dim(Fi+2) − 1 = Q′ as this is the only dimension that can have any new

faces in CT(F \ {Fi+1}) that were not within CT(F).

If F ∈ CT(F) then there is nothing to prove, and Fi+1 ⊆ F ⊆ Fi+2.

Otherwise, since APi = ∅, if F contains Fi+1 it follows that Fi+2 ∩ Gk = F

for some w-aligned Gk. Then Remark 2.7.2 tells us that (2-Fi+2∩T ′w) implies

(2-(Fi+2 ∩ Gk) ∩ T ′w) which is precisely (2-F ∩ T ′w). Hence the conditions

associated with the faces of CT(F \ {Fi+1}) are implied by the conditions

associated with the faces of CT(F), so R∗((F ∩ T ′w)) ⊆ R∗((F \ {Fi+1} ∩ T ′w))

as required.



2. Contractibility of Novikov homology implies finite domination 76

Before tackling the AW? = ∅ case, we need a few more results.

Lemma 2.7.4. Let F be such that ±et ∈ TF , w a vertex, and Gt an n− 1

dimensional face that is w-unaligned. Then for q =
∑n

j=1 qjej ∈ Zn

q + (−TF ) ∩ T ′w = (q − qtet) +
(
− (TF ∩ TGt)

)
∩ T ′w.

Proof. Consider just Tw rather than T ′w to begin with. Without loss of

generality, let sgn(w)t = 1 so that ηGt = −1. Firstly note that Tw ⊂
q+ (−TGt) if and only if qt ≤ 0. For example 0 ∈ Tw is not contained within

et + (−TGt) but is contained within −et + (−TGt). Hence, for all q ∈ Zn,

Tw ⊆ q− qtet + (−TGt). Now observe that q + (−TF ) = q− qtet + (−TF ) as

an element µ =
∑
µjej ∈ TF is allowed to have both positive and negative

values of µt, as ±et ∈ TF (so that, in addition F /∈ Gt). It follows that

q + (−TF )∩Tw = q − qtet + (−TF ) ∩ Tw
= (q − qtet + (−TF ) ∩ Tw) ∩ (q − qtet + (−TGt) ∩ Tw)

=
(
q − qtet +

(
− (TF ∩ TGt)

))
∩ Tw

and simply replacing Tw with T ′w gives the result as required.

Corollary 2.7.5. Let ±et ∈ TF , w a vertex and Gt an n − 1-dimensional

face such that wGt = −sgn(w)tet, i.e., that is w unaligned. Condition (2-

(F ∩Gt) ∩ T ′w) implies condition (2-F ∩ T ′w).

Proof. Fix q. Using (2-(F ∩Gt) ∩ T ′w), we generate k such that

kηF∩Gt +
(
q − qtet + (−TF ∩ TGt)

)
∩ supp(f) ⊆ TF ∩ TGt .

Note TF ∩ TGt ⊆ TF and use Lemma 2.7.4 and the fact that supp(f) ∈ T ′w
to see that this is equivalent to

kηF + kηGt +
(
q + (−TF )

)
∩ supp(f) ⊆ TF .

Finally, note that if x ∈ TF , so is x+ kηGt for any k ∈ Z as ±et ∈ TF hence

kηF +
(
q + (−TF )

)
∩ supp(f) ⊆ TF

which is precisely (2-F ∩ T ′w) as required.



2. Contractibility of Novikov homology implies finite domination 77

Lemma 2.7.6. For a flag F , let AW0 = ∅. Then

R∗((F ∩ T ′w)) = R∗((F \ {F0} ∩ T ′w)).

Proof. The proof follows a similar pattern to that used when AP? was empty.

Firstly note R∗((F \ {F0} ∩ T ′w)) ⊆ R∗((F ∩ T ′w)). Consider a face F ∈
CT(F \ {F0}) of dimension dim(F1) − 1. We want to prove that the con-

ditions associated with faces in CP(F) will imply the condition associated

with F . Observe that by Corollary 2.7.5, (2-F ∩ T ′w) is implied by (2-

(F ∩ G) ∩ T ′w) where ηG = −sgn(w)GeG and ±eG. Since F0 = F ∩ (
⋂
iGi)

for ηGi = −sgn(w)GieGi ∈ AP0 , we see that by iterating this process (2-

F0 ∩ T ′w) will imply (2-F ∩ T ′w) as required.

Lemma 2.7.7. For a flag F , let AWi = ∅. Then

R∗((F ∩ T ′w)) = R∗((F \ {Fi} ∩ T ′w)).

Proof. Effectively identical to Lemma 2.7.6.

We now attempt to gleam some information on what faces can be added
into a flag.

Corollary 2.7.8. Given a flag F such that for APi = ∅, AWi+1 = ∅, the

intersection modules R∗((F ∩ T ′w)) and R∗((F \ {Fi+1} ∩ T ′w)) are the same.

Proof. This follows from 2.7.7 and 2.7.3.

Proposition 2.7.9. For a given flag F with non-zero AWi , A
P
i , there is a

single possible face of dimension

|APmin|+
∑

0≤j≤i
|AWj |+

∑

0≤j≤i−1

|APj |,

that can be added without changing the intersection module.

Proof. That a face can be added follows from Corollary 2.7.8, since if we

are given a flag where APi = ∅ = AWi+1 and remove Fi+1, we are left with
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a flag with an intersection skeleton where AWi , A
P
i are non-empty. Let

sgn(w)ktekt ∈ AWi , −sgn(w)kpekp ∈ APi . Also let Gkt be the n − 1 dimen-

sional face such that ηGkt = sgn(w)ktekt and G′kp be the n − 1 dimensional

face such that ηG′kp
= −sgn(w)kpekp . I claim that the face H such that

H ∩ (
⋂
tGkt) = Fi is this face, so that its presence or absence from F makes

no difference to the intersection module. The set CT(F ∪H) is the same as

CT(F) except faces are removed at dimension dimFi+1 − 1 and added at

dimH−1 = dimFi+1−|APi |−1. It is enough to show that for any other face

Fi ⊂ H ′ ⊂ Fi+1, dimH ′ = dimH, H ′ 6= H, R∗((F ∪H ′)) cannot possibly be

contained within R∗((F)).

For any kt = kr and kp = ks, let H ′ be such that

H ′ ∩ (
⋂

t6=r
Gkt) ∩G′ks = Fi,

equivalently

H ′ = Fi+1 ∩Gkr ∩ (
⋂

p 6=s
G′kp),

so that H ′ is not a subface of G′ks . Then the face Fi+1 ∩ G′ks is in CT(F)

but not CT(F ∪ H ′) or even CP(F ∪ H ′). Observe also that H ′ ∩ G′ks ∈
CT(F ∪H ′).

The subspace (Fi+1 ∩G′ks)∗q is larger than (H ′ ∩G′ks)∗q and both provide

the strongest subspace bound conditions in the direction −sgn(w)kseks for

their respective flags (F and F∪H ′). None of the conditions associated with

a face in CT(F∪H ′) will imply the condition associated with Fi+1∩G′ks from

any argument in our previous Lemmas. To prove the inequality, consider

that any map fY : T ′w → R, fY (a) ∈ Ra with infinite support concentrated

in every entry of the following set

{η′w,v + x(sgn(w)kseks + sgn(w)krekr) : x ≥ 0}

will be in R∗((F ∪H ′)), as ekr will not be among the ek that have unbounded

coefficients in the subspace (H ′ ∩G′ks)∗0 (in paticular it does not contain the
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line {mekr : m ∈ Z}) and every smaller face will only put conditions on

strictly smaller subspaces. Also there is no condition at all that puts a

bound on the support in the direction of sgn(w)kr as Gkr is w-aligned and

the set is fully bounded in all other directions. However it definitely will not

be in R∗((F)), as it clashes with the plane bound condition of (Fi+1 ∩G′ks)∗0
in the direction sgn(w)kseks since the larger subspace will have unbounded

coefficients of ekr . That is, for every y ≥ 1, (Fi+1 ∩ G′ks)∗y(sgn(w)kr ekr ) will

have non empty intersection with supp(fY ), making satisfying (2-Fi+1∩G′ks)
impossible, while given q =

∑
k qkek the subspace (H ′∩G′ks)∗q will have trivial

intersection with supp(fY ) for all qks 6= qkr .

It follows that choice of face is unique, precisely the face H that leaves

the conditions (2-Fi+1 ∩ G′kp) in CT(F ∪ H), which is precisely the case

where H = Fi+1 ∩ (
⋂
pG
′
kp

), H ∩ (
⋂
tGkt) = Fi.

The removed faces would affect the rough skeleton of the intersection by
combining adjacent AWi , A

W
i+1 or APi , A

P
i+1 even if the nature of the intersec-

tion module is unchanged. To better represent what intersection is related
to a given flag, we simply remove all the faces that can be removed by the
above argument, leaving a unique flag with a minimal collection of faces
associated with a given intersection module.

Definition 2.7.10. Given vertices v, w, a flag F ∈ Nv and an associ-

ated intersection module R∗((F ∩ T ′w)) define the intersection skeleton of

R∗((F ∩ T ′w)), written SK(F ∩ T ′w), by taking the union of adjacent AWi or

APi within the rough skeleton of R∗((F ∩ T ′w)), RSK(F ∩ T ′w), and renum-

bering as necessary forming

I = {IPmin, I
W
0 , IP0 , . . . I

W
m−1, I

P
m−1, I

W
max},

which will resemble the rough skeleton of the unique flag with the minimum

possible faces (m) with a given intersection. A similar procedure to Propo-

sition 2.7.9 can be used to show that each intesection skeleton corresponds

to an unique intersection module.

Though mentioned previously, the following Corollary is worth spelling
out for total avoidance of doubt.
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Corollary 2.7.11. Given any intersection skeleton I, there is a unique

minimal face FI such that RSK(FI ∩ T ′w) = SK(FI ∩ T ′w) = I.

Proof. A result of Proposition 2.7.9.

2.8 Organising the intersections and their skeletons

To make proper use of the intersection skeletons, we have to fix some vertex
v. We now only ever look at flags F ∈ Nv, so we use the sgn(v)k notation
when relevant. The choice of v doesn’t matter beyond orientation.

We use the definition of intersection skeleton to illuminate claims on the
flags associated to a given intersection. Fixing a vertex w let

I = {IPmin, I
W
0 , IP0 , . . . I

W
m−1, I

P
m−1, I

W
max}

be the intersection skeleton of any given intersection module R∗((F ∩ T ′w)),
so that SK(F ∩ T ′w) = I with F ∈ Nv and let I be the collection of flags
in Nv that have this intersection module. The collection of skeletons can
be ordered by considering both how many elements are contained in IW?
sets and in what configuration (σ) they are. The largest intersection occurs
when every possible element is contained within IWmax, that is the elements
sgn(v)kek, where sgn(v)k = sgn(w)k. Given a pair v, w of vertices, let there
be y many elements such that sgn(v)k = sgn(w)k.

The way of sorting through these intersections is by taking consideration
of the unique minimal flag FI associated to an intersection. The flag FI
will have precisely m many faces within it at dimensions

|IPmin|+
∑

0≤q≤m−1

(|IWq |+ |IPq |).

If we fix a configuration σ of the n elements and let K = {0, 1, . . . , k},
then the possible number of skeletons is precisely the number of elements of
(N −Y )y+1 such that the sum of the elements of each N −Y is n−y - there
are precisely n − y elements to place between or around the y elements. It
follows that each intersection can be represented by a unique element of the
set

Z = {(aj)1≤j≤y+1 ∈ (N − Y )y+1,
∑

1≤j≤y+1

aj = n− y}.

We are interested in the restriction of the lexicographical ordering of
(N − Y )y+1 to Z.
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Definition 2.8.1. Call Z equipped with the sub-ordering of the lexico-

graphical ordering of (N − Y )y+1 the special intersection ordering.

Among the y + 1 components of Z (i.e., each N − Y ), let the ‘largest’
represent the number of the n − y elements in the set IPmin ‘smaller’ than
every element in every IW? (that is, in a set to the left in the intersection
skeleton), the next largest those smaller than all but one, etc. I claim
that this ordering corresponds to the ordering of intersection modules under
inclusion whenever the maximum number of sgn(v)kek, where sgn(v)k =
sgn(w)k are contained within some IW? (i.e., y many of them). Specifically,
I claim that an intersection module associated to a higher level of Z cannot
be contained to one associated to a lower one.

Lemma 2.8.2. For two intersections I, I ′ such that under the lexicographi-

cal ordering the skeleton of I is strictly greater than I ′ and the configuration

(σW ) and number of the elements within the collections of sets IW? and I ′W?
are identical for I and I ′ respectively, I does not contain I ′.

Proof. For simplicity, let I be directly above I ′ in the special intersection

ordering of Z. Write

SK(I) = {IPmin, I
W
0 , . . . , IWi , IPi , I

W
i+1 . . . , I

P
m−1, I

W
max}.

Consider FI and FI′ . Begin by taking the case where there exists at

least one i and at least one sgn(w)kek ∈ IWi and −sgn(w)jej ∈ IPi−1 such

that sgn(w)kek ∈ (I ′)Wt , sgn(w)jej ∈ (I ′)Ps where t ≤ s. There is a face

H within CT(FI′) such that (H)∗q has a subspace bound condition in the

direction sgn(w)jej and (H)∗q contains the subspace

{q +mkek : mk ∈ Z}.

Similarly to a previous argument, a map f : T ′w → R, f(a) ∈ Ra with infinite

support concentrated in every element of the set

{η′w,v + x(sgn(w)jej + sgn(w)kek) : x ≥ 0}

cannot possibly satisfy (2-H ∩ T ′w). However, we can see, owing to the

position of the elements in the sets of RSK(FI ∩ T ′w), that such a map has
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no impedement to being included within R∗((FI ∩ T ′w)), since there are no

subspace bound conditions that fix a limit on how far a subspace containing

mkek can be shifted in the direction sgn(w)jej before the intersection with

the support of an element is trivial.

So it is evident, due to the absence of the stronger subspace bound condi-

tion, that R∗((FI ∩ T ′w)) is not contained within R∗((FI′ ∩ T ′w)) as required.

If the sets IPmin, I
W
max are involved, or I and I ′ are not adjacent in the

ordering of Z, the result follows with the same argument.

That the result holds for any pair of flags such that their intersection

skeletons are I and I ′ respectively follows from the above and the work in

Section 2.7.

By changing the order of the elements, there may be differing intersec-
tions, depending on the configuration of IP? and IW? sets. If a flag F within
Nv has the maximum possible number of elements within IW? sets (y) (it
can have fewer, we cover this later), then to consider the total possibilities
there are three things to look at:

• What IW? the y elements are in.

• What IP? the n− y elements are in.

• The order (configuration) σW of the y elements.

• The order (configuration) σP of the n− y elements.

We now consider the order of the intersections for differing y and σW , σP .

Remark 2.8.3. Fix an element z of Z (the special intersection ordering).

For two given flags within Nv with differing configurations σW1 , σW2 of the

y elements but both at z in Z, either the intersections are equal (i.e., when

the ordering has no effect, which will happen, for example, when all of the

y elements are in IWmax) or neither are contained in the other (there will be

clashing plane bound conditions, i.e., ones present in one but not the other

like in Lemma 2.8.2). Similarly, we get the same thing for differing orderings

σP1 , σ
P
2 of the n− y elements.
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Lemma 2.8.4. Given two intersection modules A,B associated to intersec-

tion skeletons IA, IB such that for all i,

|(IA)Pi | = |(IB)Pi |, |(IA)Pmin| = |(IB)Pmin|,
|(IA)Wi | = |(IB)Wi |, |(IA)Wmax| = |(IB)Wmax|

but there is some j such that

(IA)Pj 6= (IB)Pj , (IA)Pmin 6= (IB)Pmin,

(IA)Wj 6= (IB)Wj , and/or (IA)Wmax 6= (IB)Wmax

then A cannot contain or be contained within B.

Proof. This is precisely what happens for two intersections at the same level

of Z but associated to different configurations. A similar argument as seen

in Lemma 2.8.2 tells us that there will be clashing plane bound conditions

which tells us enough for this result.

If there are two flags at different levels of Z with different orderings of
the y and n− y elements, it is enough for my uses to note that the larger by
Z cannot possibly be contained within the smaller, and in particular they
cannot be equal, which follows from the previous two Lemmas.

The final thing to consider is whenever there are fewer than y elements
within IW? sets. This can only happen if one of the −sgn(w)kek where
sgn(w)k = sgn(v)k is contained within IPmin — anything else would put
sgn(w)kek in some IW? . We can still order the possible intersections by the
lexicographical ordering. For example, if there are only y−1 elements within
IW? instead of taking a restriction of (N − Y )y+1 we restrict (N − Y )y to

Z ′ = {(aj)1≤j≤y ∈ (N − Y )y,
∑

1≤j≤y
aj = n− y}

(that is, there is one less place to put the n − y elements, as we fix the
position of one of the y). In this case, if we fix an ordering of the y and
n − y elements, and pick two flags F and F ′ where for the latter we place
any one of the y elements within IPmin, it is clear that R∗((F ∩ T ′w)) cannot
be contained within R∗((F ′ ∩ T ′w)). This is clearly because there is an extra
bound condition in the direction of some element sgn(w)kek that was not
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present for R∗((F ∩ T ′w)), for example an element within support equal to
{η′w,v + xsgn(w)kek : x ≥ 0} is in R∗((F ∩ T ′w)) but not R∗((F ′ ∩ T ′w)). We
can use this argument for all 0 ≤ i ≤ y.

Comparing two intersection modules with different numbers of elements
in IW? is covered in the following Lemma.

Lemma 2.8.5. Let there be y many k such that sgn(v)k = sgn(w)k. Let

I have y and I ′ have y − 1 elements in IW? sets and let the orders of the

elements be in any configurations for the two skeletons. Then R∗((FI′ ∩ T ′w))

does not contain R∗((FI ∩ T ′w)).

Proof. Let t be such that sgn(w)tet ∈ IW? while −sgn(w)tet ∈ (I ′)Pmin. Now

simply note that due to the presence of a face in the Christmas tree of

FI′ that puts some kind of local bound on the support in the direction of

−sgn(w)tet, R∗((FI)) can’t be included into R∗((FI′)) as required.

Hence we have shown that for a fixed y and configurations σW , σP , the
special intersection ordering Z given above orders the collection of intersec-
tion modules as wished. Similarly, varying σW , σP does not conflict with
the ordering, i.e. being on one level of Z with some configuration of σW , σP

does not make the intersection module smaller to something at the same or
a lower level of Z with a different configuration. Also intersection modules
associated with elements in Z ′, with smaller y, are no greater than or equal
to those associated with elements in Z. Collectively, this organisation will
allow us to construct a filtration on Ev ∩ T ′w.

2.9 The homology of the Čech complex of EF

As progress towards proving Proposition 2.5.7, we now wish to find the
parity of the number of flags that are associated with a certain intersection.

Proposition 2.9.1. Given a vertex w, an intersection skeleton I and a

collection of flags F ∈ I such that SK(F ∩ T ′w) = I, the number of flags

within I is even for all z, unless IW0 = ∅, and v = w.

Proof. Firstly, let IWmax 6= ∅. Given a flag within I that does not contain

S, we know that we can add S without affecting the intersection module -
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we have assumed that every element of W must satisfy sgn(v)k = sgn(w)k.

Conversely, if the flag does contain S, then as long as IWmax 6= ∅, it follows

that AP`−1 = ∅ hence Lemma 2.7.1 tells us we can remove S.

If IWmax = ∅ but IW0 6= ∅, then from Proposition 2.7.9 we have precisely

two choices at dimension |IPmin| + |IW0 |, either there is an unique face, or

no face at all. This is the face F such that only for all ±ek ∈ IPmin ∪ IW0 ,

±ek ∈ TF . Anything else would non-trivially ‘swap’ the order of conditions

and change the intersection module. Hence, there are a even number of flags

within I that can be paired off in a similar way to before, those with F and

those without.

If IWmax = ∅ and IW0 = ∅ then every element is within IPmin. If v 6= w,

there are y < n many k such that sgn(v)k = sgn(w)k. It follows that, at

dimension y, there is precisely one possible face F , where for all ej such that

sgn(v)j = sgn(w)j , we have ±ej ∈ TF . This is because the only way these

can have a bounded condition in the direction of sgn(w)j is if there is a two-

sided condition that comes from having both ±ej within the smallest face in

the flag, so we also now know that this face is the smallest dimension of face

possibly present within the flag. However, this face may not be present in

the flag (but will always be in the caterpillar), hence we again see that there

are even many choices here, by pairing of flags with F and those without.

Now consider the remaining case, where v = w. The only condition

that needs to be satisfied to produce an intersection skeleton with IW0 = ∅
is that all k such that sgn(v)k = sgn(w)k are contained with APmin for the

rough skeleton of any flag associated to the intersection module. One other

condition that these flags satisfy is that they contain S. As v = w, we have

y = n. Hence, whenever IWmax = ∅, IW0 = ∅ it follows from the argument

in the previous paragraph that every sgn(w)kek is contained within APmin

for the rough skeletons of all flags associated to the intersection module.

However, the only satisfactory flag in the case v = w is {S} as for all

1 ≤ k ≤ n, sgn(w)k = sgn(v)k.



2. Contractibility of Novikov homology implies finite domination 86

So at long last we can now prove Theorem 2.5.7.

Theorem 2.5.7. The diagram EF indexed by elements NF , where for

F ∈ NF the entry is R∗((F)), has Čech complex quasi isomorphic to R∗[TF ]

via the R∗[TF ]-R∗[TF ]-bimodule map induced by σF : EF → R∗[TF ] where

σF ({S}) is the projection R∗(({S})) = R → R∗[TF ] and σF is trivial other-

wise.

Proof. Using the argument from Lemma 2.5.8, observe that we only need to

consider the cases for F = v where v is a vertex of S. We begin by showing

that for v 6= w, Ev ∩ T ′w has a Čech complex with trivial homology.

To argue that the Čech complex of the diagram has trivial homology, we

form a filtration of diagrams

X0 = Ev ∩ T ′w
x1→ X1 · · · → 0

which will eventually terminate at the zero diagram. The kernel of each

map xi will have a Čech complex with trivial homology, hence we can show

that Γ(Ev ∩ T ′w) has trivial homology by noting that for all i, the following

sequence is short exact:

0→ Γ(kerxi)→ Γ(Xi−1)
Γ(xi)→ Γ(Xi)→ 0 (2.9.1.1)

making each induced map Γ(xi) a quasi-isomorphism and hence Γ(Ev ∩T ′w)

quasi-isomorphic to 0 as wished. Begin with w 6= v and w 6= −v. Let y

be the number of k such that sgn(w)k = sgn(v)k. Broadly speaking, the

filtrations follow the following pattern:

1. We take flags such that the entries indexed by the flags in Ev ∩Tw are

associated to y, in the sense they have y elements in sets IW? (the max-

imum number of values possible). We also take all the configurations

σW , σP , of the y and n− y elements. Call these entries (Ev)y.

2. Now, we take the (Ev)y associated to the highest element zmax of the

special intersection ordering of Z. Configurations of σW and σP do

not matter for intersection skeletons associated to this level of Z.
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3. We now take the entries indexed by maximal flags (n + 1 faces) and

remove them, pairing them off with flags of n faces using Lemma 2.9.1,

in this case we use the fact that for all of these flags removing S does

not change the intersection to form pairs.

4. Staying at zmax, we now remove all the remaining entries indexed

by flags with n faces, one of them S and their partner without S,

ignoring configurations of the y and n− y elements, associated to this

intersection. We continue in this manner until we have cleared all of

the entries indexed by the flags with this intersection module, noting

that there is an even number of such flags from Lemma 2.9.1.

5. We then repeat for zmax − 1, until reaching zmin.

6. After clearing every z associated with y we repeat for y − 1, moving

down the ordering of Z ′ = {(aj)1≤j≤y ∈ (N − Y )y,
∑

1≤j≤y
aj = n − y}

in much the same way.

7. Eventually, we will reach y = 0, and clear every entry. When we are

left with the case of w = v, we will end up with R∗[Tv] rather than

nothing.

Picking v 6= w 6= −v to begin with, there is at least one k such that

sgn(v)k 6= sgn(w)k, let there be y many k in this case. Pick a flag F
such that SK(F ∩ T ′w) has IWmax = {sgn(v)kek : sgn(v)k = sgn(w)k} and

(as a result) every other sgn(v)kek is contained in IPmin. There is only one

potential intersection skeleton that satisfies this condition, configurations

will not matter. Take a flag F associated to this skeleton with the largest

number of faces, in this case there are maximal flags associated with this

intersection skeleton (we can add faces at every dimension to the minimal

face with only one possible choice of face at dimension n − y). Letting

X0 = Ev ∩ T ′w, define X1 as the same diagram except the entries at F and

F \{S} are replaced with zero. This forms a valid first step in the filtration,
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as the entry indexed by F will not map into any other entry of the diagram,

while the entry indexed by F \ {S} could only have mapped into the entry

indexed by F . Continue the filtration across all maximal flags associated to

this intersection.

After removing all entries indexed by maximal flags and their partner

without S associated to this intersection skeleton, half of the entries indexed

by ‘almost’ maximal flags with n faces associated with this intersection skele-

ton will be replaced by zero, specifically those without S. One now repeats

the process with the remaining flags of n faces, again pairing with the same

flag without S. The entries indexed by these flags have no non-zero entry

to map to, as the flags they are contained in with the same intersection

skeleton have been removed, and any flags with more entries with a differ-

ent intersection skeleton can’t possibly be the codomain of injective maps

from these entries, as we have deliberately picked the entries with the largest

intersection skeleton to begin the filtration. We will be left with two flags

- the unique minimal one associated with this intersection skeleton and the

same flag with S added. This pair is removed also.

Next, continue the argument with a maximal flag with intersection skele-

ton precisely one step down in the (totally ordered) lexicographical ordering

on Z, using Lemma 2.8.2. Specifically, these will be flags associated to an

intersection module with intersection skeleton such that all y of the ek are

contained within one or more of the IWi sets for some i in any combination.

There is no longer a unique intersection module at this level of Z, that is

the configurations σW , σP will matter in terms of the precise nature of the

intersection module, but due to Lemma 2.8.2 and Lemma 2.8.4 we ignore

them in our filtration beyond fixing one to begin with and working through

them at each level of z.

Again, we can form a filtration of diagrams by fixing an intersection and

pairing off with a face G that is the only possible choice of face at that

dimension in any flag associated with the intersection, other than no face
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being present at all (as discussed in Proposition 2.9.1). Begin with maxi-

mal flags, removing all the possible entries indexed by maximal flags whose

intersections are at this level of Z before descending down the dimension

of flags as earlier. Like before none of the removed entries can map into

entries of different intersection module, as the larger intersection modules

have already been removed when we dealt with the largest element of Z,

and others at the same level with different ordering of elements cannot be

contained within each other by Lemma 2.8.4.

Now continue this process descending down the ordering of Z, with the

maximum number of elements (y) within some IW? .

At this point, we take flags associated to intersection skeletons with only

y−1 of the potential elements within one or more of the IWi sets, These flags

cannot be maximal, as the only way for sgn(v)kek for sgn(v)k = sgn(w)k to

not be in one of the IWi sets is for sgn(v)kek ∈ IPmin, which happens precisely

when ±ek ∈ TF0 . In this case, they cannot contain v, so we have actually

already removed all entries associated with maximal flags by this point.

Note that when y − k elements are within IW? sets, each flag cannot have a

face of dimension k − 1 or lower, so we begin the filtration with flags that

have a face of each dimension from k to n. So once again we work through

a lexicographical ordering at each point descending down the dimension of

flags with intersection skeleton at this level of the lexicographical ordering,

with one of the y elements taking turns to be within IPmin.

Then, continue the same process across all other collections of intersec-

tions until we are left with the unique intersection module with intersection

skeleton satisfying IW? = ∅. The final pair of flags associated with this in-

tersection skeleton after filtration of all other entries within Ev ∩ T ′w will be

the flag with the pair of faces S and the unique face G containing v such

that ±ek ∈ TG if and only if sgn(v)k = sgn(w)k and the flag containing only

S. This final piece of the filtration, Xfinal:

0→ R∗(({G,S} ∩ T ′w)) ∼= R∗(({S} ∩ T ′w))→ 0,
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clearly has Čech complex with trivial homology, immediately telling us by

the filtration argument that Γ(Ev ∩ T ′w) is has trivial homology.

Now consider w = −v. Since y = 0 in this case, there is only one Z, one

level of Z and one configuration - which is associated with the intersection

R∗[Tv]. We cannot remove S from the flag without the intersection being

trivial, but we can use the face v for all of these flags and pair off in the

same way as before ending with the pair of flags {v, S}, {S} to show that

Γ(Ev ∩ T ′−v) has trivial homology.

Now consider v = w, in this case for all 1 ≤ k ≤ n, sgn(v)k = sgn(w)k.

We now will show that Γ(Ev ∩ T ′v) = Γ(Ev ∩ Tv) is quasi-isomorphic to

R∗[Tv]. Repeat the process for the diagram Ev ∩ Tv, beginning with flags

associated with intersections such that all elements are in IW? (i.e., when

the only non-zero set is IWmax), then with intersections that have descending

numbers of elements in the IW? sets at each point. Eventually, we will

be left with the flags associated with intersections where IW? = ∅. This

happens only when the flag is {S} as shown in Proposition 2.9.1. Note that

R∗(({S} ∩ Tv)) = R∗[Tv], as R(({S})) = R. The composition of the xi from

Ev ∩ Tv to Ev ∩ Tv({S}) = R∗(({S} ∩ Tv)) = R∗[Tv] is clearly the map σv

consisting of the identity map on Ev ∩Tv({S}) = R∗[Tv] and zero elsewhere.

Hence, the filtration will tell us that Γ(Ev ∩ Tv)
Γ(σv)' R∗[Tv].

Now, by noting that Ev = Ev ∩Tv⊕
⊕
w 6=v

Ev ∩T ′w, we arrive at the result

Γ(Ev)
Γ(σv)' R∗[Tv], which is clearly a quasi-isomorphism of R∗[Tv]-R∗[Tv]

modules.

2.10 Contractibility of Novikov homology implies finite domination

We now put together the main proof of this section. From this point let C
be a bounded complex of finitely generated free R-modules for a strongly
Zn-graded ring R that has trivial Novikov homology, that is for all flags of
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the form (F ⊂ S) where S = [−1, 1]n, the following complexes

C ⊗
R
R∗(({F ⊂ S}))

are acyclic. To show that the given complex C is R0 finitely dominated, we
take the following steps:

1. From C, we form a complex of quasi-coherent diagrams, Y indexed
over the faces of S = [−1, 1]n, as in Proposition 2.4.1.

2. We use Corollary 2.4.2 to show that the totalisation of the Čech com-
plex of Y, Γ̌(Y), is quasi-isomorphic to D as defined in Corollary 2.4.2.

3. Proposition 2.5.7 will tell us that Γ(EF )
σF' R∗[TF ], where EF is in-

dexed by NF for F ⊆ S.

4. We observe that we can form a diagram indexed by F ⊆ S with EF at
the point indexed by F and structure maps πF,G : EF → EG consisting
of the projection, a valid diagram map as for F ⊆ G, NG ⊆ NF so
that the following diagram

(EF )(F)
πF,G- (EG)(F)

(EF )(F ′)

[F ,F ′]ι
? πF,G- (EG)(F ′)

[F ,F ′]ι
?

is commutative when we let (EF )(J ) = 0 for J /∈ NF .

5. We form a new diagram of chain complexes M also indexed by the
faces of S consisting at each point the complex Y(F ) tensored with
Čech complex of the diagram EF indexed by NF ,

M(F ) = Y(F ) ⊗
R∗[TF ]

Γ(EF ),

and structure maps ι⊗π. This diagram will be quasi-isomorphic to Y
as R∗[TF ]-R∗[TF ] bimodules, due to pointwise quasi-isomorphisms

id⊗ σF : Y(F ) ⊗
R∗[TF ]

Γ(EF )→ Y(F ) ⊗
R∗[TF ]

R∗[TF ].
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Also note that due to the adjoint map sheaf condition of Y,

Y(F ) ⊗
R∗[TF ]

R∗((F)) = Y(F ) ⊗
R∗[TF ]

R⊗
R
R∗((F)) ∼= Y(S)⊗

R
R∗((F)).

Since Y(S) = C and Lemma 1.3.4 tells us that C⊗
R
R∗((F)) have trivial

homology for flags containing S and at least one other face if we assume
C satisfies the trivial Novikov homology condition, it follows that the
entries of EF indexed by flags containing S and at least one other face
are complexes with trivial homology.

6. We note that via the contraction assumptions and implication of which,
Lemma 1.3.4, for all F ⊆ S, the diagram Y(F ) ⊗

R∗[TF ]
EF will be quasi-

isomorphic to a sub-diagram Y(F ) ⊗
R∗[TF ]

E′F where each contractible

entry, that is those that are indexed by flags containing S and at least
one other face, are replaced by 0. By Lemma 2.1.2, the Čech complexes
will be quasi-isomorphic, that is

Γ(Y(F ) ⊗
R∗[TF ]

EF ) ' Γ(Y(F ) ⊗
R∗[TF ]

E′F )

while Lemma 0.3.6 tells us that

Γ̌(Y(F ) ⊗
R∗[TF ]

EF ) ' Γ̌(Y(F ) ⊗
R∗[TF ]

E′F ).

On adapting the sign convention of Γ for a double complex accordingly,
we find that

Γ̌(Y(F ) ⊗
R∗[TF ]

EF ) = Y(F ) ⊗
R∗[TF ]

Γ(EF )

and similarly for E′F . Hence

Y(F ) ⊗
R∗[TF ]

Γ(EF ) ' Y(F ) ⊗
R∗[TF ]

Γ(E′F ).

7. Form a diagram M′ indexed by S where the entry at F ⊆ S is
Y(F ) ⊗

R∗[TF ]
Γ(E′F ). From the above it is clear that M ' M′, as

are Γ(M) ' Γ(M′) levelwise hence so are the totalisations Γ̌(M) '
Γ̌(M′).
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8. The diagram M′ will contain, as a sub-diagram, the entries indexed
by the flag {S} of E′F tensored with Y(F ) over R∗[TF ] at each point
indexed by F ⊂ S. That is we see a subdiagram with zero entries
except at the point indexed by {S} where we have the module

Y(F ) ⊗
R∗[TF ]

R

which, via the properties of quasi-coherent diagrams, will be isomor-
phic to Y(S) = C. Hence this subdiagram will be isomorphic to a
constant diagram S, where at each point we see the complex C. The
complex Γ̌(S) will be homotopy equivalent to C.

9. At this point, we know that there are quasi-isomorphisms D → Γ̌(Y),
Γ̌(M) → Γ̌(Y) and Γ̌(M) → Γ̌(M′). Using standard results pertain-
ing to the unbounded derived category of R0, D(R0), we observe that
D is isomorphic to Γ̌(M′) within D(R0).

10. Combining the above wth the fact that C and D are both bounded
complexes of projective R0-modules tells us that C is a homotopy
retract of D, which will provide an R0 finite domination of C as D
is a bounded complex of finitely generated projective R0-modules and
hence a retract of a bounded complexes of finitely generated free R0-
modules.

In diagram form, firstly just with the diagrams over the faces of S without
taking Čech complexes, then with taking totalisations of Čech complexes:

Y �
id⊗ σ
'

M

ρ
'
- M′

S

⊇
6

(2.10.0.2)

D
'- Γ̌(Y) �

'
Γ̌(M)

'- Γ̌(M′)

Γ̌(S)

⊇
6

� ' C.

(2.10.0.3)
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Lemma 2.10.1. The map id⊗ σ : M→ Y is a quasi-isomorphism.

Proof. Note that the tensor product Y(F )n ⊗
R∗[TF ]

R∗[TF ] is well defined

(Y(F ) has a rightR∗[TF ] action) hence making the tensor product Y(F )n ⊗
R∗[TF ]

Γ(EF ) well defined. It immediately follows that there are levelwise quasi-

isomorphisms

Y(F )n ⊗
R∗[TF ]

Γ(EF )
id⊗σF→ Y(F )n ⊗

R∗[TF ]
R∗[TF ] = Y(F )n.

That we have a quasi-isomorphism Y(F ) ⊗
R∗[TF ]

Γ(EF ) → Y(F ) is clear.

Combining the Čech complexes Y(F ) ⊗
R∗[TF ]

Γ(EF ) into a diagram M with

canonical embeddings as structure maps (note that M(S) = C), there is a

quasi-isomorphism M→ Y.

As an instant corollary, we now know that Γ(M) ' Γ(Y) and also
Γ̌(M) ' Γ̌(Y).

Next we want to construct the diagram M′ with an associated Čech
complex containing, as a sub complex, the complex C.

Lemma 2.10.2. There is a diagramM′ such that there is a quasi-isomorphism

ρ : M → M′ and a constant subdiagram S with C at each point where

Γ̌(S) ' C.

Proof. Consider the complex Y(F ) ⊗
R∗[TF ]

Γ(EF ). Under the contractibility

assumption of the main result and the implication Lemma 1.3.4, the follow-

ing complexes have trivial homology:

C ⊗
R
R∗((F))

where F is a flag containing S and at least one other face. It follows from an

earlier discussion that there is a quasi-isomorphism, consisting of identity

maps or zero maps where appropriate, between the complex Y(F ) ⊗
R∗[TF ]

Γ(EF ) and another where EF is replaced with another diagram E′F which is

the same as EF except it is zero at all points indexed by every point where
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S ∈ F and |F| 6= 1. Hence, we have quasi-isomorphisms ρF : Y(F ) ⊗
R∗[TF ]

Γ(EF ) → Y(F ) ⊗
R∗[TF ]

Γ(E′F ), noting that they form a valid chain complex

map as the flags containing S and at least one other flag are not contained

in any other possible flag in NF , so mapping into the Čech complex of the

diagram with these entries removed respects theNF structure of the diagram

EF .

If we setM′ as the diagram with Y(F ) ⊗
R∗[TF ]

Γ(E′F ) at the point indexed

by F we have a quasi-isomorphism ρ : M→M′, and so Γ̌(M) ' Γ̌(M′).
The diagram E′F splits into two diagrams, one consisting of R at the

point indexed by the flag {S} and everything indexed by flags that do not

contain S. It follows that Y(F ) ⊗
R∗[TF ]

Γ(E′F ) contains Y(F ) ⊗
R∗[TF ]

R as a

subcomplex. By the quasi-coherent sheaf assumption on Y, we know that

Y(F ) ⊗
R∗[TF ]

R ∼= Y(S) = C for all F . It follows thatM′ contains the constant

diagram S consisting of C at every point in S.

It remains to note that the complex Γ̌(S) is homotopy equivalent to

C. The bounded below and to the left double complex C → Γ(S) follows

the same form as the similar complex of [HQ15, Lemma 4.6.4], and as a

result the same argument as used in that paper can be used to show that

C ' Γ̌(S).

To find a homotopy retraction from our quasi-isomorphisms, we make use
of the derived category. See [Hov99, P41 Theorem 2.3.11] and understand
that the homotopy category of chain complexes over R0 is precisely the
derived category. The following result follows from standard model category
arguments.

Theorem 2.10.3. There is a category D(R0), the unbounded derived cat-

egory, with

Ob(D(R0)) = Ob(Ch(R0)),

and a functor

γ : Ch(R0)→ D(R0)

which maps identically on objects, such that
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1. γ maps quasi-isomorphisms to isomorphisms.

2. γ is universal with property (1), that is, given a second functor

F : Ch(R0)→ C

that maps quasi-isomorphisms to isomorphisms, there is a unique func-

tor F : D(R0)→ D such that Fγ = F .

Moreover, if the complexes C,D are bounded below chain complex of projec-

tive R0-modules, then

HomCh(R0)(C,D)→ HomCh(D(R0))(C,D)

is onto and is such that

f ' g ⇐⇒ γ(f) = γ(g).

The result now breaks down to tactical referencing:

Proposition 2.10.4. Let C be a bounded complex of finitely generated free

R-modules for a strongly Zn-graded ring R. If C has trivial Novikov homol-

ogy, that is when the complexes:

C ⊗
R0

R∗((F))

for all flags {F ⊂ S} containing S and one other face F have trivial homol-

ogy, then C is R0-finitely dominated.

Proof. Lemmas 2.10.1 and 2.10.2 will provide the maps as seen in Diagram

(2.10.0.3). Then using Theorem 2.10.3, note that C is a retract of D within

the derived category. As both are, in particular, bounded complexes of

projective R0-modules, we have a homotopy retract α : C → D, β : D →
C, βα ' idC . As D is a bounded complex of finitely generated projective

R0-modules by construction and hence a retract of a bounded complex of

finitely generated free R0-modules, it follows that C is R0-finitely dominated

as required.



3. THE CATEGORY OF N -CUBES

In this chapter we define the N -cubes that will be used in the final chapter
to form a homotopy equivalence between a bounded complex of finitely gen-
erated free R-modules and the totalisation of an N -cube that we will show
is contractible. These objects, in a slightly different manner, were defined
and used in [HQ16]. They can be seen as a variation of a commutative
n-dimensional cube of chain complexes of R-modules and chain complex
maps, in that each square or cube is not commutative but commutative up
to homotopy. We begin by setting a few sign conventions. After defining the
N -cubes themselves, we define morphisms between them and hence we can
define a category. Afterwards we form a totalisation functor to the category
of R-module complexes that will have both left and right adjoints. We also
discuss the relationship between these cubes and mapping cones.

3.1 Introduction to sign algebra of N -cubes

This section deals with elements 〈A : T 〉 where A, T are disjoint subsets of
a finite totally ordered set N . These are used to calculate the signs given to
the relations of the elements of the following N -cubes. A number of useful
definitions and results are discussed in this section.

Let N = {1, 2, . . . , n} be a finite ordered set.

Definition 3.1.1. Given a finite ordered set N , a subset A and an element

x ∈ N , define the set A>x = {y ∈ A; y > x}. Also, given a set B ⊆ N , let

PAB =
∑

x∈B |A>x| and set P ∅B = 0 and PA∅ = 0.

Lemma 3.1.2 (Algebra rule 1). For sets A ⊆ B1, B2 ⊆ N where B1∩B2 =

∅, we have that |PAB1
|+ |PAB2

| = |PAB1∪B2
|.

Lemma 3.1.3 (Algebra rule 2). For sets A1, A2 ⊆ B ⊆ N where A1∩A2 =

∅, we have that |PA1
B |+ |PA2

B | = |PA1∪A2
B |.
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Consider a general element in a set-inclusion indexed matrix i.e., a matrix
indexed by elements of P (N), with non zero entries only for pairs A ⊆ B ⊆
N . If we want to consider a product of two such matrices, say MN , then
(MN)B,A =

∑
A⊆Ṡ⊆BMB,SNS,A. We are interested in matrices that have a

certain sign applied to each of their entries.

Definition 3.1.4. For sets A ⊆ B ⊆ N , label B \ A = {x1, ..., xt}. Define

the number 〈A : B \A〉, where

〈A : B \A〉 =





∑
i≤t |A>xi | = |PAB\A| if t is odd.

|A|+∑i≤t |A>xi | = |A|+ |PAB\A| if t is even.

Examples 3.1.5. Let N = {1, 2, 3, 4}. Then:

• 〈{1} : {2, 3}〉 = 1 + |P {1}{2,3}| = 1 + 0 = 1.

• 〈{2, 3} : {1}〉 = 0 + |P {2,3}{1} | = 2.

• 〈{1, 3} : {2}〉 = 0 + |P {1,3}{2} | = 1.

• 〈{1, 3, 4} : {2}〉 = 0 + |P {1,3,4}{2} | = 2.

• 〈{1, 3} : {2, 4}〉 = 2 + |P {1,3}{2,4} | = 2 + (1 + 0) = 3.

The next four lemmas will be often used in later computations.

Lemma 3.1.6. For all B ⊆ N , 〈∅ : B〉 ≡2 0.

Proof. Simply note that since |P ∅B| is set as zero 〈∅ : B〉 = 0 when |B| is odd

and 〈∅ : B〉 = |∅| ≡2 0 when |B| is even.

Lemma 3.1.7. For all B ⊆ N , 〈B : ∅〉 = |B|.

Proof. Since in this case, |∅| = 0 is even then for all B, we have 〈B : ∅〉 =

|B|+ |PB∅ | = |B|.

Lemma 3.1.8. Given A ⊆ B ⊂ N , let T ⊆ N such that min(T ) > max(B).

Then

〈A ∪ T : B \A〉 ≡2 |T |+ 〈A : B \A〉.
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Proof. Note, |P TB\A| = |T | · |B \A| as T is bigger than everything in B (and

hence, everything in B \A). Assume |B \A| is odd. Then

〈A ∪ T : B \A〉 = |PA∪TB\A |
= |P TB\A|+ |PAB\A|
= |T | · |B \A|+ 〈A : B \A〉 ≡2 |T |+ 〈A : B \A〉

(the last equivalence is as |B\A| is odd) as expected. Similarly, when |B\A|
is even

〈A ∪ T : B \A〉 = |A ∪ T |+ |PA∪TB\A |
= |A|+ |T |+ |P TB\A|+ |PAB\A|
= |T |+ |T | · |B \A|+ 〈A : B \A〉 ≡2 |T |+ 〈A : B \A〉

(the last equivalence is as |B \A| is even) once again.

In particular, for T = {n+ 1} for an element n+ 1 bigger than anything
else in N , 〈A ∪ T : B \A〉 ≡2 1 + 〈A : B \A〉.

Lemma 3.1.9. Given A ⊆ B ⊂ N , let T ⊆ N such that minT > maxB.

Then

〈A : B \A ∪ T 〉 ≡2 |A|+ 〈A : B \A〉

when |T | is odd and

〈A : B \A ∪ T 〉 ≡2 〈A : B \A〉

when |T | is even.

Proof. Firstly, note that PAT = 0 as everything in T is bigger than anything

in A. Assume both |T | and |B \A| be odd (making their sum even). Then

〈A : B \A ∪ T 〉 = |A|+ |PAB\A∪T |
= |A|+ |PAB\A|+ |PAT |
= |A|+ |PAB\A| = |A|+ 〈A : B \A〉.
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Now, assume both |T | and |B \A| be even (making their sum even). Then

〈A : B \A ∪ T 〉 = |A|+ |PAB\A∪T |
= |A|+ |PAB\A|+ |PAT |
= |A|+ |PAB\A| = 〈A : B \A〉.

Next, assume |T | be odd and |B \A| be even (making their sum odd). Then

〈A : B \A ∪ T 〉 = |PAB\A∪T |
= |PAB\A|+ |PAT |
= |PAB\A| ≡2 |A|+ 〈A : B \A〉.

Finally, assume |T | be even and |B \ A| be odd (making their sum odd).

Then

〈A : B \A ∪ T 〉 = |PAB\A∪T |
= |PAB\A|+ |PAT |
= |PAB\A| = 〈A : B \A〉.

The result is clear.

In particular, if T = {n+ 1} for an element n+ 1 bigger than anything
else in N , we have that 〈A : B \A ∪ T 〉 ≡2 |A|+ 〈A : B \A〉.

Lemma 3.1.10. Fix A ⊆ B ⊆ N . For all S where A ⊆ S ⊆ B, the

difference modulo 2 between

〈S : B \ S〉+ 〈A : S \A〉

and

〈S \A : B \ S〉+ 〈∅ : S \A〉

is precisely |A|+ 〈A : B \A〉.
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Proof. Note 〈∅ : S \A〉 = 0 for all A ⊆ S. Firstly, assume |B \S| and |S \A|
both be odd, so that |B \A| is even. Then for A ⊆ S ⊆ B

〈S \A : B \ S〉 = |PS\AB\S | (3.1.10.1)

and

〈S : B \ S〉+ 〈A : S \A〉 = |PSB\S |+ |PAS\A|. (3.1.10.2)

Now, using the algebra rules,

|PAS\A| = |PAB\A| − |PAB\S |

and

|PSB\S | = |P
S\A
B\S |+ |P

A
B\S |

hence

|PSB\S |+ |PAS\A| = |PAB\A| − |PAB\S |+ |P
S\A
B\S |+ |P

A
B\S |

= |PAB\A|+ |P
S\A
B\S |

so the difference between Equations 3.1.10.1 and 3.1.10.2 is |PAB\A| as hoped.

Now, assume both |B \S| and |S \A| be even, so that |B \A| is even. Then

〈S \A : B \ S〉 = |PS\AB\S |+ |S \A|

and

〈S : B \ S〉+ 〈A : S \A〉 = |PSB\S |+ |PAS\A|+ |S|+ |A|.

Again, since |S \A| ≡2 |S|+ |A|, the difference is |PAB\A|.
Now, assume |B \ S| be even and |S \A| be odd, so that |B \A| is odd.

Now

〈S \A : B \ S〉 = |PS\AB\S |+ |S \A|

and

〈S : B \ S〉+ 〈A : S \A〉 = |PSB\S |+ |PAS\A|+ |S|.

Here the difference is |PAB\A|+ |A|.
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Finally, assume |B \ S| be odd and |S \ A| be even, so that |B \ A| is

odd. Then

〈S \A : B \ S〉 = |PS\AB\S |

and

〈S : B \ S〉+ 〈A : S \A〉 = |PSB\S |+ |PAS\A|+ |A|,

again providing a difference of |PAB\A|+ |A|.
It follows that for |B\A| even or odd, the difference mod 2 is always

|A|+ 〈A : B\A〉.

3.2 Defining N -cubes

Fix a unital ring R. In this section we introduce the N -cubes themselves,
building towards forming a category with N -cubes as objects.

Definition 3.2.1 (N -diagram of Z-indexed modules). Let D be the follow-

ing collection of information:

• For all B ⊆ N , collections of R-modules indexed by Z,

DB = {(DB)k, k ∈ Z}.

• For all A ⊆ B contained within N , collections of R-module maps of

degree |B \A| − 1 indexed by subsets A ⊆ B of N ,

DB,A = {(HB,A)k : (DA)k → (DB)k+|B\A|−1, k ∈ Z}.

It is best to think of these data as an n-dimensional cube where each
vertex is indexed by a subset of N . At each vertex we have a collection
of modules indexed by Z which allows us to view the arrows as Z indexed
collections of maps of a certain degree. The edges (the maps DB,A for
|B \ A| = 1) are collections of maps of degree 0, the maps that stay at a
certain vertex (the maps DB,B) are degree −1. For the pairs (DB,DB,B)
to be a chain complex and the maps of degree 0 to be chain complex maps
they need to satisfy conditions which will follow from Definition 3.2.2. The
‘diagonals’ (the maps DB,A for |B \ A| ≤ 2) are higher degree maps, and
the additional conditions of Definition 3.2.2 below will make these maps
homotopies or higher homotopy data.
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Definition 3.2.2 (N -cube). We call an N -diagram of Z-graded R-modules

D a homotopy commutative N -cube, or just N -cube, if for all pairs A ⊆ B

of subsets of N

∑

A⊆S
•
⊆B

(−1)〈S:B\S〉DB,S(−1)〈A:S\A〉DS,A = 0 (3.2.2.1)

where the signs (−1)〈X : Y 〉 are taken from Definition 3.1.4 and the dot un-

derneath S informs that the sum is taken over the collection of S for fixed

A,B.

We say that the N -cubes are commutative up to homotopy, by which we
mean for N = {1, 2}, rather than a square of chain complex maps:

C
f1 - D

E

g1

? f2 - F

g2

?

being commutative, there is a non-trivial map of degree 1 H : C → F such
that g2f1 − f2g1 = dFH + HdC where dC , dF are the respective boundary
maps. We present this as:

C
f1 - D

E

g1

? f2 - F

g2

?

H

-

in diagram form. For larger dimensions, each face of dimension 2 will be
such a homotopy commutative square, but the entire cube will also have a
similar homotopy commutative property that is ultimately provided by the
conditions of Definition 3.2.2.

We can define a homotopy totalisation hTot that associates an N -cube D
with a chain complex hTot(D). This will form part of a functorial mapping
later on.
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Definition 3.2.3. Given anN -cube D, let the homotopy totalisation hTot(D)

be the complex (hTot(D)k, D) where

hTot(D)k =
⊕

B⊆N
(DB)k−|N\B|

with boundary D : hTot(D)k → hTot(D)k−1 such that

DB,A =





(−1)〈A:B\A〉DB,A if A ⊆ B.

0 otherwise.

The boundary map satisfies DD = 0 due to the conditions of Equation 3.2.2,

as for all A ⊆ B the entry of DD at A,B is

∑

A⊆S
•
⊆B
DB,SDS,A = (−1)〈S:B\S〉DB,S(−1)〈A:S\A〉DS,A = 0.

To assist the understanding of these objects it is worth explaining what
these objects are when N has 0, 1 or 2 elements. Firstly, a 0-cube is simply
a chain complex and the totalisation is trivial.

A 1-cube D is a diagram:

D∅
D{1},∅- D{1}

and the totalisation is the complex

(
(D∅)k−1 ⊕ (D{1})k,

(
D∅,∅ 0
D{1},∅ −D{1},{1}

))

which can be immediately recognised as the mapping cone of the map
D{1},∅ : D∅ → D{1}.

A 2-cube D is a diagram

D∅
D{1},∅ - D{1}

D{2}

D{2},∅

? D{1,2},{2}- D{1,2}

D{1,2},{1}

?

D
{1,2},∅

-
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and the totalisation is the complex with modules

(D∅)k−2 ⊕ (D{1})k−1 ⊕ (D{2})k−1 ⊕ (D{1,2})k

and boundary map:




D∅,∅ 0 0 0
D{1},∅ −D{1},{1} 0 0

D{2},∅ 0 −D{2},{2} 0

D{1,2},∅ D{1,2},{1} −D{1,2},{2} D{1,2},{1,2}




which can immediately be seen as the mapping cone of the following map:

(
D{2},∅ 0

D{1,2},∅ D{1,2},{1}

)
: cone(D{1},∅)→ cone(D{1,2},{2}).

This idea of N -cubes as iterated mapping cones will be discussed further
later.

A 3-cube D is a cubical diagram consisting of faces consisting of 2-cubes
and a higher homotopy map of degree 2, D{1,2,3},∅ : D∅ → D{1,2,3}. The
totalisation will be the mapping cone of a map between two 2-cubes. Higher
N -cubes follow a similar pattern.

3.3 Properties of N -cubes

We now study these objects in some detail.

Remark 3.3.1. For A = B

(−1)|B|DB,B(−1)|B|DB,B = 0,

hence (CB,DB,B) is a chain complex for all B ⊆ N . Also for any i ∈ N and

A ⊂ N, {i} /∈ A, since 〈A : ∅〉 = |A| the morphism DA∪{i},A satisfies

(−1)
|PA{i}|DA∪{i},A(−1)|A|DA,A + (−1)|A|+1DA∪{i},A∪{i}(−1)

|PA{i}|DA∪{i},A

= (−1)
|PA{i}|+|A|(DA∪{i},ADA,A −DA∪{i},A∪{i}DA∪{i},A) = 0

so it commutes with these boundary maps, hence as they are of degree 0

they are chain maps CA → CA∪{i}. Similarly, the maps DA∪{i,j},A : CA →



3. The category of N -cubes 106

CA∪{i,j} are chain homotopies. Specifically if we assume j > i, the map

DA∪{i,j},A satisfies:

DA∪{i,j},ADA,A + DA∪{i,j},A∪{i,j}DA∪{i,j},A =

DA∪{i,j},A∪{i}DA∪{i},A −DA∪{i,j},A∪{j}DA∪{j},A.

Definition 3.3.2 (The hom complex). Given two chain complexes (C, dC)

and (D, dD) the hom-complex Hom(C,D) is a chain complex with modules

Hom(C,D)k =

∞∏

p=−∞
Hom(Cp, Dp+k),

where Hom(Cp, Dp+k) is the abelian group of module homomorphisms from

Cp to Dp+k, (making an element f ∈ Hom(C,D)k a collection of maps

fp : Cp → Dp+k). The boundary map of Hom(C,D) is d such that for

f ∈ Hom(C,D)k, dkf is a family of maps (dkf)p : Cp → Dp+k−1 where

(dkf)p = dDfp + (−1)k+1fp−1dC .

The following Lemma outlines the nature of the higher homotopy data.

Lemma 3.3.3. Let D be an N -cube and A ⊆ B ⊆ N with |B \A| ≥ 2. Let

|B \A| − 1 = k, then the map DB,A ∈ Hom(DA,DB)k is a preimage of

ζB,A = (−1)1+|B|+〈A:B\A〉 ∑

A(S
•
(B

(−1)〈S:B\S〉DB,S(−1)〈A:S\A〉DS,A

(3.3.3.1)

of Hom(DA,DB)k−1 via the kth level boundary map of the hom-complex

Hom(DA,DB), d|B\A|−1 = dk. That is DB,BDB,A + (−1)|B\A|DB,ADA,A =

ζB,A.

Proof. Observe that for |B \ A| odd, (making DB,A a map of even degree)

then

〈B : ∅〉+ 〈A : B \A〉 = |B|+ |PAB\A|

and

〈A : B \A〉+ 〈A : ∅〉 = |PAB\A|+ |A|,
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so the signs differ by (−1)|B\A| = −1 hence they disagree.

If instead |B \A| is even (making DB,A a map of odd degree) then

〈B : ∅〉+ 〈A : B \A〉 = |B|+ |A|+ |PAB\A|

and

〈A : B \A〉+ 〈A : ∅〉 = |A|+ |PAB\A|+ |A| ≡2 |PAB\A|

again the signs differ by (−1)|B\A|, but now as |B \A| is even, (−1)|B\A| = 1

hence the signs agree.

Hence in both cases the signs on the compositions DB,BDB,A and

DB,ADA,A match the boundary map definition of the hom complex (that is,

(−1)〈B:∅〉DB,B(−1)〈A:B\A〉DB,A + (−1)〈A:B\A〉DB,A(−1)〈A:∅〉DA,A

= (−1)〈B : ∅〉+〈A : B\A〉d|B\A|DB,A

where d|B\A| is the boundary of the hom complex from DA to DB at the

|B\A| level). It remains to rearrange Equation (3.2.2.1) to provide the result

— if 〈B : ∅〉 + 〈A : B \ A〉 is odd, we move (−1)〈B:∅〉+〈A:B\A〉d|B\A|DB,A to

the other side of the equation and leave the rest of the summation, if not

we do the opposite, hence providing the result.

Now, a simplification of the signs.

Lemma 3.3.4. Let D be an N -cube. Given a fixed k the map DB,A where

|B \A| = k + 1 is the preimage via the boundary of the hom complex of the

map

ζB,A = (−1)1+|B\A| ∑

A(S
•
(B

(−1)〈S\A:B\S〉DB,SDS,A. (3.3.4.1)

Proof. Using Proposition 3.1.10,

〈S \A : B \ S〉+ P ≡2 〈S : B \ S〉+ 〈A : S \A〉
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for some P = 〈A : B \ A〉 + |A| independent of S. Hence, we know from

Lemma 3.3.3 that the map DB,A is the preimage via the boundary of the

hom complex of the map

(−1)1+|B|+〈A:B\A〉+〈A:B\A〉+|A| ∑

A(S
•
(B

(−1)〈S\A:B\S〉DB,SDS,A

equivalently

(−1)1+|B\A| ∑

A(S
•
(B

(−1)〈S\A:B\S〉DB,SDS,A

as required.

If we set each DB to be the same complex and each chain map to be
the same, we see that each map of degree 1 within the cube will satisfy the
same condition by observation of Definition 3.2.2. If we fix each map of
degree 1 to be the same, again we see that the maps of degree 2 must satisfy
the same conditions. Hence, we can define special cubes (Definition 3.3.5),
with all self maps and the same information in any direction (i.e., all the
morphisms in any one direction are the same, in terms of the indexing sets,
the morphism indexed by {B,A} is only dependant on the set B \A, not A
or B, so for example it is equal to the map indexed by the sets {B \A, ∅}).

Definition 3.3.5. Call an N -cube a special N -cube if for all B,B′, DB =

DB′ (so we only have one chain complex, and every morphism is a self

morphism) and in addition all the morphisms are defined only by the union

set so that for all A ⊆ B we have that DB,A = DB\A,∅. Note for this case

that for T, T ∩B = ∅,
∑

S
•
⊆B

DB,SDS,∅ =
∑

T⊆S
•
⊆B∪T

DB∪T,S∪TDS∪T,T .

Therefore for a given degree, there is precisely one map and one condition

that follows from the condition of Definition 3.2.2.

The ‘trivial’ case, where all the homotopies are 0 is called a trivial N -
cube. Here, as a special case, we do get commutativity on each face. How-
ever, note the reverse is not true. If the chain maps commute, we can have
non-zero ‘null homotopic’ information elsewhere.
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Definition 3.3.6 (Commutative N -cube.). If an N -cube D has non-trivial

information only for maps of degree 0,1, then we call the object a Commu-

tative N -cube, which is simply a commutative diagram.

3.4 Morphisms of N -cubes

Having defined N -cubes we wish to define maps between these objects.

Definition 3.4.1 (N -diagram morphism.). Given two N -diagrams

D1 = {(D1,B)k : B ⊆ N, k ∈ Z},D2 = {(D2,B)k : B ⊆ N, k ∈ Z},

let F be the collection of maps of Z-indexed modules FB,A : D1,A → D2,B

for all A ⊆ B ⊆ N , where

FB,A = {(FB,A)k : (D1,A)k → (D2,B)k+|B\A|}

is a map of Z-indexed modules of degree |B \A|.

This can be seen as a map between two N -diagrams (a ‘front face’, i.e.,
the domain that has vertices D1,B and the ‘back face’ or codomain that has
vertices D2,B) together forming an N + 1-diagram — in the sense that each
‘arrow’ FB,B is an edge, forming faces (i.e., squares and cubes), which in
turn have diagonal maps across them provided by the other elements of F,
in particular a single diagonal map across the whole N + 1 dimension cube.
We can collate these data and re-index using the set N+1 = {1, 2, .., n, n+1}
to obtain an N + 1-diagram as in the definition (here, leave the front face
the same, change the index of each Z-indexed module in the back face to
B∪{n+1} and rename each arrow accordingly). We can write F : D1 → D2

to represent F as a morphism of N -diagrams.

Remark 3.4.2. We can change Definition 3.4.1 to represent higher (or

lower) level maps, by replacing |B \ A| with |B \ A| + k for whatever k is

wished, in this case the N -diagram map has degree k. Above, F has degree

0.

Definition 3.4.3 (N -cube morphisms). Let D1 and D2 be N -diagrams.

We call F : D1 → D2 a morphism of homotopy commutative N -cubes, or
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just N -cube morphism if D1 and D2 are both N -cubes and for all pairs

A ⊆ B ⊆ N :

∑

A⊆S
•
⊆B

(
(−1)|S|+〈S:B\S〉FB,S(−1)〈A:S\A〉D1,S,A

−(−1)〈S:B\S〉D2,B,S(−1)|A|+〈A:S\A〉FS,A
)

= 0.

(3.4.3.1)

Remark 3.4.4. In particular, for A = B, using Lemma 3.1.7,

(−1)|B|+|B|FB,B(−1)|B|D1,B,B − (−1)|B|D2,B,B(−1)|B|+|B|FB,B

= (−1)|B|(FB,BD1,B,B −D2,B,BFB,B) = 0,

i.e., that the graded module map of degree 0, FB,B, commutes with the

boundary maps D1,B,B and D2,B,B hence it is a chain map D1,B → D2,B.

It is worth noting how these signs arise. The general principle is that
we want the information of an N -cube morphism to correspond to the in-
formation of an N + 1-cube. If we begin with an N + 1 cube E, we can split
the information into three collections for A ⊆ B ⊆ N :

1. Modules EB and maps EB,A, the N -cube D1 consisting of the front
face of the N + 1 cube.

2. Modules EB∪{n+1} and maps EB∪{n+1},A∪{n+1}, the N -cube D2 con-
sisting of the back face of the N + 1 cube.

3. Maps EB∪{n+1},A, the map F from the front face to the back face.

Arriving at Equation 3.4.3.1 is a matter of rewriting Equation 3.2.2.1 for
the cube E, splitting into D1, D2 and F as appropriate and using Lemmas
3.1.8 and 3.1.9 to remove any mention of n+ 1.

In a similar way to the chain complexes and their boundaries, these
morphisms can also undergo a ‘totalisation’ process, and form chain complex
maps from the chain complex induced from the domain cube to the chain
complex induced from the image cube.

Definition 3.4.5. Given F : D1 → D2, let hTot(F) be the following matrix

indexed by pairs of subsets of N :

hTot(F) : hTot(D1)→ hTot(D2), hTot(F)B,A = (−1)|A|+〈A : B\A〉FB,A.
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That hTot(F) forms a chain complex follows immediately from the condition

of Equation (3.4.3.1).

We now outline the nature of the higher homotopy data of an N -cube
morphism.

Proposition 3.4.6. Let D be an N -cube and A ⊆ B ⊆ N with |B \A| ≥ 2.

Let |B \A| = k, then the map FB,A ∈ Hom(D1,A,D2,B)k is a preimage of

ζB,A = (−1)|B|




∑

A(S
•
⊆B

(
(−1)|S|+〈S\A:B\S〉FB,SD1,S,A

)

−
∑

A⊆S
•
(B

(
(−1)|A|+〈S\A:B\S〉D2,B,SFS,A

))

(3.4.6.1)

of Hom(D1,A,D2,B)k−1 via the kth level boundary map of the hom-complex

Hom(D1,A,D2,B), d|B\A| = dk. That is DB,BDB,A+(−1)|B\A|+1DB,ADA,A =

ζB,A.

Proof. Note that we can rewrite Equation (3.4.3.1) as:

(−1)〈A : B\A〉+|B|+|A|+1(DB,BFB,A − (−1)|B\A|FB,ADA,A)+



∑

A(S
•
⊆B

(−1)|S|+〈S:B\S〉FB,S(−1)〈A:S\A〉D1,S,A

−
∑

A⊆S
•
⊂B

(−1)〈S:B\S〉D2,B,S(−1)|A|+〈A:S\A〉FS,A




and note that the same argument as seen in Lemma 3.3.4 shows that |S|+
〈S : B\S〉 + 〈A : S\A〉 ≡2 |S| + 〈S\A : B\S〉 + P for P = |A| + 〈A : B\A〉.
Finally follow a similar argument to Lemma 3.3.3 to see the result.
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3.5 Compositions of N -cube maps

Some may notice that we have not yet defined compositions of N -cube maps.
Interestingly, this is not a trivial matter.

Definition 3.5.1. Let F : D1 → D2, G : D2 → D3 be N -cube maps of

degree 0. Then define

G ◦ F : D1 → D3

as the following collections of maps for all A ⊆ B ⊆ N :

(G ◦ F)B,A =
∑

A⊆S
•
⊆B

(−1)|S|+|A|+〈S\A : B\S〉GB,SFS,A.

For notational ease, we will drop the ◦.
We want the composition of two N -cube maps to also be an N -cube

map, that is it satisfies Equation (3.4.3.1).

Lemma 3.5.2. Let F : D1 → D2, G : D2 → D3 be N -cube maps of degree

0. Then GF is an N -cube map.

Proof. We use the fact that F and G are N -cube maps.

We want to show, by Equation (3.4.3.1) the following:

∑

A⊆S
•
⊆B

(−1)〈S : B\S〉+|A|+〈A : S\A〉D3,B,S(GF)S,A =

∑

A⊆S
•
⊆B

(−1)|S|+〈S : B\S〉+〈A : S\A〉(GF)B,SD1,S,A.

From the definition of composition:

(GF)S,A =
∑

A⊆T
•
⊆S

(−1)|T |+|A|+〈T\A : S\T 〉GS,TFT,A.
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Hence

∑

A⊆S
•
⊆B

(−1)〈S : B\S〉+|A|+〈A : S\A〉D3,B,S(GF)S,A

=
∑

A⊆S
•
⊆B

∑

A⊆T
•
⊆S

(−1)〈S : B\S〉+|A|+〈A : S\A〉+|T |+|A|+〈T\A : S\T 〉D3,B,SGS,TFT,A

=
∑

A⊆S
•
⊆B

∑

A⊆T
•
⊆S

(−1)〈S : B\S〉+〈A : S\A〉+|T |+〈T\A : S\T 〉D3,B,SGS,TFT,A
∗
=

From Lemma (3.1.10):

〈A : S \A〉+ 〈T \A : S \ T 〉
≡2 〈T : S \ T 〉+ 〈A : T \A〉+ |A|

hence

∗
=

∑

A⊆S
•
⊆B

∑

A⊆T
•
⊆S

(−1)〈S : B\S〉+|T |+〈T : S\T 〉+〈A : T\A〉+|A|D3,B,SGS,TFT,A
∗
=

Swapping summands around:

∗
=

∑

A⊆T
•
⊆B

∑

T⊆S
•
⊆B

(−1)〈S : B\S〉+|T |+〈T : S\T 〉+〈A : T\A〉+|A|D3,B,SGS,TFT,A
∗
=

As G is a chain map, Equation (3.4.3.1) tells us:

∑

T⊆S
•
⊆B

(−1)|T |+〈S : B\S〉+〈T : S\T 〉D3,B,SGS,T

=
∑

T⊆S
•
⊆B

(−1)|S|+〈S : B\S〉+〈T : S\T 〉GB,SD2,S,T

hence

∗
=

∑

A⊆T
•
⊆B

∑

T⊆S
•
⊆B

(−1)〈S : B\S〉+|S|+〈T : S\T 〉+〈A : T\A〉+|A|GB,SD2,S,TFT,A
∗
=
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As F is a chain map, Equation (3.4.3.1) tells us:

∑

A⊆T
•
⊆S

(−1)|A|+〈A : T\A〉+〈T : S\T 〉D2,S,TFT,A

=
∑

A⊆T
•
⊆S

(−1)|T |+〈A : T\A〉+〈T : S\T 〉GS,TD1,T,A

hence

∗
=

∑

A⊆T
•
⊆B

∑

T⊆S
•
⊆B

(−1)〈S : B\S〉+|S|+〈T : S\T 〉+〈A : T\A〉+|T |GB,SFS,TD1,T,A
∗
=

From Lemma 3.1.10:

〈S : B \ S〉+ 〈T : S \ T 〉
≡2 〈S \ T : B \ S〉+ |T |+ 〈T : B \ T 〉

it follows that

∗
=

∑

A⊆T
•
⊆B

∑

T⊆S
•
⊆B

(−1)|S|+〈A : T\A〉+|T |+〈S\T : B\S〉+|T |+〈T : B\T 〉GB,SFS,TDT,A

=
∑

A⊆T
•
⊆B

∑

T⊆S
•
⊆B

(−1)|S|+〈A : T\A〉+〈S\T : B\S〉+〈T : B\T 〉GB,SFS,TD1,T,A
∗
=

By the definition of composition:

∑

T⊆S
•
⊆B

(−1)|S|+〈S\T : B\S〉GB,SFS,T

= (−1)|T |(GF)B,T

hence

∗
=

∑

A⊆T
•
⊆B

(−1)〈A : T\A〉+〈T : B\T 〉+|T |(GF)B,TD1,T,A.

Simply renaming T with S and following the trail of ∗ is precisely Equa-

tion (3.4.3.1) as required.
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Lemma 3.5.3. The composition ◦ is associative.

Proof. Let X : D1 → D2,Y : D2 → D3,Z : D3 → D4 be N -cube maps of

degree 0. Then

(Z(YX))B,A =
∑

A⊆S
•
⊆B

(−1)|S|+|A|+〈S\A : B\S〉ZB,S(YX)S,A

=
∑

A⊆T
•
⊆S

∑

A⊆S
•
⊆B

(−1)|S|+|A|+〈S\A : B\S〉

+|T |+|A|+〈T\A : S\T 〉ZB,SYS,TXT,A.

At this point, note that Lemma 3.1.10 tells us that

〈S \A : B \A〉 ≡2

|A|+ 〈A : B \A〉+ 〈S : B \ S〉+ 〈A : S \A〉.

Hence

〈S \A : B \ S〉+ 〈T \A : S \ T 〉
3.1.9≡ 2 |A|+ 〈A : B \A〉+ 〈S : B \ S〉+ 〈A : S \A〉

+|A|+ 〈A : S \A〉+ 〈T : S \ T 〉+ 〈A : T \A〉
≡2 〈A : B \A〉+ 〈S : B \ S〉+ 〈T : S \ T 〉+ 〈A : T \A〉.

Using Lemma 3.1.10 again, it follows that

〈A : T \A〉+ 〈A : B \A〉
≡2 |A|+ 〈T \A : B \ T 〉+ 〈T : B \ T 〉

and similarly

〈S : B \ S〉+ 〈T : S \ T 〉
≡2 |T |+ 〈S \ T : B \ S〉+ 〈T : B \ T 〉
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therefore

〈A : B \A〉+ 〈S : B \ S〉+ 〈T : S \ T 〉+ 〈A : T \A〉
3.1.9≡ 2 |A|+ 〈T \A : B \ T 〉+ 〈T : B \ T 〉+ |T |+ 〈S \ T : B \ S〉+ 〈T : B \ T 〉

≡2 |A|+ 〈T \A : B \ T 〉+ |T |+ 〈S \ T : B \ S〉.

So, we can write

(Z(YX))B,A =
∑

A⊆T
•
⊆S

∑

A⊆S
•
⊆B

(−1)|S|+|A|+|T |+|A|

+|A|+〈T\A : B\T 〉+|T |+〈S\T : B\S〉ZB,SYS,TXT,A

=
∑

A⊆T
•
⊆S

∑

A⊆S
•
⊆B

(−1)|S|+|A|

+〈T\A : B\T 〉+〈S\T : B\S〉ZB,SYS,TXT,A.

Now consider

((ZY)X)B,A =
∑

A⊆T
•
⊆B

(−1)|T |+|A|+〈T\A : B\T 〉(ZY)B,TXT,A

=
∑

A⊆S
•
⊆B

∑

A⊆T
•
⊆S

(−1)|T |+|S|+〈S\T : B\S〉

+|T |+|A|+〈T\A : B\T 〉ZB,SYS,TXT,A

and note that the signs clearly match with those on this summand for

(Z(YX)). Hence ◦ is associative.

3.6 Considering N -cubes as iterated mapping cones

We now note that an N cube can be considered as a map between two
N −1-cubes. That is, if we take the information DA,B and DB for A ⊆ B ⊆
{1, 2, . . . , n − 1}, we see an N − 1-cube. If we then take the information,
maps and modules, DA∪{n},B∪{n}, DB∪{n} where A ⊆ B ⊆ {2, . . . , n}, we
see another N − 1-cube and if we take those elements indexed by pairs of
sets A ⊂ B such that n /∈ A, n ∈ B, which consists only of morphisms, we
see an N − 1-cube map from the first N − 1-cube to the other.
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We can generalise this concept - whenever we take out the information
indexed by a subset K of N , we see a K-cube.

Lemma 3.6.1. For an N -cube D and two disjoint sets set K,L ⊆ N , the

following collection of data:

DB∪{L}, B ⊆ K

and

DB∪{L},A∪{L}, A ⊆ B ⊆ K

forms a K-cube, which we write as K[K,L].

Proof. Follows immediately from the fact that these maps satisfy the broader

set of conditions of Definition 3.2.2.

Given an N -cube, we can repeat the argument at the start of this section
to note that any K-cube as in Lemma 3.6.1 can be split into two smaller
cubes and a map between them.

Remark 3.6.2. Consider the {1}-cube K[{1},∅] made from the N -cube D.

We see a 0-cube map (i.e., just a normal chain map) F0 = D{1},∅ : D∅ →
D{1} and two 0-cubes (chain complexes) D∅ and D{1}. The {2} cube

K[{1,2},∅] can be seen as the 1-cube map F1 : K[{1},∅] → K[{1},{2}]. Contin-

uing this process, we can associate the entire N -cube as a selection of triples

(D∅,∅, F0, D{1},{1}), (K[{1},∅], F1, K[{1},{2}]) . . . , (K[N−1,∅], Fn−1, K[N−1,{n}]).

We see a similar picture for the totalisation hTot(D).

Remark 3.6.3. Let hTot(Fi) = Fi. Beginning with the {1}-cube K[{1},∅],

the totalisations of the 0-cubes D∅, D{1} and the map F0 are easy to see.

It is immediate that the boundary map of the mapping cone, cone(F0),

(taking the convention of 0.3.1) aligns precisely with the boundary map of

hTot(K[{1},∅]), the only change either of them do is to the sign of the back

face of K[{1},∅], that is D{1},{1}. We apply the sign −1 to these maps when

taking the totalisation of the entire 1-cube K[{1},∅] and apply the same sign

whenever taking the mapping cone of F0.
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More generally, we compare the signs of the three parts

(K[K−1,∅], Fk−1, K[K−1,{k}])

of the K-cube K[{K},∅] when totalising the entire cube, and totalising the

three parts and taking the mapping cone of Fk−1. The signs on the elements

of K[K−1,∅] are clearly the same when totalised as part of the K-cube K[{K},∅]
and on its own as a K − 1 cube, which are

(−1)〈A : B\A〉, A ⊆ B ⊆ K − 1

as in both cases A,B are subsets of K − 1, taking mapping cones will not

change the sign.

The signs on the elements of Fk−1 when totalised individually are:

(−1)|A|+〈A : B\A〉, A ⊆ B ⊆ K − 1

and as part of K[{K},∅]:

(−1)〈A : B\A∪{K}〉, A ⊆ B ⊆ K − 1.

Since mapping cones do not change the sign on the map when the boundary

is formed, equality follows from Lemma 3.1.9.

Finally for the elements of K[K−1,{k}], when totalised on its own

(−1)〈A : B\A〉, A ⊆ B ⊆ K − 1,

taking into account the affect of taking mapping cones means the sign will

become:

(−1)1+〈A : B\A〉.

As a part of K[{K},∅] the sign is:

(−1)〈A∪{k} : B\A〉, A ⊆ B ⊆ K − 1.

By Lemma 3.1.8, the latter can be written as:

(−1)〈A∪{k} : B\A〉 = (−1)1+〈A : B\A〉
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as required.

Hence the boundary of hTot(K[K,∅]) is precisely the boundary of the

mapping cone of Fk−1.

It follows that we can consider the totalisation hTot(K) of the entire
N -cube K as the result of taking iterated mapping cones of the maps

F0, F1, . . . Fn−1,

in particular hTot(K) = cone(Fn−1).

3.7 The category of N -cubes

Having defined N -cubes and morphisms between them, we have at last ac-
quired the building blocks of the category of N -cubes. We will later look at
some interesting properties of this category.

Definition 3.7.1 (The category of N -cubes:NHC). Let the category of N -

cubes, NHC, have as objects the collection of N -cubes, morphisms consisting

of N -cube morphisms of degree 0 and compositions as defined in Definition

3.5.1.

That this actually a category is effectively already presented – we have
morphism sets (as opposed to classes) (as they can be embedded into the
morphism sets in RMod), composition is valid from Lemma 3.5.2 and asso-
ciativity follows from Lemma 3.5.3.

This leaves only the presence of identity morphisms to show — but this
is almost trivial, simply consider the data collection I where IB,B = idDB

and IA,B = 0 if A ⊂ B. This defines a morphism from D to itself which
satisfies the properties of an identity morphism in NHC.

Remark 3.7.2. The category ∅HC is simply Ch(RMod).

Corollary 3.7.3. We can define a sub category of trivial N -cubes NTHC

where the objects are trivial N -cubes and morphisms are ‘trivial’, that is

there is no homotopy data.

Remark 3.7.4. The category NHC is additive.
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Proof. Note that we can define a null N -cube with all data 0, hence we can

define a zero morphism between any two N -cubes. Now, letting + be defined

by (F1 + F2)B,A = F1B,A + F2B,A defines an abelian group operator on the

morphism sets which is bi-linear. That F1 + (−F1) = 0 for the obvious can-

didate of −F1 is clear. Commutativity is also clear. That the morphism sets

are bilinear under addition follows from the fact that morphism composition

is bilinear, hence this composition combined with special sign rules must also

be bilinear. Finally the category has finite products and coproducts which

coincide, represented by D1⊕D2, where (D1⊕D2)B,A = D1,B,A⊕D2,B,A.

3.8 The homotopy totalisation functor

Definition 3.8.1 (The homotopy totalisation functor). For an N -cube D

and N -cube morphism F : D1 → D2 the associations

hTotN : Ob(NHC)→ Ob(Ch(RMod)), D 7→ hTotN (D), F 7→ hTotN (F)

from Definition 3.2.3 and Definition 3.4.5 comprise a functor

hTotN : NHC→ Ch(RMod)

for all finite totally ordered sets N .

That hTotN is a functor follows from previous results, the object and
morphism mappings are clear and well defined, that the identity morphism
I is mapped to the identity morphism of Ch(RMod) follows from the fact
that for all B ∈ N , |B| + 〈B : ∅〉 = |B| + |B| = 0 (Lemma 3.1.7) so we do
not change the signs of the non-empty entries of I. The composition rule

hTot(GF) = hTot(G)hTot(F)

is satisfied as for any A ⊆ B and a specific set A ⊆ S ⊆ B between them,
the signs

(−1)|A|+〈A:B\A〉+|S|+|A|+〈S\A : B\S〉

(found from totalising GF and looking at the entry indexed by B,A) and
the signs

(−1)|S|+〈S:B\S〉(−1)|A|+〈A:S\A〉
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(found from taking the product of hTot(G)hTot(F) and taking the entry
indexed by B,A are equal from Lemma 3.1.10.

In addition, observe that hTotN is a faithful, covariant functor for all N .

3.9 Adjoints of the functor hTot

In this section, I will discuss adjoints of the functor

hTot: NHC→ Ch(RMod).

Firstly, consider that for n = 0 (i.e., for N = ∅), the functor is in fact an
isomorphism, making both left and right adjointness entirely trivial.

For n ≥ 1, things are more interesting.

Definition 3.9.1. Define the functor ı : Ch(RMod) → NHC as having the

object mapping

C 7→ ı(C); ı((C)∅)k = Ck+n, ı(C)∅,∅ = dC ,

that is the shift of the chain complex C at the point indexed by ∅, with zero

for all other B ⊆ N , and the morphism mapping

f : C → D 7→ ı(f) : ı(C)→ ı(D); ı(f)∅,∅ = f.

That ı satisfies the conditions of a functor, that identities are mapped to

identities in the image and that the functor is compatible of morphisms,

follows by easy observation.

Proposition 3.9.2. The functor ı is left adjoint to the functor hTot.

Proof. Taking objects D ∈ NHC, C ∈ Ch(RMod), note that a morphism f

in the set MorCh(RMod)(C, hTot(D)) is a 2n-tuple

(fB)B⊆N

where fB : C → hTot(D)B is a map of degree |B| − |N |.
Let α(f) be the morphism in Mor

NHC(ı(C), D) such that α(f)∅,B = fB

for B ⊆ N and α(f)A,B = 0 for ∅ ⊂ A ⊆ B ⊆ N .
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From the definition of totalisation, the map f must satisfy the following

conditions for all B ⊆ N :

∑

∅⊆S⊆B
(−1)〈S : B\S〉DB,SfS = fBd

while the map α(f) must satisfy the following from Equation (3.4.3.1) for

all B ⊆ N :

∑

∅⊆S⊆B
(−1)|∅|+〈∅ : S〉+〈S : B\S〉DB,Sα(f)S = (−1)|∅|+〈∅ : ∅〉+〈∅ : B〉α(f)Bı(C)∅,∅.

Since |∅| = 〈∅ : S〉 = 〈∅ : B〉 = 0 these are the same conditions hence α(f) is

a valid N -cube map.

Therefore it is clear that α : MorCh(RMod)(C, hTot(D))→ Mor
NHC(ı(C), D)

is an isomorphism as required. Hence the functor ı is left adjoint to the func-

tor hTot.

Note that for N = ∅, we have that hTot−1 = ı, as hoped.
A similar functor forms a right adjoint to hTot.

Definition 3.9.3. Define the functor γ : Ch(RMod)→ NHC as having the

object mapping

C 7→ γ(C); γ(C)N = C, γ(C)N,N = (−1)|N |dC ,

that is the unshifted complex C at the point indexed by N , with zero for all

other B ⊆ N , and the morphism mapping

f : C → D 7→ γ(f) : γ(C)→ γ(D); γ(f)N,N = f.

That γ satisfies the conditions of a functor, that identities are mapped to

identities in the image and that the functor is associative on morphisms,

follows by easy observation.

Proposition 3.9.4. The functor γ is right adjoint to the functor hTot.
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Proof. Taking objects D ∈ NHC, C ∈ Ch(RMod), note that a morphism g

in the set MorCh(RMod)(hTot(D), C) is a 2n-tuple

(gB)B⊆N

where gB : hTot(D)B → C is a map of degree |N | − |B|. Let β(g) be the

morphism in Mor
NHC(D, γ(C)) such that β(g)N,B = (−1)|B|+〈B:N\B〉gB for

B ⊆ N and β(g)B,A = 0 for ∅ ⊆ A ⊆ B ⊂ N .

The map g must satisfy the following:

∑

A⊆S⊆N
(−1)〈A : S\A〉gSDS,A = dgB

while β(g) must satisfy:

∑

A⊆S⊆N
(−1)〈A : S\A〉+|S|+〈S : N\S〉β(g)SDS,A = (−1)|B|+〈B : N\B〉+|N |γ(C)N,Nβ(g)B

which by the definition of β(g)B = (−1)|B|+〈B:N\B〉gB and γ(C)N,N =

(−1)|N |d are the same conditions.

It is clear that β : MorCh(RMod)(hTot(D), C) → Mor
NHC(D, γ(C)) is an

isomorphism and hence γ is right adjoint to htot.

Again, note that for N = ∅, we have that hTot−1 = γ = ı, as hoped.

3.10 Comparing this paper’s sign convention to that used in [HQ16]

The homotopy commutativeN -cubes first appeared within a paper of Hüttemann
and Quinn [HQ16, Definition I.3.1]. Finally for this section, we will show
that the convention used here for hTot and Tot in [HQ16] are equivalent.

Definition 3.10.1. Let N be a finite well ordered set. Let A ⊆ B ⊆ N be

subsets with suborderings of the ordering of N . Write
B∑
A to represent the

sum of the position of the elements of A in relation to the subordering of N

held by B. That is, for a set N , subset B = {y1 < y2 < ... < yb} ⊆ N and
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a subset A = {yi1 < yi2 < ... < yia} ⊆ B where 1 ≤ ij ≤ b we have that
B∑
A =

∑
1≤j≤a ij .

Remark 3.10.2. In particular,
B∑
B is the |B|th triangular number and if

A ⊆ B then
B∑

(B \A) =
B∑
B −

B∑
A.

We can therefore associate [B : A], A ⊆ B from [HQ16, Definition I.1.1]
with

(−1)|B|−|A|+
B∑

(B\A) = (−1)|B|−|A|+
B∑
B−

B∑
A.

Proposition 3.10.3. For A ⊆ B, label B \ A = {x1 < .. < xi < .. < xt}
for some t ∈ N. There is an equality

B∑
A =

A∑
A+ |PAB\A|.

Proof. Firstly, write A = A0∪A1∪A2∪ ...∪At, where Ak is the collection of

all elements of A which are greater than precisely k many elements of B/A.

Observe immediately that

B∑
A =

t∑

k=0

(

B∑
Ak).

It also follows that
B∑
Ak =

A∑
Ak + k|Ak|,

as the difference between the position of any element of Ak in relation to the

ordering of B and their position of that element in relation to the ordering

of A is precisely k by the definition of Ak. Hence

B∑
A =

t∑

k=0

(
A∑
Ak + k|Ak|

)
=

t∑

k=0

A∑
Ak +

t∑

k=0

k|Ak|.

Now, clearly
∑t

k=0

A∑
Ak =

A∑
A. It remains to observe that for all i,

∑t
k=i |Ak| = |PAxi |. On the left, we have the number of elements of A that

are bigger than at least i elements of B \A, or equivalently no smaller than
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xi, and on the right is the set of elements of A that are bigger that xi, hence

equality is clear. Finally, observe that

t∑

k=0

k|Ak| =
t∑

i=1

t∑

k=i

|Ak| =
t∑

i=1

|PAxi | = |PAB\A|

and therefore

B∑
A =

t∑

k=0

A∑
Ak +

t∑

k=0

k|Ak| =
A∑
A+ |PAB\A|

as required.

Now we can write

[B : A] = (−1)
|B|−|A|+

B∑
B−

A∑
A+|PA

B\A|.

Proposition 3.10.4 (Sign Convention Comparison). There is an equality

modulo 2:

(−1)|A||B|[B : A] ≡2 (−1)|B|+|A|+
B∑
B+

A∑
A+〈A : B\A〉

where [B : A] = (−1)
|B|−|A|+

B∑
B−

A∑
A+|PA

B\A| is taken from [HQ16, Definition

I.1.1].

Proof. Observe that:

(−1)|A||B|[B : A] = (−1)
|A||B|+|B|−|A|+

B∑
B−

A∑
A−|PA

B\A|.

If we assume |B| − |A| is odd, then

(−1)
|A||B|+|B|−|A|+

B∑
B−

A∑
A−|PA

B\A| = (−1)|A||B|−1+
B∑
B−

A∑
A−〈A:B\A〉

now note that in this case |A| ≡2 |B|+ 1 so

|A||B| − 1 ≡2 (|B|+ 1)|B|+ |B| − |A|
≡2 |B|2 + |B|+ |B| − |A|
≡2 |B|2 − |A| ≡2 |B| − |A|
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hence

(−1)|A||B|[B : A] ≡2 (−1)|B|−|A|+
B∑
B−

A∑
A−〈A:B\A〉

≡2 (−1)|B|+|A|+
B∑
B+

A∑
A+〈A:B\A〉

as hoped. If we assume |B| − |A| is even, then

(−1)
|A||B|+|B|−|A|+

B∑
B−

A∑
A−|PA

B\A| = (−1)
|A||B|+|B|+

B∑
B−

A∑
A−|A|−|PA

B\A|

= (−1)|A||B|+|B|+
B∑
B−

A∑
A−〈A : B\A〉

and as |A| ≡2 |B|

|A||B|+ |B| ≡2 |B|2 + |B|
≡2 0 ≡2 |B| − |A|

so

(−1)|A||B|[B : A] ≡2 (−1)|B|−|A|+
B∑
B−

A∑
A−〈A : B\A〉

≡2 (−1)|B|+|A|+
B∑
B+

A∑
A+〈A : B\A〉

in this case also. Hence the result is shown.

Definition 3.10.5 (Totalisation from Definition I.2.2 [HQ16]). Let D be

an N -diagram, then the totalisation of D consists of the graded R-module

Tot(D) where

Tot(D)` =
⊕

A⊆N
(DA)`+|A|

and module homomorphisms consisting of matrices

D′ = (D′B,A)A⊆B⊆N : Tot(D)` → Tot(D)`−1

indexed by pairs of subsets A ⊆ B ⊆ N where for A ⊆ B,

D′B,A = (−1)|A||B|[B : A] ·DB,A (3.10.5.1)

and 0 in all other entries.
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In Definition 3.10.5, a graded R-module refers to a collection of R-module
modules indexed by Z. Also note that [HQ16] deals with cochain complexes
not chain complexes, so suitable changes have been made here to fit into the
chain complex setting.

Proposition 3.10.6. Given an N -cube D the diagonal matrix map P where

PB,B = PB = (−1)|B|+
B∑
B is an isomorphism of graded modules from the

chain complex (hTot(D), D) to (Tot(D), D′), such that PD = D′P.

Proof. Note that P is its own inverse, that it is an isomorphism of graded

modules is clear. We need to show that

PDP = D′.

Since the underlying maps of both boundaries are the same, only the com-

parison of signs takes effort. The sign of the entry indexed by B,A of PDP

is

|B|+
B∑
B + 〈A : B \A〉+ |A|+

A∑
A.

However, Proposition 3.10.4 immediately tells us that this is equivalent mod-

ulo 2 to (−1)|A||B|[B : A] as required.

This means that the images of hTot and Tot are the same up to isomor-
phism, in particular one is a chain complex if and only if the other is as well.
Also, the definitions of homotopy commutative cubes in Definition 3.2.2 and
in Definition I.3.1 of [HQ16] coincide.



4. FINITE DOMINATION IMPLIES CONTRACTIBLITY OF

NOVIKOV HOMOLOGY

Now we work towards the opposite implication of the main result, that
an R0-finitely dominated chain complex of R-modules has trivial Novikov
homology. Throughout this section let C be a bounded complex of finitely
generated free R-modules homotopy equivalent to a bounded complex of
finitely generated projective R0-modules, an equivalent condition to R0-
finite domination via Theorem 0.1.4.

4.1 Resolution of R

We begin by forming a canonical resolution of a strongly Zn-graded ring R.
Let R be a strongly graded Zn-graded ring for n ∈ Zn. Let {ek; 1 ≤ k ≤

n} be a basis for Zn. Recall the strongly Z-graded rings from Definition

2.3.3, R(k) =
⊕
m∈Z

Rmek , where R
(k)
m = Rmek .

More generally, we can define other graded rings with support in planes
of dimension 1 ≤ ` ≤ n.

Definition 4.1.1. For 1 ≤ ` ≤ n, 1 ≤ kj ≤ n, 1 ≤ j ≤ `, let

R(k1,k2,...,k`) =
⊕

(mj)1≤j≤`∈Z`
R∑l

j=1mjekj
,

where R
(k1,k2,...,k`)
m1,...,m` = R∑`

j=1mjekj
, be the restriction of R to the {1 ≤ j ≤ `}

axes, itself a strongly Z`-graded ring.

Having defined partition of unities and some maps that make use of
them, namely splitting maps β and product maps π, we need to add a few
more similar maps into our arsenal.
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Definition 4.1.2 (Torus map of degree ρ). Given a Zn graded unital ring

R, R-module M , ρ ∈ Zn and a partition of unity 1 =
∑q

j=1 ujvj of type

(−ρ, ρ), define the torus map of degree ρ, µρ : M ⊗
R0

R→M ⊗
R0

R, as the map

m⊗ r 7→
q∑

j=1

muj ⊗ vjr.

This map is R0-balanced as for s ∈ R0,

µρ(m⊗ sr) =

q∑

j=1

muj ⊗ vjsr =

q∑

j=1

q∑

k=1

muj ⊗ vjsukvkr

=

q∑

j=1

q∑

k=1

mujvjsuk ⊗ vkr

=

q∑

k=1

msuk ⊗ vkr = µρ(ms⊗ r)

as vjsuk ∈ R0.

Let µρ and µ′ρ be two torus maps of degree ρ using two partitions of

unity
∑q

j=1 ujvj and
∑q′

j=1 u
′
jv
′
j . Then µρ = µ′ρ, as

q∑

j=1

muj ⊗ vjr =

q∑

j=1

q′∑

j=1

muj ⊗ vju′jv′jr

=

q∑

j=1

q′∑

j=1

mujvju
′
j ⊗ v′jr =

q′∑

j=1

mu′j ⊗ v′jr

as vju
′
j ∈ R0. This tells us that the map µp is independent of the choice of

partition of unity. It is easy to see that µp is an R0-R0-bimodule map.

Remark 4.1.3. For a chain complex C of right R-modules, µρ is a chain

map:

dµρ(c⊗ r) =
∑

j

d(cuj)⊗ vjr =
∑

j

d(c)uj ⊗ vjr = µρd(c⊗ r).

Corollary 4.1.4. Let µρ, µσ be torus maps of degree ρ and σ respectively.

Then µρµσ = µρ+σ and thus µρµσ = µσµρ.
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Remark 4.1.5. For all p, q ∈ Z, 1 ≤ j, k ≤ n, the following diagram is

commutative:

R⊗R id− µpek- R⊗R

R⊗R

id− µqej
? id− µpek- R⊗R

id− µqej
?

Proof. Observe that (id− µpek) ◦ (id− µqej ) = id− µpek − µqej + µpek+qej =

(id− µqej ) ◦ (id− µpek).

Corollary 4.1.6. Let 1 ≤ kα, jβ ≤ n, kα 6= jβ. Then

R(k1,...,kl) ⊗
R0Zn

R(j1,..,jm) ∼= R(k1,...,kl,j1,...,jm) for all l +m ≤ n.

Proof. We can quote Proposition 2.3.1 immediately, as the sets of the sup-

ports satisfy the necessary conditions.

For all 1 ≤ k ≤ n, let

1 =

q∑

α=1

x(k)
α y(k)

α

be a partition of unity of form (−ek, ek). There are maps

µ(k) : R(k) ⊗
R0Zn

R(k) → R(k) ⊗
R0Zn

R(k), r ⊗ s 7→
q∑

α=1

rsx(k)
α ⊗ y(k)

α .

Observe by [HS16] Proposition 3.2, there are exact sequences for all 1 ≤ k ≤
n:

0→ R(k) ⊗
R0Zn

R(k) id−µ(k)→ R(k) ⊗
R0Zn

R(k) π→ R(k) → 0.

Let

Λ(k) =
(
R(k) ⊗

R0Zn
R(k) id−µ(k)→ R(k) ⊗

R0Zn
R(k)

)

considered as a chain complex concentrated in degrees 0 and 1. The com-
plexes Λ(k) have trivial homology at every point except H0. Since H0(Λ(k))
are the left projective and right projective R0-modules R(k) and the maps
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id − µ(k) have trivial kernels the Künneth theorem [ML95, P166 Theorem

10] tells us that Λ(j) ⊗
R0Zn

Λ(k) has trivial homology except at 0, where

H0(Λ(j) ⊗
R0Zn

Λ(k)) = H0(Λ(j)) ⊗
R0Zn

H0(Λ(k)) = R(j) ⊗
R0Zn

R(k) ∼= R(j,k).

Definition 4.1.7 (Ordered tensor product). Given complexes Xk, 1 ≤ k ≤
n of R-R bimodules, call

⊗

R
0Zn

1≤k≤n

Xk =
⊗

1≤k≤n
Xk = X1 ⊗

R
0Zn

X2 ⊗
R

0Zn
... ⊗

R
0Zn

Xn

the ordered tensor product of Xk, 1 ≤ k ≤ n.

Proposition 4.1.8. The complex

⊗

1≤k≤n
Λ(k)

is a resolution of R as R-R-bimodules.

Proof. Note firstly that the modules in each Λ(k) are finitely generated com-

plexes of R0Zn modules. Next, argue with induction. It is true for n = 2

from usage of the Künneth theorem as argued before. Let it be true for all

k < n− 1. Then, noting that R(1,2,...,n−1) is both a left projective and right

projective R0-module, we see that


 ⊗

1≤k≤n−1

Λ(k)


 ⊗

R
0Zn

Λ(n)

is a resolution of R(1,2,...,n−1) ⊗
R

0Zn
R(n) via the Künneth theorem which is

isomorphic to R by a product map via Corollary 4.1.6 as required.

4.2 Representing the resolution of R as an N -cube

This section will introduce and make use of a number of N -cubes. Firstly,
we express the resolution of R as the totalisation of a commutative N -cube.
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Then we argue that there is a commutative N -cube, with C ⊗
R0

R at each

vertex, with totalisation homotopy equivalent to C. We begin by introducing
a new map that makes use of the partition of unities, U , which will allow us
to show that

⊗
1≤k≤n

Λ(k) is isomorphic to the totalisation of an N -cube with

R ⊗
R0

R at every vertex.

Proposition 4.2.1. There is an isomorphism

U :
⊗

1≤k≤n
(R(k) ⊗

R
0Zn

R(k)) ∼= R ⊗
R

0Zn
R

of R0-R0-bimodules. This isomorphism U will take the form

U :
⊗

1≤k≤n
(R(k)

mk
⊗R(k)

m′k
)→ R∑n

k=1mkek
⊗R∑n

k=1m
′
kek
,

⊗

1≤k≤n
(r(k)
mk
⊗ s(k)

m′k
) 7→

p∑

j=1

r(1)
m1
s

(1)
m′1
r(2)
m2
s

(2)
m′2
...r(n)

mns
(n)
m′n
δj ⊗ γj

where 1 =
∑p

j=1 δjγj is a partition of unity of form

(−∑n
k=1m

′
kek,

∑n
k=1m

′
kek).

Proof. Argue by induction. For a strongly Z2-graded ring, consider the

composition of isomorphisms:

R(x)
n ⊗R(x)

n′ ⊗R(y)
m ⊗R(y)

m′
id⊗πn′e1,me2⊗id

−→

R(x)
n ⊗Rn′,m ⊗R(y)

m′
id⊗βme2,n′e1⊗id

−→

R(x)
n ⊗R(y)

m ⊗R(x)
n′ ⊗R

(y)
m′

πne1,me2⊗πn′e1,m′e2−→
Rn,m ⊗Rn′,m′
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where

rx ⊗ rx′ ⊗ ry ⊗ ry′
id⊗πn′e1,me2⊗id

7→ rx ⊗ rx′ry ⊗ ry′
id⊗βme2,n′e1⊗id

7→
q∑

j=1

rx ⊗ rx′ryuj ⊗ vj ⊗ ry′

πne1,n′e1⊗id⊗πme2,m′e27→
q∑

j=1

rxrx′ryuj ⊗ vjry′

=

p∑

k=1

q∑

j=1

rxrx′ryuj ⊗ vjry′δkγk

=

p∑

k=1

q∑

j=1

rxrx′ryujvjry′δk ⊗ γk

=

p∑

k=1

rxrx′ryry′δk ⊗ γk

where
∑
j
ujvj is a partition of unity of type

(
(−n′, 0), (n′, 0)

)
,
∑p

k=1 δkγk is

a partition of unity of type
(
(−n′,−m′)(n′,m′)

)
(as required) which makes

vjry′δk ∈ R0.

It is clear that via repeated applications of twist maps we can show that

⊗

1≤k≤n−1

(R(k) ⊗
R0

R(k)) ⊗
R0

(R(n) ⊗
R0

R(n)) ∼=
⊗

1≤k≤n
R(k) ⊗

R0

⊗

1≤k≤n
R(k).

Let it be true for n− 1. Note that the induction hypothesis tells us that

U ′ ⊗ id⊗ id :
⊗

1≤k≤n
(R(k) ⊗R(k)) ∼= R(1,..n−1) ⊗R(1,..n−1) ⊗ (R(n) ⊗R(n))

via a map U ′⊗ id⊗ id where U ′ :
⊗

1≤k≤n
(R(k)⊗R(k))→ R(1,..n−1)⊗R(1,..n−1).

For a primitive tensor r ∈ ⊗
1≤k≤n

(R(k) ⊗ R(k)), the image of r by U ′ is

U ′(r) =
∑p′

j=1 rδ
′
j⊗γ′j where

∑p′
j=1 δ

′
jγ
′
j is a partition of unity of type (−ρ′, ρ′)

for some ρ′ ∈ Zn−1. For r ∈ ⊗
1≤k≤n

(R(k) ⊗ R(k)) and s ⊗ s′ ∈ R(n)
ω ⊗ R(n)

ω′ ,



4. Finite domination implies contractiblity of Novikov homology 134

there is an isomorphism

p′∑

j=1

rδ′j ⊗ γ′j ⊗ s⊗ s′
id⊗πρ′,ωen⊗id

7→
p′∑

j=1

rδ′j ⊗ γ′js⊗ s′

id⊗βωen,ρ′⊗id
7→

q∑

k=1

p′∑

j=1

rδ′j ⊗ γ′jsuk ⊗ vk ⊗ s′

πωen,ρ⊗id⊗πρ′,ω′en7→
q∑

k=1

rsuk ⊗ vks′

=

p∑

j=1

q∑

k=1

rsuk ⊗ vks′δjγj =

p∑

j=1

rss′δj ⊗ γj

where we know that 1 =
∑p

j=1 δjγj is a partition of unity of the required

type (i.e., (−ρ′ − ω′, ρ′ + ω′) so that vks
′δj ∈ R0) and hence

U : r ⊗ s⊗ s′ 7→
p∑

j=1

rss′δj ⊗ γj

satisfies the definition of U we want.

Remark 4.2.2. We can see with a similar argument used to show splitting

and torus maps are independent of the choice of partition of unity that the

maps U also have this property.

Definition 4.2.3. Given a strongly Zn-graded ring R, N = {1, 2.., n}, ∅ ⊆
A ⊆ N define R as the following N -cube:

RA = R ⊗
R0

R, RA∪{i},A = µei if i /∈ A

and 0 elsewhere. Since every two-dimensional face of the cube is a diagram

of the form of that in Corollary 4.1.4, we know that the entire cube is

commutative and hence the N -cube conditions are met.

Definition 4.2.4. Given R as above, we can define another N -cube, a

twisted N -cube Tw(R), with the same modules as R and only non-zero

maps

Tw(R)A∪{i},A = id− µei if i /∈ A.
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This is a valid N -cube from Remark 4.1.5.

Write T(R) = hTot (Tw(R)) (using the notation hTot defined In Defini-
tion 3.2.3). Note that T(R) is a chain complex concentrated in degrees 0 to
n, with the module ⊕

 n

j


R ⊗
R0

R

at level j.
We wish to show that the totalisation of the N -cube R is homotopy

equivalent to R. This is done by showing that T(R) is isomorphic to⊗
1≤k≤n

Λ(k), which we know is a resolution of R via Proposition 4.1.8.

Proposition 4.2.5. The map

U :
⊗

1≤k≤n
Λ(k) → T(R)

where

U j =
⊕

 n

j


U :
( ⊗

1≤k≤n
Λ(k)

)
j
→ (T(R))j

is an isomorphic chain map.

Proof. To show that U is a chain map it is enough to show that the following

diagram

⊗

1≤k≤n

(
R(k) ⊗

R0

R(k)

)
U- R ⊗

R0

R

⊗

1≤k≤n

(
R(k) ⊗

R0

R(k)

)
µ(l)

?
U- R ⊗

R0

R

µel

?

where µ(l) = idR(1)⊗R(1) ⊗ · · · ⊗ µ(l) ⊗ · · · ⊗ idR(n)⊗R(n) for a torus map

µ(`) : R(`) ⊗ R(`) → R(`) ⊗ R(`) of degree (−1, 1), is commutative for all

1 ≤ ` ≤ n.
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Given r =
⊗

1≤k≤n
r

(k)
mk ⊗ r

(k)
m′k
∈ ⊗

1≤k≤n
R

(k)
mk ⊗R

(k)
m′k

, we know that

µelU(r) = µel

( p∑

j=1

r(1)
m1
r

(1)
m′1
, ...r(n)

mnr
(n)
m′n
δj ⊗ γj

)

=

q∑

i=1

p∑

j=1

r(1)
m1
r

(1)
m′1
, ...r(n)

mnr
(n)
m′n
δjαi ⊗ βiγj

where 1 =
∑q

i=1

∑p
j=1 δjαiβiγj is a partition of unity of type

(
−
(
el +

n∑

k=1

m′kek
)
, el +

n∑

k=1

m′kek
)

and

Uµ(l)(r) = U
( q∑

i=1

r(1)
m1
⊗ r(1)

m′l
⊗ ...⊗ r(l)

ml
αi ⊗ βir(l)

m′l
⊗ ...⊗ r(n)

mn ⊗ r
(n)
m′n

)

=

p′∑

j=1

r(1)
m1
r

(1)
m′1
, ...r(n)

mnr
(n)
m′n
δ′j ⊗ γ′j

where 1 =
∑p

j=1 δ
′
jγ
′
j is also a partition of unity of type

(
−
(
el +

n∑

k=1

m′kek
)
, el +

n∑

k=1

m′kek
)

hence by Remark 4.2.2 we know that µelU = Uµ(l) as required.

Now, it follows that the following diagram must also be commutative

⊗

1≤k≤n

(
R(k) ⊗R(k)

) U- R⊗R

⊗

1≤k≤n

(
R(k) ⊗R(k)

)
id− µ(l)

?
U- R⊗R

id− µel
?

meaning all that is left to observe is that the diagram
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⊗

1≤k≤n
Λ(k) U - T(R)

⊗

1≤k≤n
Λ(k)

d( ⊗
R0Zn

Λ(k)
)
?

U - T(R)

dT(R)

?

will consist of, at each chain level that it is non zero, direct sums of diagrams

of the form above, showing that the map U is a valid chain map, which is

an isomorphism from Proposition 4.2.1.

We now know that T(R) is a resolution of R as R-R-bimodules from
Proposition 4.1.8 and Proposition 4.2.5.

Recall that we can define torus maps on M ⊗
R0

R for right R-modules M .

Considering the complex T(R) and a right R0-module M , we can define a
commutative N -cube M, where for N = {1, 2.., n}, ∅ ⊆ A ⊆ N ,

MA = M ⊗
R0Zn

R, MA∪{i},A = µei if i /∈ A

and 0 elsewhere.
If M is an R-module, we can see that

hTot (M) = M ⊗
R

hTot (R) .

Similarly, we can define Tw(M), with the same modules and MA,A∪{i} =
id− µei if i /∈ A, and we can also see that

hTot (Tw(M)) = M ⊗
R

hTot (Tw(R)) ,

equivalently we can write

T(M) = M ⊗
R
T(R).

This also holds for a chain complex C.

Lemma 4.2.6. Let M be a finitely presented R-module and M the relevant

commutative diagram. The complex T(M) has trivial homology except at 0

where it is M .
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Proof. The functor M ⊗
R
− is left exact as M is flat, hence the functor is

exact. It follows immediately that

H0(M ⊗
R
T(R)) = H0(M)⊗

R
H0(T(R)) = M ⊗

R
R 'M,

so, in particular, T(M) is a resolution of M and 0→ T(M)→M → 0 is an

exact sequence.

Lemma 4.2.7. Let C be a bounded complex of finitely generated free R-

modules. The totalisation of the cube C, T(C) = C ⊗
R
T(R), is homotopy

equivalent to C.

Proof. Recall that T(R) is a resolution of R as R-R-bimodules, then

0→ T(Cn)→ Cn ⊗
R
R→ 0

is an exact sequence from Lemma 4.2.6 as Cn is a free R-module. Hence the

double complex with T(Cn)→ Cn at row n is made up of exact sequences lev-

elwise. If follows from Lemma 0.3.6 that T(C) is quasi-isomorphic to C (T(C)

is precisely the totalisation up to sign of the double complex with T(Cn) at

level n). Homotopy equivalence follows as the complexes are bounded com-

plexes of finitely generated free modules.

4.3 The strongly Zn-graded version of the Mather trick

Let us assume that C is a bounded complex of finitely generated free R-
modules that isR0-finitely dominated. Using Theorem 0.1.4 ([Ran85, Propo-
sition 3.2. (ii)]), we let D be homotopy equivalent to a bounded complex of
finitely generated projective R0-modules D, so that H : idC ' βα, dH +
Hd = βα − id and J : idD ' αβ, dJ + Jd = αβ − id for chain maps
α : C → D, β : D → C. I wish now to use the finite domination assumption
to show that T(C) is homotopy equivalent to the totalisation of an N -cube
with the module D ⊗ R at each vertex. This is the Zn-graded version of
similar results [HQ16, Lemma II.2.6] and [HS16, Lemma 3.7]. For a map f
let f∗ = f ⊗ idR.
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Definition 4.3.1. Given complexes C,D where H : idC ' βα, dH +Hd =

βα−idC , define the N -diagram αCβ as the following, where ∅ ⊆ A ⊂ B ⊆ N ,

σ is an ordering of K ⊆ N , σ1, σ2...σK are the elements of K and Tk is the

kth triangular number:

αCβA = D ⊗
R0Zn

R.

αCβA,A = d∗.

αCβA∪{i},A = α∗µeiβ
∗, i /∈ A.

αCβA∪{i,j},A = α∗µeiH
∗µejβ

∗ − α∗µejH∗µeiβ∗, i, j /∈ A, i < j.

αCβB,A =
∑

σ

(−1)
|B\A|+T|B\A|+

∑
2≤i≤|B\A| |P

{σ1,...,σi−1}
{σi}

|

α∗µeσ|B\A|H
∗...H∗µeσ1β

∗, A ⊂ B.

In particular, for A = ∅, B = N ,

αCβN,∅ =
∑

σ

(−1)
n+T|N|+

∑
2≤i≤n |P

{σ1,...,σi−1}
{σi}

|
α∗µeσnH

∗...H∗µeσ1β
∗.

Proposition 4.3.2. The N -diagram αCβ is an N -cube.

Proof. This can be shown to be an N -cube by a proof by induction. For

n = 1, the case is simple, there are only three maps, αCβ{1},{1}, αCβ∅,∅ and

αCβ{1},∅, while there are only three conditions:

αCβ{1},{1}αCβ{1},{1} = 0 = αCβ∅,∅, αCβ∅,∅,

αCβ{1},∅αCβ∅,∅ − αCβ{1},{1}αCβ{1},∅ = 0,

which are clearly correct as αCβ{1},{1}, αCβ∅,∅ are boundary maps and αCβ{1},∅
is a chain complex map.

If true for n − 1, then observe by Lemma 3.6.1, that we can construct

valid N − 1 cubes for sets N \ {i} for all i ∈ N , we need only check the
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following is satisfied

d∗αCβN,∅ + (−1)nαCβN,∅d
∗

=
∑

∅(S
•
(N

∑

σ

(−1)(1+n+〈S : N\S〉)

+((n−s)+Tn−s+
∑
s+2≤i≤n |P

{σs+1,...,σi−1}
{σi}

|)

+(s+Ts+
∑

2≤i≤s |P
{σ1,...,σi−1}
{σi}

|)

(α∗µeσnH
∗...H∗µeσs+1

β∗)(α∗µeσsH
∗...H∗µeσ1β

∗)

(4.3.2.1)

which is Equation (3.3.4.1) for B = N,A = ∅ (the sign (1 + n+ 〈S : N \ S〉)
comes from (3.3.4.1) and the other signs come from the definition of αCβ).

I show this by fixing a summand of αCβN,∅. Firstly fix a permutation σ

of N . Let

Hσ = α∗µeσnH
∗...H∗µeσ1β

∗

and note that we can write αCβN,∅ =
∑

σ(−1)
n+Tn+

∑
2≤i≤n |P

{σ1,...,σi−1}
{σi}

|
Hσ.

Using dH = βα− id−Hd note that by iterated substitutions

d∗Hσ = d∗α∗µeσnH
∗...H∗µeσ1β

∗ = α∗µeσnd
∗H∗...H∗µeσ1β

∗

= α∗µeσnβ
∗α∗µeσn−1

H∗...H∗µeσ1β
∗ − α∗µeσnµeσn−1

H∗...H∗µeσ1β
∗

−α∗µeσnH∗d∗µeσn−1
H∗...H∗µeσ1β

∗

=
( n−1∑

s=1

(−1)n−s(α∗µeσnH
∗...H∗µeσs+1

µeσsH
∗...H∗µeσ1β

∗

−α∗µeσnH∗...H∗µeσs+1
β∗α∗µeσsH

∗...H∗µeσ1β
∗)
)

+(−1)n−1α∗µeσnH
∗µeσn−1

H∗...H∗d∗µeσ1β
∗.

As

(−1)n−1α∗µeσnH
∗µeσn−1

H∗...H∗d∗µeσ1β
∗ = (−1)n−1Hσd

∗,
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it follows that the left side of Equation (4.3.2.1) becomes

d∗Hσ + (−1)nHσd
∗ =

n−1∑

s=1

(−1)
(n−s)+(n+Tn+

∑
2≤i≤n |P

{σ1,...,σi−1}
{σi}

|)

(α∗µeσnH
∗...H∗µeσs+1

µeσsH
∗...H∗µeσ1β

∗

− α∗µeσnH∗...H∗µeσs+1
β∗α∗µeσsH

∗...H∗µeσ1β
∗).

(4.3.2.2)

Observe that n− s+ n ≡
2
s.

Firstly, I will show that, given a fixed s, and set S ∈ N, |S| = s, the term

α∗µeσnH
∗...H∗µeσs+1

β∗α∗µeσsH
∗...H∗µeσ1β

∗, that appears on both sides of

Equation (4.3.2.1) disappears.

I do this by comparing signs. I want the signs on the term on the right

of (4.3.2.1) and the right of (4.3.2.2) to be equivalent modulo 2 (as they are

on opposite sides of the equation (4.3.2.1)). I begin by noting that, from

(4.3.2.2), the sign on the relevant term of d∗αCβN,∅ is:

1 + s+ Tn +

n∑

i=2

|P {σ1,...,σi−1}
{σi} |.

Now, note that Tn = Tn−s + Ts + s(n− s).
Next observe that

n∑

i=2

|P {σ1,...,σi−1}
{σi} | =

s∑

i=2

|P {σ1,...,σi−1}
{σi} |+

n∑

i=s+1

|PS∪{σs+1,...,σi−1}
{σi} |

and
n∑

i=s+1

|PS∪{σs+1,...,σi−1}
{σi} |

=

n∑

i=s+1

|PS{σi}|+ |P
∅
{σs+1}|+

n∑

i=s+2

|P {σs+1,...,σi−1}
{σi} |

and finally
n∑

i=s+1

|PS{σi}| = |P
S
N\S |.
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Substituting into the above, these tell us that

1 + s+ Tn+
n∑

i=2

|P {σ1,...,σi−1}
{σi} |

= 1+s+ Tn−s + Ts + s(n− s)

+
s∑

i=2

|P {σ1,...,σi−1}
{σi} |+

n∑

i=s+2

|P {σs+1,...,σi−1}
{σi} |+ |PSN\S |.

Removing even elements and identical elements from the signs, showing

the result is equivalent to showing that

s+ s(n− s) + |PSN\S | ≡2 〈S : N \ S〉.

There are two cases, firstly when |N \S| is even. Then s+ s(n− s) ≡2 s

and 〈S : N \ S〉 = |PSN\S | + |S| as required. When |N \ S| is odd, then

s+ s(n− s) ≡2 s+ s ≡2 0 and 〈S : N \ S〉 = |PSN\S | as required.

It remains to show that on the left of Equation 4.3.2.1 for a fixed s the

terms α∗µeσnH
∗...H∗µeσs+1

µeσsH
∗...H∗µeσ1β

∗ cancel. We do this by noting

that µeσiµeσi+1
= µeσi+1

µeσi , then observing that as a result the relevant

term formed by taking the id term in the sth substitution of dH = βα −
id−Hd for a given permutation σ is the same as the term formed from the sth

relevant substitution of a permutation σ′ such that σs = σ′s+1, σs+1 = σ′s.

So, I want to find that these signs differ modulo 2.

For σ the sign is

(n− s) + (n+ Tn +
n∑

i=2

|P {σ1,..,σi−1}
{σi} |).

while for σ′ the sign is

(n− s) + (n+ Tn +
s−1∑

i=2

|P {σ1,..,σi−1}
{σi} |+ |PS\{σs}{σs+1} |

+|PS\{σs}∪{σs+1}
{σs} |+

n∑

i=s+2

|P {σ1,..,σi−1}
{σi} |).



4. Finite domination implies contractiblity of Novikov homology 143

Clearly, the difference is |P {σs}{σs+1}|−|P
{σs+1}
{σs} | which is 1 or −1 as required.

Hence Equation 4.3.2.1 is satsified, hence htot(αCβ) is an N -cube.

Definition 4.3.3. Given complexes C,D where dH+Hd = βα−idC , and an

N -cube αCβ define the twisted N -diagram Tw(αCβ) as the following, where

∅ ⊆ A ⊂ B ⊆ N , σ is an ordering of K ⊆ N with elements σ1, σ2, ...σK .

Tw(αCβ)A =D ⊗
R0Zn

R.

Tw(αCβ)A,A =d∗.

Tw(αCβ)A∪{i},A =id− β∗µeiα∗, i /∈ A.
Tw(αCβ)A∪{i,j},A =β∗µeiH

∗µejα
∗ − β∗µejH∗µeiα∗, i, j /∈ A, i < j.

Tw(αCβ)B,A =
∑

σ

(−1)
(|B\A|)+|B\A|+T|B\A|+

∑
2≤i≤|B\A| |P

{σ1,...,σi−1}
{σi}

|

β∗µeσ|B\A|H
∗...H∗µeσ1α

∗, A ⊂ B, |B \A| ≥ 2.

Proposition 4.3.4. The twisted N -diagram, Tw(αCβ), is in fact an N -

cube.

Proof. Ignoring the id portion of the definition to begin with the changes

between αCβ and Tw(αCβ) cancel out. When |B \ A| is odd, the sign of

each summand in Equation (3.3.4.1) changes as each is changed by |B \S| =
|S \A| = |B \A|. Similarly when |B \A| is even, the sign of each summand

remains the same for the same reason hence the relevant conditions are

satisfied.

The compositions of id with other maps also cancel. These terms will

only appear on the right side of (4.3.2.1). Fix j ∈ N and note that

Tw(αCβB,B\{j}) and Tw(αCβB\{j},∅) are the same map up to sign. Fix

a permutation σ of B \{j} and an element Hσ = β∗µeσ|B|\{j}H
∗...H∗µeσ1α

∗.

For all B ⊆ N , the only terms of (3.3.4.1) we are interested in are those
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where S = {j}, B \ {j}, and only the id parts at that:

(−1)(1+|B|+〈{j} : B\{j}〉)+(|B|−1+T|B|−1+
∑

2≤i≤b−1 |P
σ1,...,σi−1
σi

|)Hσid

+(−1)(1+|B|+〈B\{j} : {j}〉)+(|B|−1+T|B|−1+
∑

2≤i≤b−1 |P
σ1,...,σi−1
σi

|)idHσ

noting that the sign on id is positive. We want this sum to be zero, so the

result breaks down to showing that:

〈{j} : B \ {j}〉 ≡2 1 + 〈B \ {j} : {j}〉.

Firstly, note that

〈B \ {j} : {j}〉 = |PB\{j}{j} |.

Assume |B| is even. Then

〈{j} : B \ {j}〉 = |P {j}B\{j}|.

Going back to Definition 3.1.4, we observe that |PB\{j}{j} | = B \{j}>{j} must

differ in sign to |P {j}B\{j}| =
∑

a∈B\{j}{j}>a as there are odd many elements

in B \ {j}, and an element can only be either larger or smaller than j, so

|PB\{j}{j} |+ |P {j}B\{j}| ≡2 1 as required. Now assume |B| is odd. Then

〈{j} : B \ {j}〉 = 1 + |PB\{j}{j} |

so we need |PB\{j}{j} | ≡2 |PB\{j}{j} |. This follows for similar reasons as before,

the even many elements of B \ {j} can either be higher or lower than j,

hence the difference of |PB\{j}{j} | and |PB\{j}{j} | is even as required. Hence,

(−1)(1+|B|+〈{j} : B\{j}〉)+(|B|−1+T|B|−1+
∑

2≤i≤b−1 |P
σ1,...,σi−1
σi

|)Hσid

+(−1)(1+|B|+〈B\{j} : {j}〉)+(|B|−1+T|B|−1+
∑

2≤i≤b−1 |P
σ1,...,σi−1
σi

|)idHσ = 0

and so over all sets B ⊆ N and j ∈ B and permuations σ of B \{j}, the sum

disappears. This is the case for A = ∅, general A follows similarly. Hence

the twisted N -diagram Tw(αCβ) is an N -cube, which we call a twisted N -

cube.
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For simplicity write hTot(Tw(αCβ)) = T(αCβ).

The following collection of results will show that given satisfactory C '
D as set at the start of this section it is the case that C ' T(C) ' T(αCβ).

Proposition 4.3.5. Let C,D be chain complexes and C, D their associated

N -diagrams. Given α : C → D and β : D → C such that H : βα ' idC there

is a map C→ αCβ, represented by the map F where for N = {1, 2.., n}, ∅ ⊆
A ⊂ N, i /∈ A.

FA,A = α∗.

FA∪{i},A = α∗µeiH
∗, i /∈ A.

FA∪{i,j},A = α∗µeiH
∗µejH

∗ − α∗µejH∗µeiH∗, i, j /∈ A, i < j.

FB,A =
∑

σ

(−1)
|B\A|+T|B\A|+

∑
2≤i≤|B\A| |P

{σ1,...,σi−1}
{σi}

|

α∗µeσ|B\A|H
∗...H∗µeσ1H

∗, A ⊆ B.

Proof. Firstly, consider Proposition 3.4.6. If F is an N -cube map then it

must satisfy

αCβB,BFB,A + (−1)1+|B\A|FB,ACA,A =

(−1)|B|




∑

A(S
•
⊆B

(
(−1)|S|+〈S\A:B\S〉FB,SCS,A

)

−
∑

A⊆S
•
(B

(
(−1)|A|+〈S\A:B\S〉αCβB,SFS,A

))

so, as we did when we proved the N -cube αCβ satisfies the definition, we

substitute and compare signs.

Note that CS,A are zero maps except for when |S\A| = 0, 1, specifically

CA,A = dC ⊗ id = d∗C and CS,S\{i} = µei . Also let d∗D = dD ⊗ id.

For n = 1, we note that there are only three conditions to consider. For

B = A = {1} and B = A = ∅, these conditions amount to an observation
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that α∗ is a chain map. For B = {1}, A = ∅, we get something more

complicated:

d∗D(α∗µeiH
∗) + (α∗µeiH

∗)d∗C

= (−1)1
(

(−1)0+0(α∗)µei + (−1)0+〈{1} : ∅〉(α∗µeiβ
∗)α∗

)

which is shown due to the statements 〈{1} : ∅〉 = 1 and dH +Hd = βα− id.

Hence the result is true for n = 1.

If we note that this is shown for n = 1 and noting that the map F

splits into K-cube maps for all K ⊆ N , it remains to show the result for

A = ∅, B = N .

The equation for this case is:

αCβN,NFN,∅ + (−1)1+nFN,∅C∅,∅ =

(−1)n



∑

∅(S
•
⊆N

(
(−1)(|S|+〈S:N\S〉)FN,SCS,∅

)

−
∑

∅⊆S
•
(N

(
(−1)|∅|+〈S:N\S〉αCβN,SFS,∅

))
(4.3.5.1)
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and taking account the definition of αCβ we get:

αCβN,NFN,∅ + (−1)1+nFN,∅C∅,∅ =

(−1)n
( ∑

∅(S
•
⊆N

∑

σ

(−1)
(|S|+〈S:N\S〉)+(|N\S|+T|N\S|+

∑
s+2≤i≤|N\S| |P

{σs+1,...,σi−1}
{σi}

|)

+(|S|+T|S|+
∑

2≤i≤|S| |P
{σ1,...,σi−1}
{σi}

|)

α∗µeσnH
∗ . . . H∗µeσn−sH

∗CS,∅

−
∑

∅⊆S
•
(N

∑

σ

(−1)
(|∅|+〈S:N\S〉)+(|N\S|+T|N\S|+

∑
s+2≤i≤|N\S| |P

{σs+1,...,σi−1}
{σi}

|)

+(|S|+T|S|+
∑

2≤i≤|S| |P
{σ1,...,σi−1}
{σi}

|)

α∗µeσnH
∗ . . . H∗µeσs+1

β∗α∗µeσsH
∗ . . . H∗µeσ1H

∗
)

(4.3.5.2)

so, as we did when we showed the N -cube αCβ satisfies the definition, we

substitute and compare signs.

Again, note that CS,∅ are zero maps except for when |S| = 0, 1.

As in the proof that the N -cube Tw(αCβ) satisfies the definition of an

N -cube, we fix a permutation, apply the substitution dH = βα− id−Hd to

the summand of αCβN,NFN,∅ associated to σ and compare the signs between

matching terms in Equation (4.3.5.2).

First of all, note that there are n many H∗ terms in each summand of

αCβN,NFN,∅ hence (−1)1+nFN,∅C∅,∅ is cancelled by taking the Hd substitu-

tion at the nth time of αCβN,NFN,∅, which gives it a sign of (−1)n.

Now fix a permutation σ of N and a set S ⊆ N , but S /∈ {∅, N}. Let

FB,σ = µeσ|B|H...Hµeσ1 .

Firstly, I want to show that the signs on the term

α∗FN\S,σβ
∗α∗FS,σH∗ = α∗µσnH

∗...H∗µeσs+1
β∗α∗µeσsH

∗...H∗µeσ1H
∗

match on each side of the Equation (4.3.5.2). The term on the left appears

after n−s substitutions of dH = βα− id−Hd and taking the βα summand
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on the n − sth substitution. The relevant term of αCβN,NFN,∅ after the

substitutions has sign

(n− s) + 1 + n+ Tn+

n∑

i=2

|P {σ1,..,σi−1}
{σi} |

≡21 + s+ Tn−s + Ts + s(n− s)

+

n∑

i=s+1

|PS∪{σs+1,...σi−1}
{σi} |+

s∑

i=2

|P {σ1,..,σi−1}
{σi} |.

Observe that

n∑

i=s+1

|PS∪{σs+1,...σi−1}
{σi} | =

n∑

i=s+1

|PS{σi}|+
n∑

i=s+1

|P {σs+1,...σi−1}
{σi} |

= |PSN\S |+
n∑

i=s+1

|P {σs+1,...σi−1}
{σi} |.

For the relevant term on the other side of the equation, we see that it

has the sign:

n+1 + |∅|+ 〈S : N \ S〉

+ n− s+ Tn−s +

n∑

i=s+1

|P {σ1,..,σs,...σi−1}
{σi} |

+ s+ Ts +

s∑

i=2

|P {σ1,..,σi−1}
{σi} |

≡2 1 + 〈S : N \ S〉+ Tn−s +

n∑

i=s+1

|P {σ1,..,σs,...σi−1}
{σi} |

+ Ts +

s∑

i=2

|P {σ1,..,σi−1}
{σi} |.

Ignoring the terms that appear in both, it is enough to check whether or

not the values

|PSN\S |+ s+ s(n− s)

and

〈S : N \ S〉
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agree modulo 2, but this is exactly the result seen in the analogous case

where we investigated the N -cube, hence this case is known too.

Next, I see where the terms produced when substituting dH = βα −
id −Hd and taking the id summand the n − sth time go. Here, given two

orderings σ and σ′, that only differ by σs = σ′s+1, σs+1 = σ′s, I will show

that the signs on α∗FN\S,σFS,σH∗ and α∗FN\S,σ′FS,σ′H∗, both on the left

of the equation (4.3.5.2), differ hence cancelling both terms.

The sign on the term (−1)n−sα∗FN\S,σFS,σ is:

|N |+ Tn +
n∑

i=2

|P {σ1,...,σi−1}
{σi} |

while for (−1)n−sα∗FN\S,σ′FS,σ′ the sign is:

|N |+ Tn +
s−1∑

i=2

|P {σ1,...,σi−1}
{σi} |+ |PS\{σs}{σs+1} |

+ |PS\{σs}∪{σs+1}
{σs} |+

n∑

i=s+1

|PS∪{σs+1,...,σi−1}
{σi} |.

It is clear through applying the algebra of these sets that the only terms

that differ are

|P {σs}{σs+1}|

and

|P {σs+1}
{σs} |.

Clearly,

|P {σs}{σs+1}| =2 1 + |P {σs+1}
{σs} |

as required.

It remains to investigate what happens to the terms from the final use

of the substitution dH = βα − id − Hd, that is the terms α∗FN,σ and

α∗FN,σβ∗α∗.
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For a given σ, α∗FN,σ is cancelled by the term FN,N\{σ1}C{σ1},∅, which

are on opposite sides of Equation (4.3.5.2). I therefore want the signs to

agree. The sign on α∗FN,σ after the n substitutions is

(n) + n+ TN +
n∑

i=2

|P {σ1,...,σi−1}
{σi} |

and the sign on FN,N\{σ1}C{σ1},∅ is

(n) + (1) + 〈{σ1} : N \ {σ1}〉+ (n− 1 + Tn−1 +
n∑

i=3

|P {σ2,...,σi−1}
{σi} |).

It is clear that the difference modulo 2 between the two signs is

n+
n∑

i=2

|P {σ1,...,σi−1}
{σi} |+ 〈{σ1} : N \ {σ1}〉+

n∑

i=3

|P {σ2,...,σi−1}
{σi} |.

Since

n∑

i=2

|P {σ1,...,σi−1}
{σi} | =

n∑

i=2

|P {σ1}{σi} |+
n∑

i=3

|P {σ2,...,σi−1}
{σi} |

and
∑n

i=2 |P
{σ1}
{σi} | = |P

{σ1}
N\{σ1}| the difference is equivalent modulo 2 to

n+ |P {σ1}N\{σ1}|+ 〈{σ1} : N \ {σ1}〉.

When |N | is even, |N | − 1 is odd hence 〈{σ1} : N \ {σ1}〉 = |P {σ1}N\{σ1}|
and when |N | is odd, 〈{σ1} : N \ {σ1}〉 = 1 + |P {σ1}N\{σ1}|, in both cases the

difference modulo 2 is 0 as required.

Finally, its time to consider the terms α∗FN,σβ∗α∗ formed by taking the

βα term in the nth substitution. These terms are cancelled by the term

(−1)1+〈∅:N〉αCβN,∅F∅,∅ on the opposite side of the equation. Therefore, we

want the signs to agree. The sign on α∗FN,σβ∗α∗ after n substitutions is

(n+ 1) + n+ Tn +
n∑

i=2

|P {σ1,...,σi−1}
{σi} |
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and the sign on the term αCβN,∅F∅,∅ is

1 + 〈∅ : N〉+ n+ Tn +
n∑

i=2

|P {σ1,..,σi−1}
{σi} |

and since 〈∅ : N〉 = n the signs match as required.

The result follows from induction.

Proposition 4.3.6. Given the map F : C → αCβ from the previous propo-

sition, there is a map Tw(F) : Tw(C)→ Tw(αCβ) defined as:

Tw(F)A,A = −α∗.
Tw(F)A∪{i},A = α∗µeiH

∗, i /∈ A.
Tw(F)A∪{i,j},A = −(α∗µeiH

∗µejH
∗ − α∗µejH∗µeiH∗), i, j /∈ A, i < j.

Tw(F)B,A =
∑

σ

(−1)
(1+|B\A|)+|B\A|+T|B\A|+

∑
2≤i≤|B\A| |P

{σ1,...,σi−1}
{σi}

|

α∗µeσ|B\A|H
∗...H∗µeσ1H

∗, A ⊆ B.

Proof. Ignoring the id terms of the two N -cubes T(C),T(αCβ), the other

terms cancel for the same reason they do for T(αCβ) - for a given B,A,

the effect of 1 + |B \ A| is to change each term in Equation (3.4.6) by the

same sign. When |B \ A| is odd , then (−1)|B\A|+1 = 1 and the right

side compositions of Equation (4.3.5.2) do not change signs, either being a

component of Tw(F) with odd |B\A| combined with a component of Tw(D?)

with even |B \ A|, so two unchanged signs, or a component of Tw(F) with

even |B \A| combined with a component of Tw(D?) with odd |B \A|, again

changing the sign twice hence leaving it unchanged. The case for when

|B \ A| is even follows similarly, hence we can focus solely on the id terms

that come from Tw(D?).

For a given B and j ∈ B, only when S = {j}, B \ {j} will id terms

appear, and only on the right of Equation (3.4.6). The relevant terms for a
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fixed σ are:

(−1)
(|B|)+(|{j}|+〈{j} : B\{j}〉)+(1+T|B|−1+

∑
2≤i≤|B\{j}| |P

{σ1,...,σi−1}
{σi}

|)

α∗FB\{j},σH
∗id

+(−1)
1+(|B|)+(|∅|+〈B\{j} : {j}〉)+(1+T|B|−1+

∑
2≤i≤|B\{j}| |P

{σ1,...,σi−1}
{σi}

|)

idα∗FB\{j},σH
∗

(the first summand has S = {j}, the second has S = B \ {j}) and a similar

proof to that used for Tw(αCβ) will suffice, namely showing that

〈{j} : B \ {j}〉 ≡2 〈B \ {j} : {j}〉+ 1.

Again, we note that for A 6= ∅, the case is symmetrical. Hence, we have

shown that Tw(F) is a valid N -cube map.

The map Tw(F) can be totalised to form a map T(F) : T(C)→ T(αCβ),
similarly F forms hTot(F).

Theorem 4.3.7. The map hTot(F) : hTot(C) → hTot(αCβ) is a homotopy

equivalence.

Proof. Considering hTot(F) as a matrix, we see that the maps on the di-

agonal, α ⊗ id, are quasi-isomorphisms (as R0-module maps). It follows

from [HQ15, Lemma 2.13] that the map hTot(F) is a quasi-isomorphism

also. Next, observe that both hTot(C) and hTot(αCβ) are bounded com-

plexes of projective R0-modules, as both C and D are bounded complexes

of projective R0-module complexes. It follows that hTot(F) is a homotopy

equivalence of R0-modules.

Theorem 4.3.8 (Mather Trick). The map T(F) : T(C) → T(αCβ) is a ho-

motopy equivalence.

Proof. Note that −α ⊗ id is a quasi-isomorphism and repeat the argument

of Theorem 4.3.7.
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4.4 Finite domination implies contractiblity of Novikov homology

At this point, when C is a bounded complex of finitely generated free R-
modules homotopy equivalent to a bounded complex of finitely generated
projective R0-modules D, we know that C ' T(αCβ).

Note that the module M ⊗
R0

R can be viewed as a Zn-graded right R

module with (M ⊗
R0

R)ρ = M ⊗
R0

Rρ. We can define polynomial, power series

and Novikov structures on this module analogous to those for rings. We can
therefore define for any flag F Novikov tori T(αCβ)((F)) for a given torus
T(αCβ), with matrices:

⊕

B⊆N
((D ⊗

R0

R)∗((F)))k−|N |+|B|

and a boundary similar to that of the torus T(αCβ).
We firstly need to show that there is a homotopy equivalence between

C⊗
R
R((F)) and T(αCβ)((F)). Owing to the above, it is enough to show that

there is an isomorphism T(αCβ)⊗
R
R((F)) ∼= T(αCβ)((F)).

Proposition 4.4.1. Let M be a finitely presented right R0-module. The

map

ΨM : M ⊗
R0

R∗((F))→ (M ⊗
R0

R)∗((F)), m⊗
∑

ρ∈Zn
rρ 7→

∑

ρ∈Zn
(m⊗ rρ)

is an isomorphism.

Proof. See [HQ15][Lemma 3.1.1], and note that the above is a similar case.

Proposition 4.4.2. There is an isomorphism

T(αCβ)⊗
R
R∗((F)) ∼= T(αCβ)((F)).

Proof. It follows from the isomorphism seen in Proposition 4.4.1, firstly

note that T(αCβ) ⊗
R
R∗((F)) has modules D ⊗

R0

R ⊗
R
R∗((F)) = D ⊗

R0

R∗((F))

so ΨD(D ⊗
R0

R⊗
R
R∗((F))) = (D ⊗

R0

R)∗((F)) is a module isomorphism. Let

ΨD : T(αCβ)⊗
R
R∗((F)) ∼= T(αCβ)((F))
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be such that

(ΨD)B = ΨD : T(αCβ)B ⊗
R
R∗((F)) ∼= T(αCβ)((F))B.

Consider the map µei and a similar map µ′ei : (D ⊗
R0

R)∗((F)) → (D ⊗
R0

R)∗((F)). It can be seen that the following diagram is commuative:

D ⊗
R0

R⊗
R
R∗((F))

ΨD- (D ⊗
R0

R)∗((F))

D ⊗
R0

R⊗
R
R∗((F))

µei ⊗ id

? ΨD- (D ⊗
R0

R)∗((F))

µ′ei

?

and since the components of the map T(αCβ)B,A are sums of compositions

of maps µei , α⊗ id, β⊗ id and H ⊗ id, it is clear that ΨD will commute with

the boundary maps hence it is a chain complex isomorphism as required.

Corollary 4.4.3. From Lemma 4.2.7, Proposition 4.3.8 (the Mather trick)

and the preceding Proposition 4.4.2, there is a homotopy equivalence

C ⊗
R
R∗((F)) ' T(αCβ)((F))

consisting of maps like so:

C ⊗
R
R∗((F)) '

4.2.7
T(C)⊗

R
R∗((F)) '

4.3.8
T(αCβ)⊗

R
R∗((F)) ∼=

4.4.2
T(αCβ)((F)).

Now we show that the complexes T(αCβ)((F)) have trivial homology for
all F where F contains only two faces, one of which is S = [−1, 1]n, and
hence show that C ⊗

R
R∗((F)) is contractible also.

Let E = {±ej : 1 ≤ j ≤ n} be a standard basis of Zn. Let Gi be the
n−1-dimensional face of S such that ηGi = ei, which means that η−Gi = −ei.

Proposition 4.4.4. Let F = {Gi ⊂ S} for ei ∈ E. The infinite sum

Pi = id−
∑

k≥0

(αµeiβ)k,

is a well-defined chain map on the complex (D ⊗
R0

R)∗((F)).
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Proof. Take an element d =
∑

ρ∈Zn dq ⊗ rρ ∈ (Dq ⊗
R0

R)∗((F)) and let ρ =
∑n

`=1 ρ`e`, ρ` ∈ Z. By the definition of (D⊗
R0

R)∗((F)), the support of d has a

global lower bound k ∈ Z on ρi such that for ρ where ρi < k, rρ = 0. I wish

to show that the image of the above element d is contained in (Dq ⊗
R0

R)∗((F))

and that the at each ρ, the image is a finite sum. Evidentally, the support of

Pi(d) also satisfies the bound condition as required as the effect of applying

Pi does not lower the possible coefficients of ei in the support of the element.

Now take the ρ =
∑n

l=1 ρlel, ρl ∈ Z component of Pi(d) for ρi ≥ k

(if ρi < k, then Pi(dq ⊗ rρ) = 0 and there is nothing to show). There

are precisely ρi − k + 1 non-zero elements in the sum that constitutes the

element Pi(d)ρ, namely the images of the summands of d at
∑n

`=1 ρ`e`− qei
by (αµeiβ)q for 1 ≤ q ≤ ρi − k and the summand of d at ρ mapped by the

identity map.

That Pi commutes with the boundary maps follows from the fact that

α, µei and β are chain maps.

Proposition 4.4.5. Let F = {F ⊂ S} for a face F = ∩tGit , 1 ≤ t ≤ n.

The infinite sum Piq = id − ∑
k≥0

(αµeiqβ)k, is a well-defined chain map on

the complex (D ⊗
R0

R)∗((F)) for all 1 ≤ q ≤ t.

Proof. Repeat the above argument for each individual Piq , considering con-

ditions (2-Giq) of the collection of n − 1-dimensional faces Giq contained

within CT(F).

Proposition 4.4.6. Let F = {F ⊂ S} where F ⊆ G1. The complexes

C ⊗
R
R∗((F)) and T(αCβ)((F)) are contractible.

Proof. Let P1 = id − ∑
k≥0

(αµe1β)k, which is a self map on the complex

(D ⊗
R0

R)∗((F)) that is well defined due to the Novikov structure on the

module. Let Q be a 2n by 2n matrix indexed by subsets of N = {1, ..., n},
with zero entries except for the entries indexed by (A∪{1}, A) for 1 /∈ A ⊂ N
which each have (−1)(〈A : {1}〉)P1. This is a self map on T(αCβ)((F)). The
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composition dT(αCβ)((F))Q + QdT(αCβ)((F)) = X is lower triangular with the

identity on the diagonal. This can be seen as the entries on the diagonal of

X are compositions of P1 with the entries indexed by A,A ∪ {1} of dT(αCβ)

which are

(−1)(〈A : {1}〉)P1(−1)(〈A : {1}〉)(id− αµe1β) = id

at A,A and

(−1)(〈A : {1}〉)(id− αµe1β)(−1)(〈A : {1}〉)P1 = id

at A ∪ {1}, A ∪ {1} of X and the only non trivial entries that appear above

the diagonal appear on the entries indexed by A,A ∪ {1} of X which are

(−1)Ad(D⊗R)∗((F))(−1)(〈A : {1}〉)P1 + (−1)(〈A : {1}〉)P1(−1)A+1d(D⊗R)∗((F)) = 0

(as P1 is a chain map). It follows that X is an invertible matrix that com-

mutes with dT(αCβ)((F)), therefore X−1Q satisfies d(X−1Q) + (X−1Q)d = id

hence it is a contraction making T(αCβ)((F)) contractible, making C ⊗
R

R∗((F)) contractible.

Proposition 4.4.7. Let F = {F ⊂ S} where F ⊆ −G1. The complex

C ⊗
R
R∗((F)) is contractible.

Proof. Let R̈ be a ring such that R̈ke1 = R−ke1 . This is a strongly Zn-graded

ring as R is. Let F ′ be the same flag as F except swap−1 and 1 (for example,

the two faces of F ′ will be S and F ′ ∩ G1 where F ′ ∩ −G1 = F ). Repeat

the entire proof with this new ring, using Proposition 4.4.6 to show that

C⊗
R
R̈∗((F ′)) is contractible and observe that C⊗

R
R̈∗((F ′)) = C⊗

R
R∗((F)).

Proposition 4.4.8. Let F = {F ⊂ S} where F ⊆ Gi for some n−1 dimen-

sional face Gi with positive ηGi. The complex C ⊗
R
R∗((F)) is contractible.

Proof. Define a new ring R̃ that is the same as R except with basis elements

of Zn re-ordered, so that ẽ1 = eik . Repeat Proposition 4.4.6 with the flag

F ′ consisting of the two faces {S} and F ′ ∩ G1 where F ′ ∩ Gi = F to see
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that C ⊗
R
R̃∗((F ′)) and observe that C ⊗

R
R̃∗((F ′)) = C ⊗

R
R∗((F)) making

C ⊗
R
R∗((F)) contractible as required.

Proposition 4.4.9. Let F = {F ⊂ S} where F = ∩q(−Giq) for n − 1

dimensional faces −Giq . The complex C ⊗
R
R∗((F)) is contractible.

Proof. Pick k ∈ {i1, ..., it} and form a new Zn-graded ring ˜̈R where ˜̈Rjẽ1 =

R−jek for j ∈ Z and a reordered basis. Take a suitable new flag F ′ then argue

as in Proposition 4.4.7 and Proposition 4.4.8 for this new ring, observing that

C ⊗
R

˜̈R∗((F ′)) = C ⊗
R
R∗((F)).

We can now prove the main result of this thesis.

Theorem 4.4.10. Main result. Let R be a strongly Zn-graded ring and

write R0Zn = R0. Let S = [−1, 1]n and C be a bounded complex of finitely

generated free R-modules. The complex C is R0-finitely dominated if and

only if for every flag F of the form F = {F ⊂ S}, the complexes

C ⊗
R
R∗((F))

are acyclic.

Proof. The forward direction follows from combining Propositions 4.4.6,

4.4.7, 4.4.8 and 4.4.9. The reverse is precisely Proposition 2.10.4.
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FINITE DOMINATION AND NOVIKOV HOMOLOGY
OVER STRONGLY Z-GRADED RINGS

THOMAS HÜTTEMANN AND LUKE STEERS

Abstract. Let L be a unital Z-graded ring, and let C be a
bounded chain complex of finitely generated L-modules. We give
a homological characterisation of when C is homotopy equivalent
to a bounded complex of finitely generated projective L0-modules,
generalising known results for twisted Laurent polynomial rings.
The crucial hypothesis is that L is a strongly graded ring.

1. Finite domination over strongly Z-graded rings

Finite domination and Novikov homology. Let L be a unital
ring, and let K be a subring of L. A bounded chain complex C of
(right) L-modules is K-finitely dominated if C, considered as a com-
plex of K-modules, is a retract up to homotopy of a bounded complex
of finitely generated free K-modules; this happens if and only if C is ho-
motopy equivalent, as a K-module complex, to a bounded complex of
finitely generated projective K-modules [Ran85, Proposition 3.2. (ii)].
The following result of Ranicki gives a complete homological charac-
terisation of finite domination in an important special case:

Theorem 1.1 (Ranicki [Ran95, Theorem 2]). Let R be a unital ring,
and let R[t, t−1] denote the Laurent polynomial ring in the indeter-
minate t. Let C be a bounded chain complex of finitely generated free
R[t, t−1]-modules. The complex C is R-finitely dominated if and only
if both

C ⊗
R[t,t−1]

R((t−1)) and C ⊗
R[t,t−1]

R((t))

have vanishing homology in all degrees. Here R((t)) = R[[t]][t−1] is the
ring of formal Laurent series in t, and similarly R((t−1)) = R[[t−1]][t]
stands for the ring of formal Laurent series in t−1.

The cited paper [Ran95] also contains a discussion of the relevance
of finite domination in topology. — The rings R((t)) and R((t−1)) are
known as Novikov rings. The theorem can be formulated more suc-
cinctly: The chain complex C is R-finitely dominated if and only if it
has trivial Novikov homology.
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2 THOMAS HÜTTEMANN AND LUKE STEERS

In the present paper we formulate and prove a surprising strengthen-
ing: Theorem 1.1 remains valid if R[t, t−1] is replaced by an arbitrary
strongly Z-graded ring, provided the definition of Novikov rings is
adapted suitably. We start by recalling the requisite definitions.

Definition 1.2. A Z-graded ring is a (unital) ring L equipped with a
direct sum decomposition into additive subgroups L =

⊕
k∈Z Lk such

that LkL` ⊆ Lk+` for all k, ` ∈ Z, where LkL` consists of the finite sums
of ring products xy with x ∈ Lk and y ∈ L`. The summands Lk are
called the (homogeneous) components of L; elements of Lk are called
homogeneous of degree k. — Following Dade [Dad80] we call L a
strongly Z-graded ring, or simply a strongly graded ring, if LkL` = Lk+`

for all k, ` ∈ Z.

A specific example of a strongly Z-graded ring is L = R[t, t−1], the
ring of Laurent polynomials; the nth component is {rtn | r ∈ R}.
The reader may wish to keep this motivating example in mind.

We will use the symbol R∗[t, t−1] =
⊕

k∈ZRk to denote an arbitrary
Z-graded ring in this paper. One may think of the elements of R∗[t, t−1]
as formal Laurent polynomials

∑n
j=m ajt

j with aj ∈ Rj, but note

that this is a purely notational device; in general the ring R∗[t, t−1]
does not contain an element called t. The point of using this notation
is that we have a rather suggestive way of denoting various rings and
modules constructed from R∗[t, t−1]. For example, we can introduce
the Novikov rings

R∗((t
−1)) =

∏

n≤0

Rn ⊕
⊕

n>0

Rn and R∗((t)) =
⊕

n<0

Rn ⊕
∏

n≥0

Rn

and think of their elements as formal power series
∑

j∈Z ajt
j with aj ∈

Rj such that aj = 0 whenever j � 0 or j � 0, respectively.

In any Z-graded ring the unit element is necessarily homogeneous of
degree 0 [Dad80, Proposition 1.4] so that R0 is a subring of R∗[t, t−1].
With these preliminaries in place we can formulate our main result:

Theorem 1.3. Let R∗[t, t−1] =
⊕

k∈ZRk be a strongly Z-graded ring,
and let C be a bounded chain complex of finitely generated free R∗[t, t−1]-
modules. The complex C is R0-finitely dominated if and only if both

C ⊗
R∗[t,t−1]

R∗((t
−1)) and C ⊗

R∗[t,t−1]
R∗((t))

have vanishing homology in all degrees.
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As a special case this says that Theorem 1.1 holds for twisted Lau-
rent polynomial rings [HK07, Theorem 6], or even for the more general
case of crossed products (which are characterised by having homoge-
neous invertible elements of arbitrary degrees). However, this is not
the complete extent of the generalisation as there are strongly graded
rings which are not crossed products. Possibly the easiest example to
write down is the following: Let K[A,B,C,D] be a polynomial ring
over the field K, considered as a Z-graded ring by giving A and C
degree 1, and giving B and D degree −1. Let R∗[t, t−1] be the quo-
tient K[A,B,C,D]/(AB + CD − 1); as the relation is homogeneous,
this results in a Z-graded ring which is actually strongly graded since
AB+CD = BA+DC = 1 by construction. It can be shown, using ideas
from Gröbner basis theory, that the only units are K× ⊂ R∗[t, t−1]
so that our ring is not a crossed product. Now consider the following
2-step chain complex:

R∗[t, t
−1]

( 1−A
1−B )- R∗[t, t

−1]⊕R∗[t, t−1]
(1−B,−(1−A))- R∗[t, t

−1]

The map 1−A becomes invertible in R∗((t)), with inverse (1−A)−1 =∑
j≥0A

j; similarly, the map 1 − B becomes invertible in R∗((t−1)).

Hence the complex becomes acyclic after tensoring with R∗((t±1)), and
Theorem 1.3 asserts that it is in fact R0-finitely dominated.

Structure of the paper. For the proof of Theorem 1.3 we com-
bine techniques from strongly graded algebra with homotopy-theoretic
methods and homological algebra of bicomplexes. We start by intro-
ducing various rings associated to a Z-graded ring, and discuss parti-
tions of unity which are the main technical tool from graded algebra to
be used throughout the paper. This will occupy the remainder of §1.

In §2 we prove the “if” implication of Theorem 1.3, based on the
homotopy-theoretic methods used in [Ran95] for the case of a Laurent
polynomial ring. The organisation follows the pattern laid out by the
first author in [Hüt15], where a description of the algebro-geometric
background of the procedure is given. It is of interest to note that the
Z-graded structure of our ring allows us in Proposition 2.9 to construct
complexes of sheaves from the given complex of modules C, while the
strong grading ensures that certain chain complexes consist of finitely
generated projective R0-modules, cf. Corollary 2.7.

In §3 we attack the reverse implication of Theorem 1.3, using double
complex techniques as documented in [Hüt11]. The graded structure
is used at various places. Most notably, the definition and the proper-
ties of the “algebraic torus”, a substitute for the more usual algebraic
mapping torus of a self-map of a chain complex, depend crucially on
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extra data which can be chosen only in view of the strong grading.
In addition, passage to Novikov rings involves a certain “twisting”
operation on powers of modules that is defined in terms of the grading.

The results of this paper were obtained as part of the second author’s
PhD thesis.

Rings associated with Z-graded rings. We make the following con-
ventions for the rest of the paper: All rings, graded or otherwise, are
assumed unital and all modules right unless stated otherwise. We let
R∗[t, t−1] stand for an arbitrary unital Z-graded ring, with nth homo-
geneous component denoted by Rn. That is, we have a graded ring
R∗[t, t−1] =

⊕
n∈ZRn. In many cases we will assume this ring to be

strongly graded, but will take care to indicate where this hypothesis is
really needed.

Given a Z-graded ring R∗[t, t−1], it is known that the unit element 1
must be homogeneous of degree 0 [Dad80, Proposition 1.4]. It is then
immediate from the definition that R0 is a subring of R∗[t, t−1], and
that all the homogeneous components Rk are R0-bimodules.

Given the Z-graded ring R∗[t, t−1] we define two Z-graded subrings
by setting R∗[t−1] =

⊕
k≤0Rk and R∗[t] =

⊕
k≥0Rk. These graded

rings have trivial components in all positive and negative degrees, re-
spectively. Elements can be thought of as formal polynomials in t−1

and t, respectively, with the coefficient of tj an element of Rj.
We can also define the analogues of power series rings, R∗[[t−1]] =∏
n≤0Rn and R∗[[t]] =

∏
n≥0Rn. Elements are of course formal power

series in t−1 and t, respectively, with coefficient of tj an element of Rj.
We have previously defined the Novikov rings R∗((t−1)) and R∗((t)).
Note that power series and Novikov rings are not considered as graded
rings; in fact, they do not admit a natural Z-grading.

The collection of rings fits into the commutative diagram of ring
inclusions displayed in Fig. 1.

Partitions of unity and strongly graded rings.

Definition 1.4. Given n ∈ Z, an expression of the form 1 =
∑

j ujvj
with uj ∈ Rn, vj ∈ R−n is called a partition of unity of type (n,−n).
This is understood to be a finite sum; we do not specify the summation
range unless we need it explicitly.

A partition of unity of type (n,−n) exists if and only if 1 ∈ RnR−n.
Partitions of unity are our main technical tool; their existence is inti-
mately related to properties of the graded structure of the ring:
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R∗((t
−1)) R∗((t))

R∗[[t
−1]]
⊂

-

R∗[t, t
−1]
⊂

-
�

⊃

R∗[[t]]

�

⊃

R∗[t
−1]
⊂

-
�

⊃

R∗[t]
⊂

-
�

⊃

R0

⊂

-
�

⊃

Figure 1. The collection of rings and their inclusion relation

Proposition 1.5 (Characterisation of strongly graded rings). The fol-
lowing statements are equivalent:

(1) The ring R∗[t, t−1] is strongly graded.
(2) For every n ∈ Z there is at least one partition of unity of type

(n,−n).
(3) There is at least one partition of unity of type (1,−1), and at

least one of type (−1, 1).

Proof. For the equivalence of statements (1) and (2) see Proposition 1.6
of [Dad80]. That (2) implies (3) is trivial. For the converse, suppose
that 1 =

∑q
j=1 ujvj is a partition of unity of type (±1,∓1); then for

m ≥ 2 the qm pairs of elements

uj = uj1uj2 · · ·ujm and vj = vjmvjm−1 · · · vj1 ,
where j = (j1, j2, · · · , jm) ∈ {1, 2, · · · , q}m, form a partition of unity of
type (±m,∓m). �

The following Proposition is well known; we include a proof because
of its fundamental importance for this paper.

Proposition 1.6. If R∗[t, t−1] is strongly graded, then each of the Rk

is finitely generated projective both as a left R0-module and as a right
R0-module.

Proof. We treat the case of right R0-modules only. Let 1 =
∑

j ujvj be

a partition of unity of type (k,−k); existence is guaranteed by Propo-
sition 1.5. The maps gj : Rk → R0 with gj(y) = vjy are maps of right
R0-modules and satisfy

∑
j ujgj(r) =

∑
j ujvjr = r for any r ∈ Rk.

Thus Rk is a finitely generated projective right R0-module by the dual
basis lemma, cf. Proposition 12 of [Bou98, §II.2.7]. �
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Corollary 1.7. Suppose R∗[t, t−1] is strongly graded. Then any pro-
jective left or right R∗[t, t−1]-module is also projective when considered
as a left or right R0-module. �

Given numbers q, p ∈ Z we define the symbols

tq ·R∗[t−1] =
⊕

j≤q
Rj and t−p ·R∗[t] =

⊕

j≥−p
Rj ;

the former is an R∗[t−1]-bimodule, the latter an R∗[t]-bimodule. The
induced R∗[t, t−1]-modules behave as expected in the strongly graded
case:

Lemma 1.8. Let q, p ∈ Z. The R∗[t, t−1]-linear maps

γ : tq ·R∗[t−1] ⊗
R∗[t−1]

R∗[t, t
−1] - R∗[t, t

−1] , r⊗ s 7→ rs

and

α : t−p ·R∗[t] ⊗
R∗[t]

R∗[t, t
−1] - R∗[t, t

−1] , r⊗ s 7→ rs

are isomorphisms provided the ring R∗[t, t−1] is strongly graded.

Proof. Suppose R∗[t, t−1] is strongly graded. Then we may choose a
partition of unity of type (−p, p), say 1 =

∑
j ujvj with uj ∈ R−p and

vj ∈ Rp. The R∗[t, t−1]-linear map

β : R∗[t, t
−1] - t−p ·R∗[t] ⊗

R∗[t]
R∗[t, t

−1] , r 7→
∑

j

uj ⊗ vjr

satisfies αβ(r) =
∑

j ujvjr = r so that αβ = id. Also

βα(r⊗ s) = β(rs) =
∑

j

uj ⊗ vjrs =
(∗)

∑

j

ujvjr⊗ s = r⊗ s

(where the equality labelled (∗) is true since vjr ∈ R∗[t] for any r ∈
t−p ·R∗[t]), whence βα = id. — The case of γ is similar. �

The proof of Proposition 1.6 applies with minor modifications to give
the following result:

Lemma 1.9. Suppose that R∗[t, t−1] is strongly graded. Then tq ·R∗[t−1]
is a finitely generated projective left and right R∗[t−1]-module. Simi-
larly, t−p · R∗[t] is a finitely generated projective left and right R∗[t]-
module. �
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2. Trivial Novikov homology implies finite domination

Sheaves and their cohomology. We will have occasion to study
diagrams of the form

M =
(
M− µ−- M �µ

+

M+
)

; (2.1)

the entries will be modules, or chain complexes of modules. The
maps µ− and µ+ are called the structure maps of M. A map of dia-
grams consists of a triple of maps (f−, f, f+) which is compatible with
the structure maps of source and target.

Definition 2.2. Let as before R∗[t, t−1] be a Z-graded ring. A pre-sheaf
is a diagram M of the form (2.1) where M− is an R∗[t−1]-module, M is
an R∗[t, t−1]-module, M+ is an R∗[t]-module, f− is R∗[t−1]-linear and
f+ is R∗[t]-linear. The pre-sheaf M is called a sheaf if the adjoints of
the structure maps f− and f+ are isomorphisms of R∗[t, t−1]-modules:

M− ⊗
R∗[t−1]

R∗[t, t
−1]

∼=- M �
∼=

M+ ⊗
R∗[t]

R∗[t, t
−1]

Of particular importance will be the pre-sheaves

O(q, p) =
(
tq ·R∗[t−1]

⊂
ιq
- R∗[t, t

−1] �
⊃
pι

t−p ·R∗[t]
)

(2.3)

which depend on the numbers q, p ∈ Z. In case R∗[t, t−1] is strongly
graded these pre-sheaves are actually sheaves by Lemma 1.8, and are
then called twisting sheaves.

Back to a general diagram M of modules of the form (2.1), we define:

Definition 2.4. The R0-module chain complex

H(M) =
(
M �−f

−+f+

M− ⊕M+
)

(concentrated in chain degrees −1 and 0) is called the cohomology chain
complex of M. We write Hq(M) for the (−q)th homology of H(M).

In fact, Hq(M) = limq(M). — The definitions of pre-sheaf and
sheaf apply to chain complexes instead of modules mutatis mutandis;
in effect, a (pre-)sheaf of chain complexes is the same as a chain com-
plex of (pre-)sheaves. Given any diagram of chain complexes N =(
N−

g−- N �
g+

N+
)

we obtain a double complex H(N) by apply-
ing the cohomology chain complex construction levelwise. (The double
complex is concentrated in columns −1 and 0, and has commuting
differentials.)
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Definition 2.5. Given a diagram of chain complexes N we define its
hypercohomology complex H(N) by setting H(N) = TotH(N), the to-
talisation of H(N).

The totalisation is the usual one: H(N)n = N−n ⊕ N+
n ⊕ Nn+1, with

differential induced by −g−, g+, the differentials of N− and N+, and
the negative of the differential of N . Up to shift and sign conventions
H(N) is the mapping cone of the map −g− + g+.

Proposition 2.6. Let R∗[t, t−1] be a Z-graded ring, and let q, p ∈ Z.

(1) For p + q ≥ 0, the complex H
(
O(q, p)

)
is homotopy equivalent

to the chain complex having
⊕q

k=−pRk in chain level 0 as its
only non-trivial chain module.

(2) For p+ q = −1, the complex H
(
O(q, p)

)
is contractible.

(3) For p+q ≤ −2, the complex H
(
O(q, p)

)
is homotopy equivalent

to the chain complex having
⊕−p−1

k=q+1Rk in chain level −1 as its
only non-trivial chain module.

Proof. We consider the case p + q ≥ 0 only, the others being similar
(and quite irrelevant for our purposes). It is enough to show that the
R0-module sequence

0 -
q⊕

k=−p
Rk

∆-�
ρ

tq ·R∗[t−1]⊕ t−p ·R∗[t]
−ιq+pι-�

σ

R∗[t, t
−1] - 0

is split exact, where ιq and pι denote the inclusions, and where ∆ is the
“diagonal” map r 7→ (r, r); the splitting maps ρ and σ will be defined
presently. — The sequence can be re-written in more explicit terms:

0 -
q⊕

k=−p
Rk

∆-
⊕

k≤q
Rk ⊕

⊕

k≥−p
Rk

−ιq+pι-
⊕

k∈Z
Rk

- 0

The composition (−ιq + pι) ◦∆ is trivial. We define σ by the formula

σ :
⊕

k∈Z
Rk

-
⊕

k≤q
Rk ⊕

⊕

k≥−p
Rk ,

∑

k∈Z
rk 7→

(
−
∑

k≤q
rk,

∑

k≥q+1

rk

)

(note that p+ q ≥ 0 implies q + 1 > −p) and ρ by

ρ :
⊕

k≤q
Rk ⊕

⊕

k≥−p
Rk

-
q⊕

k=−p
Rk ,

(∑

k≤q
rk,

∑

`≥−p
s`

)
7→

q∑

`=−p
s` .
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They satisfy the identities

ρ ◦∆ = id ,

σ ◦ (−ιq + pι) + ∆ ◦ ρ = id ,

(−ιq + pι) ◦ σ = id ,

as can be verified by direct calculation; thus the sequence is split exact
as required. �
Corollary 2.7. If R∗[t, t−1] is strongly graded then the cohomology
chain complex H

(
O(q, p)

)
is R0-finitely dominated.

Proof. By Proposition 2.6, H
(
O(q, p)

)
is homotopy equivalent to a

chain complex with at most one non-zero entry consisting of a finite
sum of homogeneous components Rk of R∗[t, t−1]. Since the Rk are
all finitely generated projective right R0-modules by Proposition 1.6,
H
(
O(q, p)

)
is R0-finitely dominated. �

Building chain complexes of pre-sheaves from chain complexes
of modules. Thanks to the graded structure of our ring R∗[t, t−1] one
can extend a given chain complex of R∗[t, t−1]-modules to a complex of
pre-sheaves. We start with the case of a single module homomorphism.

Lemma 2.8. Let q, p ∈ Z, and let f : R∗[t, t−1]n - R∗[t, t−1]m be an
R∗[t, t−1]-linear map. For all sufficiently large numbers p′, q′ ∈ Z there
exists a map of pre-sheaves

(f−, f, f+) :
n⊕

k=1

O(q, p) -
m⊕

k=1

O(q′, p′) ,

depending on q′ and p′, which has the given f as its middle component.
In other words, the module homomorphism f can be extended to a map
of pre-sheaves.

Proof. Consider the following diagram, where q′ and p′ are, for the
moment, unspecified integers:

n⊕

k=1

tq ·R∗[t−1]
ιq -

n⊕

k=1

R∗[t, t
−1] �

pι
n⊕

k=1

t−p ·R∗[t]

m⊕

k=1

tq
′ ·R∗[t−1]

ιq′-
m⊕

k=1

R∗[t, t
−1]

f
?

� p′ι
m⊕

k=1

t−p
′ ·R∗[t]

The map f yields R∗[t, t−1]-linear maps kfj : R∗[t, t−1] - R∗[t, t−1]
by restriction to the kth summand of the source and the jth summand
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of the target, and the (finite) collection of these maps determines f .
— For now fix indices j and k. The element kfj(1) ∈ R∗[t, t−1] is a
finite sum of non-zero homogeneous elements. Let −a be the minimal
occurring degree if kfj(1) 6= 0, and an arbitrary integer otherwise. As

kfj(r) = kfj(1) · r, the image of t−p · R∗[t] under kfj is contained in
t−(p+a) · R∗[t] ⊆ R∗[t, t−1], hence is contained in t−p

′ · R∗[t] provided p′

is sufficiently large in the sense that p′ ≥ a+ p. — Allowing arbitrary
indices j and k now, we may choose p′ sufficiently large for all j and k.
Then the map f ◦ pι factors as

n⊕

k=1

t−p ·R∗[t] f+-
m⊕

k=1

t−p
′ ·R∗[t] p′ ι-

m⊕

k=1

R∗[t, t
−1]

where f+ is actually the map f , suitably restricted in source and target.
— The component f− is dealt with in a similar manner. �

Proposition 2.9 (Extending chain complexes of modules to chain
complexes of pre-sheaves). Let C be a bounded above chain complex
of finitely generated free R∗[t, t−1]-modules together with specified iso-
morphisms Cn ∼= R∗[t, t−1]kn. Then C is the “middle” component of
a chain complex of pre-sheaves. More precisely, there exists a chain
complex of pre-sheaves D =

(
D− - D � D+

)
such that

Dn =
⊕

kn

O(qn, pn)

for certain qn, pn ∈ Z with qn + pn ≥ 0, with D ∼= C via the specified
isomorphisms.

In case R∗[t, t−1] is strongly graded, D is a chain complex of sheaves
in the sense of Definition 2.2, with D± consisting of finitely generated
projective R∗[t±]-modules.

Proof. We identify the chain modules Cn with direct sums R∗[t, t−1]kn

via the given isomorphisms. The boundary maps then take the form
of homomorphisms dn : R∗[t, t−1]kn - R∗[t, t−1]kn−1 .

Let m be the maximal index of a non-zero entry of C. Choose
qm = pm = 0.

Now for ` = m,m − 1,m − 2, · · · we use Lemma 2.8 to extend the
boundary map d` to a map of pre-sheaves

D` =
⊕

k`

O(q`, p`)
(d−` ,d`,d

+
` )-

⊕

k`−1

O(q`−1, p`−1) = D`−1

with q`−1 + p`−1 ≥ 0.
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We have defined a (possibly infinite) sequence of maps of pre-sheaves
(d−` , d`, d

+
` ). These maps are actually boundary maps of a chain com-

plex of pre-sheaves. Indeed, d`−1 ◦ d` = 0 easily implies d+
`−1 ◦ d+

` = 0
and d−`−1 ◦ d−` = 0 as the structure maps of the diagrams O(q`, p`) are
injective.

The last sentence of the Proposition holds as the pre-sheaves O(q, p)
are actually sheaves by Lemma 1.8, consisting of projective modules
by Lemma 1.9, if R∗[t, t−1] is strongly graded. �

From trivial Novikov homology to finite domination. With
the machinery of sheaves set up we can implement the programme
of [Hüt15] to prove that trivial Novikov homology implies finite dom-
ination. The strong grading proves to be crucial in two places. It is the
very fact that twisting sheaves are sheaves (and not just pre-sheaves),
combined with finiteness of their cohomology, that makes the proof
work.

Notation 2.10. Given a chain complex D = (D− - D � D+)
of pre-sheaves let D+ denote the diagram of chain complexes

D+ ⊗
R∗[t]

R∗[t, t
−1] - D+ ⊗

R∗[t]
R∗((t)) � D+ ⊗

R∗[t]
R∗[[t]] ;

similarly, let D− denote the diagram

D− ⊗
R∗[t−1]

R∗[t, t
−1] - D− ⊗

R∗[t−1]
R∗((t

−1)) � D− ⊗
R∗[t−1]

R∗[[t
−1]] .

In addition, we introduce the variants

D′+ =
(
D+ ⊗

R∗[t]
R∗[t, t

−1] - 0 � D+ ⊗
R∗[t]

R∗[[t]]
)

and

D′− =
(
D− ⊗

R∗[t−1]
R∗[t, t

−1] - 0 � D− ⊗
R∗[t−1]

R∗[[t
−1]]
)
,

and write ζ± : D± - D′± for the obvious maps of diagrams:

D± ⊗
R∗[t±1]

R∗[t, t
−1] - D± ⊗

R∗[t±1]
R∗((t

±1)) � D± ⊗
R∗[t±1]

R∗[[t
±1]]

D± ⊗
R∗[t±1]

R∗[t, t
−1]

id

?
- 0

0

?
� D± ⊗

R∗[t±1]
R∗[[t

±1]]

id

?

(2.11)
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We wish to analyse the hypercohomology complexes of D±. To begin
with, the sequence

0 - R∗[t]
∆- R∗[t, t

−1]⊕R∗[[t]] ρ - R∗((t)) - 0 , (2.12)

where ∆(r) = (r, r) and ρ(r, s) = s− r, is split exact as a sequence of
right R0-modules, with splitting maps

R∗[t] �
κ

R∗[t, t
−1]⊕R∗[[t]] �λ

R∗((t))

specified by the formulæ

κ :
(∑

k∈Z
rk,
∑

k≥0

sk

)
7→
∑

k≥0

rk ,

λ :
∑

k≥n
rk 7→

(
−
∑

k<0

rk,
∑

k≥0

rk

)
.

Therefore the sequence (2.12) is exact (but not split) as a sequence
of R∗[t]-bimodules. If the complex D+ consists of projective R∗[t]-
modules, tensoring (2.12) results in an exact sequence of right R∗[t]-
module chain complexes

0 - D+ ⊗
R∗[t]

R∗[t] - D+ ⊗
R∗[t]

R∗[t, t
−1] ⊕ D+ ⊗

R∗[t]
R∗[[t]]

- D+ ⊗
R∗[t]

R∗((t)) - 0 .

This means that H0(D+) = D+⊗R∗[t] R∗[t] ∼= D+ and H1(D+) =
0 (levelwise application of H0 and H1). The latter implies that the
natural map ∆+ : H0(D+) - H(D+) is a quasi-isomorphism [Hüt15,
Lemma 4.2]. — It can be shown by analogous arguments that the
natural map ∆− : H0(D−) - H(D−) is a quasi-isomorphism, with
source D−⊗R∗[t−1] R∗[t

−1] ∼= D−, provided D− consists of projective
modules. We have shown:

Lemma 2.13. If D+ consists of projective R∗[t]-modules the map

∆+ : H0(D+) - H(D+)

is a quasi-isomorphism. Similarly, if D− consists of projective R∗[t−1]-
modules the map ∆− : H0(D−) - H(D−) is a quasi-isomorphism.

�
Now let us start with a bounded chain complex C of finitely gener-

ated freeR∗[t, t−1]-modules. For each chain module Cn 6= {0} we choose
an isomorphism with R∗[t, t−1]kn . Let D =

(
D− - D � D+

)
de-

note the resulting complex of pre-sheaves according to Proposition 2.9,
and let D± and D′± be the diagrams defined at the beginning of this
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section.— The structure map D � D+ has an R∗[t, t−1]-linear ad-
joint, D � D+⊗R∗[t] R∗[t, t−1], which induces a map of diagrams

D+ -
(

0 - 0 � D
)

;

upon application of H this yields a map π+ : H(D+) - D. We have
similarly a map π− : H(D−) - D, and analogous maps using D′±

denoted π′±. All these fit into the commutative diagram displayed in
Fig. 2.

D− - D � D+

H(D−)

∆−

? π− - D

id

?
� π+

H(D+)

∆+

?

H(D′−)

H(ζ−)

? π′− - D

id

?
� π′+

H(D′+)

H(ζ+)

?

(2.14)

Figure 2. Commutative diagram

Lemma 2.15. If R∗[t, t−1] is strongly graded, and if the two complexes
C ⊗R∗[t,t−1] R∗((t)) and C ⊗R∗[t,t−1] R∗((t

−1)) have trivial homology, then
the maps H(ζ−) and H(ζ+) are quasi-isomorphisms.

Proof. There is a chain of isomorphisms

D± ⊗
R∗[t±1]

R∗((t
±1)) ∼= D± ⊗

R∗[t±1]
R∗[t, t

−1] ⊗
R∗[t,t−1]

R∗((t
±1))

∼= D ⊗
R∗[t,t−1]

R∗((t
±1)) ∼= C ⊗

R∗[t,t−1]
R∗((t

±1)) ,

the second one due to the fact that D is a sheaf in the strongly graded
setting. By hypothesis the last complex is acyclic. This means that
all vertical maps in the diagram (2.11) are quasi-isomorphisms, that is,
ζ± consists of quasi-isomorphisms. Hence application of H results in a
quasi-isomorphism H(ζ±) by [Hüt15, Lemma 4.2]. �

Recall that, by construction, Dn is a finite direct sum of diagrams
of the form O(q, p), with q + p ≥ 0. It follows from the calculation
in Proposition 2.6 that H1(D) = 0 (levelwise) so that the inclusion
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H0(D) - H(D) is a quasi-isomorphism [Hüt15, Lemma 4.2]. With
Proposition 1.6 this yields the following result:

Lemma 2.16. The bounded chain complex H0(D) is quasi-isomorphic
to the complex H(D). If R∗[t, t−1] is strongly graded, H0(D) consists
of finitely generated projective R0-modules. �
Proof of Theorem 1.3, “if” part. As before we start with a bounded
chain complex C of finitely generated free R∗[t, t−1]-modules, and con-
struct a complex of sheaves D =

(
D− - D � D+

)
according

to Proposition 2.9, with D ∼= C. We will also use the diagrams D±

and D′± as defined at the beginning of this section.
Our hypothesis now is that R∗[t, t−1] is strongly graded. In this sit-

uation all the vertical maps in diagram (2.14) are quasi-isomorphisms,
by Lemmas 2.13 and 2.15. So by applying H to the rows of the diagram
we obtain a chain of maps

H0(D)
'- H(D)

'- H
(
H(D′−)

π′−- D �
π′+ H(D′+)

)
; (2.17)

the first one is a quasi-isomorphism by Lemma 2.16, the second because
the functor H preserves quasi-isomorphisms [Hüt15, Lemma 4.2].

By explicitly spelling out the definitions, we see that the chain com-

plex H
(
H(D′−)

π′−- D �
π′+ H(D′+)

)
contains the complex

H
(
D− ⊗

R∗[t−1]
R∗[t, t

−1] - D � D+ ⊗
R∗[t]

R∗[t, t
−1]
)

as a retract. But the diagram D is a sheaf, making use of the strong
grading again, so the maps D±⊗R∗[t±1] R∗[t, t

−1] - D are isomor-
phisms. It follows that the previous chain complex is isomorphic to

H
(
D

=- D �
=

D
)
, and thus quasi-isomorphic to D ∼= C.

Combined with (2.17), we thus see that in the derived category of R0

the complex C is a retract of H0(D). Both are bounded complexes
of R0-projective modules, the former by Corollary 1.7, the latter by
Lemma 2.16. It follows from general theory of derived categories that
there are chain maps α : C - H0(D) and β : H0(D) - C with
βα ' id. AsH0(D) consists of finitely generated projective R0-modules
(Lemma 2.16 again), this proves that C is R0-finitely dominated as
desired. �

3. Finite domination implies trivial Novikov homology

From now on, and for the remainder of the paper, we suppose that

the Z-graded ring R∗[t, t−1] admits a partition of unity 1 =
∑

j x
(−1)
j y

(1)
j

of type (−1, 1), which we choose once and for all.
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Canonical resolution and algebraic tori. For a given R∗[t, t−1]-
module C, or a given chain complex C of such modules, we use the
chosen partition of unity to define an R∗[t, t−1]-linear map

µ : C ⊗
R0

R∗[t, t
−1] - C ⊗

R0

R∗[t, t
−1] ,

c⊗ r 7→ c⊗ r −
∑

j

cx
(−1)
j ⊗ y(1)

j r . (3.1)

Note that for any s ∈ R0 and any partition of unity 1 =
∑

` u`v` of
type (−1, 1) there are equalities
∑

j

cx
(−1)
j ⊗ y(1)

j sr =
∑

j,`

cx
(−1)
j ⊗ y(1)

j su`v`r

=
∑

`,j

cx
(−1)
j y

(1)
j su`⊗ v`r =

∑

`

csu`⊗ v`r .

Specialising to u` = x
(−1)
` and v` = y

(1)
` yields that the map µ is

R0-balanced, and hence well-defined. On the other hand, specialising
to s = 1 shows that, contrary to appearance, the map µ does actually
not depend on the choice of partition of unity. — It might be worth
pointing out that the map µ cannot be defined in the absence of addi-
tional data; the strongly graded structure of the ring enters the picture
in a rather subtle form here.

Proposition 3.2 (Canonical resolution). For any R∗[t, t−1]-module M
there is a sequence of R∗[t, t−1]-modules

0 - M ⊗
R0

R∗[t, t
−1]

µ- M ⊗
R0

R∗[t, t
−1]

π- M - 0 , (3.3)

where π(m⊗ r) = mr and µ is as in (3.1). The sequence is natural
in M . If R∗[t, t−1] is strongly graded then the sequence is split exact
as a sequence of right R0-modules, and hence is exact (but possibly
non-split) as a sequence of right R∗[t, t−1]-modules.

Proof. We first note that πµ = 0 as

πµ(m⊗ r) = π
(
m⊗ r −

∑

j

mx
(−1)
j ⊗ y(1)

j r
)

= mr −
∑

j

mx
(−1)
j y

(1)
j r = mr −m1r = 0 .

Let us now suppose that R∗[t, t−1] is strongly graded. In addition to

our fixed partition of unity 1 =
∑

`−1
x

(−1)
`−1

y
(1)
`−1

we choose for all k ∈ Z,

k 6= 1, a partition of unity 1 =
∑

`−k
x

(−k)
`−k

y
(k)
`−k

of type (−k, k); as before
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this is understood to be a finite sum with x
(−k)
`−k
∈ R−k and y

(k)
`−k
∈ Rk.

Such partitions of unity exist by Proposition 1.5.
We denote by ι the right R0-linear map

ι : M - M ⊗
R0

R∗[t, t
−1] , m 7→ m⊗ 1 ;

clearly πι = idM . Next, we define an R0-linear map

τ : M ⊗
R0

R∗[t, t
−1] - M ⊗

R0

R∗[t, t
−1] ;

as M ⊗R0 R∗[t, t
−1] ∼=

⊕
n∈ZM ⊗R0 Rn as a right R0-module it will be

enough to specify the restrictions τn = τ |M ⊗Rn . For m ∈ M and
rn ∈ Rn these are given by

τn(m⊗ rn) =





−∑n
k=1

∑
`k

(
mx

(k)
`k
⊗ y(−k)

`k
rn
)

if n > 0 ,

0 if n = 0 ,∑−n−1
k=0

∑
j−k

(
mx

(−k)
j−k
⊗ y(k)

j−k
rn
)

if n < 0 .

The map τ satisfies τµ = id; we will verify τµ(m⊗ rn) = m⊗ rn for
n ≥ 1, the case n ≤ 0 being similar. So let m ∈ M and rn ∈ Rn, for
some n ≥ 1. Then

τµ(m⊗ rn) = τ
(
m⊗ rn −

∑

j

mx
(−1)
j ⊗ y(1)

j rn

)

= τ(m⊗ rn)− τ
(∑

j

mx
(−1)
j ⊗ y(1)

j rn

)

= τn(m⊗ rn)− τn+1

(∑

j

mx
(−1)
j ⊗ y(1)

j rn

)
.

Now by definition

τn(m⊗ rn) = −
n∑

k=1

∑

`k

(
mx

(k)
`k
⊗ y(−k)

`k
rn
)

while

τn+1

(∑

j

mx
(−1)
j ⊗ y(1)

j rn

)
= −

n+1∑

k=1

(∑

`k

∑

j

mx
(−1)
j x

(k)
`k
⊗ y(−k)

`k
y

(1)
j rn

)
.



FINITE DOMINATION OVER STRONGLY Z-GRADED RINGS 17

The last term in parentheses, for any fixed k, can be simplified:
∑

`k

∑

j

mx
(−1)
j x

(k)
`k
⊗ y(−k)

`k
y

(1)
j rn

=
(‡)

∑

`k

∑

j

mx
(−1)
j x

(k)
`k
⊗ y(−k)

`k
y

(1)
j ·

(∑

`k−1

x
(k−1)
`k−1

y
(−k+1)
`k−1

)
· rn

=
∑

`k−1

∑

`k

∑

j

mx
(−1)
j x

(k)
`k
⊗ y(−k)

`k
y

(1)
j x

(k−1)
`k−1

y
(−k+1)
`k−1

rn

=
(†)

∑

`k−1

∑

`k

∑

j

mx
(−1)
j x

(k)
`k
y

(−k)
`k

y
(1)
j x

(k−1)
`k−1

⊗ y(−k+1)
`k−1

rn

=
(‡)

∑

`k−1

mx
(k−1)
`k−1

⊗ y(−k+1)
`k−1

rn

where at (†) we have used that y
(−k)
`k

y
(1)
j x

(k−1)
`k−1

∈ R0, and at (‡) we have

used that
∑

`k
x

(k)
`k
y

(−k)
`k

=
∑

`k−1
x

(k−1)
`k−1

y
(−k+1)
`k−1

=
∑

j x
(−1)
j y

(1)
j = 1. It

follows together with the previous expressions that τµ(m⊗ rn) equals

−
n∑

k=1

∑

`k

(
mx

(k)
`k
⊗ y(−k)

`k
rn
)

+
n+1∑

k=1

∑

`k−1

(
mx

(k−1)
`k−1

⊗ y(−k+1)
`k−1

rn
)

=
∑

`0

mx
(0)
`0
⊗ y(0)

`0
rn = m⊗ rn .

To show that our sequence (3.3) is split exact when considered as
a sequence of R0-modules it remains only to prove that µτ + ιπ =
idM ⊗R∗[t,t−1]. The calculation is similar to the one just finished, making
use of existence of partitions of unity in exactly the same manner. We
omit the details. �

Corollary 3.4. For any chain complex C of R∗[t, t−1]-modules there

is a quasi-isomorphism cone(µ)
∼- C.

Proof. By the previous Proposition there is a short exact sequence of
chain complexes

0 - C ⊗
R0

R∗[t, t
−1]

µ- C ⊗
R0

R∗[t, t
−1]

π- C - 0 .

Thus the canonical map cone(µ) - C is a quasi-isomorphism. �

Definition 3.5. The mapping cone of µ in the previous Corollary is
called the algebraic torus of C and denoted T(C).
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The Mather trick for the algebraic torus. Let C be an R∗[t, t−1]-
module chain complex, and let D be an R0-module chain complex. Let
α : C - D and β : D - C be R0-linear chain maps and H a chain
homotopy such that H : βα ' idC ; that is, dH +Hd = idC −βα where
d is the differential of C. Define

ν : D ⊗
R0

R∗[t, t
−1] - D ⊗

R0

R∗[t, t
−1] (3.6)

by the formula ν = (α⊗ id) ◦ µ ◦ (β⊗ id). Then the diagram

C ⊗
R0

R∗[t, t
−1]

µ - C ⊗
R0

R∗[t, t
−1]

D ⊗
R0

R∗[t, t
−1]

α⊗ id

? ν - D ⊗
R0

R∗[t, t
−1]

α⊗ id

?

is homotopy commutative with homotopy

J = (α⊗ id) ◦ µ ◦ (H ⊗ id) : ν ◦ (α⊗ id) ' (α⊗ id) ◦ µ .
This homotopy induces a preferred map of R∗[t, t−1]-module chain com-
plexes

α∗ =

(
α⊗ id 0
J α⊗ id

)
: T(C) = cone(µ) - cone(ν) .

If α is a quasi-isomorphism and R∗[t, t−1] is strongly graded then α⊗ id
is a quasi-isomorphism as well; indeed, the functor · ⊗R0 R∗[t, t

−1] is
exact in the strongly graded case by Proposition 1.6. We obtain the fol-
lowing result analogous to the Mather trick in the topological context
[Ran95, “Whitehead Lemma”, §2]:

Lemma 3.7 (Mather trick). Let C be an R∗[t, t−1]-module chain
complex, and let D an R0-module chain complex. Let α : C - D and
β : D - C be R0-linear chain maps such that βα ' idC via a specified
homotopy. Then there is a preferred map α∗ : T(C) - cone(ν). If
in addition α is a quasi-isomorphism and R∗[t, t−1] is strongly graded,
α∗ : T(C) - cone(ν) is a quasi-isomorphism. �
Corollary 3.8. Suppose R∗[t, t−1] is strongly graded. Given a bounded
below chain complex C of projective R∗[t, t−1]-modules, a bounded be-
low chain complex D of projective R0-modules, and an R0-homotopy

equivalence α : C
'- D, there is a homotopy equivalence

C ⊗
R∗[t,t−1]

R∗((t
±1)) ' cone(ν) ⊗

R∗[t,t−1]
R∗((t

±1)) .
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Proof. From the previous Lemma and Corollary 3.4 we know that

there are quasi-isomorphisms C � T(C)
α∗- cone(ν). As both

C and cone(ν) are bounded below and consist of projective R∗[t, t−1]-
modules, these two complexes are actually homotopy equivalent. As
taking tensor products preserves homotopy equivalences we have proven
the claim. �

Bicomplexes and truncated powers. We extend our portfolio of
homological techniques further by re-writing the complex cone(ν) as
the totalisation of a bicomplex, and by introducing twisted truncated
powers.

Let C be an R∗[t, t−1]-module chain complex, and let D an R0-
module chain complex. Let α : C - D and β : D - C be R0-
linear chain maps. Define ν = (α⊗ id) ◦ µ ◦ (β⊗ id) as in (3.6). Let
ζn,m denote the R0-linear map

Dm ⊗
R0

Rn
- Dm ⊗

R0

Rn+1 , z⊗ r 7→
∑

j

α
(
β(z)x

(−1)
j

)
⊗ y(1)

j r ,

and let E•,• denote the bicomplex of right R0-modules given by

En,m =
(
Dn+m−1 ⊗

R0

R−n
)
⊕
(
Dn+m ⊗

R0

R−n
)

(3.9)

with differentials

dH =

(
0 0

ζ−n,n+m 0

)
: En,m - En−1,m

and

dV =

(
−d⊗ id 0
αβ⊗ id d⊗ id

)
: En,m - En,m−1 (3.10)

where d is the differential of the chain complex D.
The totalisation Tot(E•,•) is the chain complex with Tot(E•,•)` =⊕
n+m=`En,m and differential dH + dV . More explicitly, we have an

identification

Tot(E•,•)` =
⊕

n∈Z
E−n,`+n =

⊕

n∈Z

((
D`−1 ⊗

R0

Rn

))
⊕
(
D` ⊗

R0

Rn

)

=
(
D`−1 ⊗

R0

R∗[t, t
−1]
)
⊕
(
D` ⊗

R0

R∗[t, t
−1]
)
,

under which the differential d = dH +dV coincides with the differential
of cone(ν). A straightforward calculation then shows that dH and dV
are anti-commuting differentials. We summarise the construction:
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Lemma 3.11. The data listed above yields a bicomplex in the sense
that dH ◦ dH = 0, dH ◦ dV = −dV ◦ dH and dV ◦ dV = 0. Its totalisa-
tion Tot(E•,•) is isomorphic to cone(ν). �

We wish to analyse the tensor product cone(ν)⊗R∗[t,t−1] R∗((t)) using
the bicomplex above. For this, we need to digress a little and talk about
truncated powers, or rather a “twisted” version thereof that takes the
graded structure of the ring into account.

Definition 3.12. Given a right R0-module M , we define the twisted

left truncated power of M , denoted
lt∏

˜
M , by

lt∏

˜
M =

⊕

n<0

(
M ⊗

R0

Rn

)
⊕
∏

n≥0

(
M ⊗

R0

Rn

)
,

and the twisted right truncated power of M , denoted
∏

˜

rt
M , by

∏

˜

rt
M =

∏

n≤0

(
M ⊗

R0

Rn

)
⊕
⊕

n>0

(
M ⊗

R0

Rn

)
.

We note that
lt∏

˜
M has a right R∗((t))-module structure; if we write

elements of
lt∏

˜
M as formal Laurent series

∑
n≥m xt

n with xn ∈

M ⊗R0 Rn and elements of R∗((t)) as formal Laurent series
∑

n≥p rnt
n

with rn ∈ Rn, it is given by the obvious multiplication of series formula
using xkrn ∈M ⊗R0 Rk+n via the assignment (m⊗ sk)·rn = m⊗(skrn).

— Similarly,
∏

˜

rt
M carries a natural right R∗((t−1))-module structure.

Proposition 3.13. For a finitely presented R0-module M , there is an
isomorphism of right R∗((t))-modules

ΦM : M ⊗
R0

R∗((t)) -
lt∏

˜
M , m⊗

∑

k

rkt
k 7→

∑

k

(m⊗ rk)tk

and an isomorphism of right R∗((t−1))-modules

ΨM : M ⊗
R0

R∗((t
−1)) -

∏

˜

rt
M , m⊗

∑

k

rkt
k 7→

∑

k

(m⊗ rk)tk .

Both isomorphisms are natural in M .
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Proof. We show that ΦM is bijective, the case of ΨM being similar.
— Suppose first that M = F is free on the basis e1, e2, · · · , eq. Then
F ⊗R0 R∗((t)) is a free R∗((t))-module with e1⊗ 1, e2⊗ 1, · · · , eq⊗ 1 as
basis. Thus any x ∈ F ⊗R0 R∗((t)) can uniquely be written in the form

x =

q∑

j=1

(
ej ⊗

∑

k

rjkt
k
)

with rjk ∈ Rk, and rjk = 0 if k is sufficiently small. Suppose that
x ∈ ker ΦF so that

0 = ΦF (x) =

q∑

j=1

∑

k

(ej ⊗ rjk)tk =
∑

k

q∑

j=1

(ej ⊗ rjk)tk

in the twisted left truncated power of F . This implies the equality∑q
j=1 ej ⊗ rjk = 0 ∈ F ⊗R0 Rk ⊆ F ⊗R0 R∗[t, t

−1] for all k; as the last
module is free on basis elements ej ⊗ 1 we conclude that rjk = 0 for
all k and j. Consequently x = 0 which proves that ΦF is injective.

Now let z =
∑

k≥n zkt
k ∈

lt∏

˜
F with zk ∈ F ⊗R0 Rk; using that

F is free on basis elements ej as before we see that we can write zk in
the form zk =

∑
j ej ⊗ zjk with zjk ∈ Rk. Then

x =
∑

j

(
ej ⊗

∑

k

zjkt
k
)

is an element of F ⊗R0 R∗((t)) satisfying ΦF (x) = z. Thus ΦF is seen
to be surjective.

For the general case consider a presentation G - F - M - 0
of M by finitely generated free modules F and G; standard homological

algebra, using that the functors X 7→ X ⊗R0 R∗((t)) and X 7→
lt∏

˜
X

are right exact, shows that ΦM is bijective, cf. [Hüt11, Lemma 2.1]. �

The right truncated totalisation of E•,•, denoted Totrt (E•,•), is the
chain complex with

Totrt (E•,•)` =
∏

n≤0

En,`−n ⊕
⊕

n≥0

En,`−n
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and differential dH + dV . Plugging in the definition of En,m this can be
re-written as

Totrt (E•,•)` =
∏

n≤0

((
D`−1 ⊗

R0

R−n
)
⊕
(
D` ⊗

R0

R−n
))

⊕
⊕

n>0

((
D`−1 ⊗

R0

R−n
)
⊕
(
D` ⊗

R0

R−n
))

=
lt∏

˜
D`−1 ⊕

lt∏

˜
D` ;

if the complex D consists of finitely presented R0-modules we can
thus use Proposition 3.13 to identify Totrt (E•,•)` with the module(
D`−1⊗R0 R∗((t))

)
⊕
(
D`⊗R0 R∗((t))

)
. When combined with the iso-

morphisms cone(ν)⊗R∗[t,t−1] R∗((t)) ∼= cone(ν⊗ idR∗((t))) and

D` ⊗
R0

R∗[t, t
−1] ⊗

R∗[t,t−1]
R∗((t)) ∼= D` ⊗

R0

R∗((t)) ,

a straightforward calculation with the differentials dH and dV yields:

Proposition 3.14. If D consists of finitely presented R0-modules, there
is an isomorphism of R∗((t))-module chain complexes Totrt (E•,•) ∼=
cone(ν)⊗R∗[t,t−1] R∗((t)). �

From finite domination to trivial Novikov homology. We are
finally in a position to finish the proof of our main result.

Proof of Theorem 1.3, “only if” part. Suppose that the ring R∗[t, t−1]
is strongly graded. Let C be a bounded complex of finitely gener-
ated free R∗[t, t−1]-modules; suppose that C is R0-finitely dominated.
Then there is a bounded complex D of finitely generated projective
R0-modules together with a homotopy equivalence α : C - D of R0-
module complexes. Let β be a homotopy inverse of α. According to
Corollary 3.8 this data can be used to manufacture a homotopy equiv-
alence C ⊗R∗[t,t−1] R∗((t)) ' cone(ν)⊗R∗[t,t−1] R∗((t)), where ν is a chain
complex self-map of D⊗R0 R∗[t, t

−1] as in (3.6). We can use Proposi-
tion 3.14 to identify cone(ν)⊗R∗[t,t−1] R∗((t)) with Totrt (E•,•), the right
truncated totalisation of the double complex defined in (3.9), as D con-
sists of finitely presented R0-modules. The vertical differential of this
complex, defined in (3.10), is the mapping cone of αβ⊗ id. As αβ ' id
this means that the columns of E•,• are acyclic, hence Totrt (E•,•) is
acyclic [Hüt11, Proposition 1.2]. This shows that C ⊗R∗[t,t−1] R∗((t)),
being homotopy equivalent to an acyclic complex, has trivial homol-
ogy.



FINITE DOMINATION OVER STRONGLY Z-GRADED RINGS 23

To prove that C ⊗R∗[t,t−1] R∗((t
−1)) has trivial homology too we can-

not simply swap the roles of “left” and “right” as we did not analyse
whether the rows of E•,• are acyclic. Instead, we can quote what we
proved so far, applied to the strongly Z-graded ring R̄∗[t, t−1] with nth
homogeneous component R−n (which as a ring, neglecting the grading,
coincides withR∗[t, t−1]). We then conclude that C ⊗R∗[t,t−1] R∗((t

−1)) =
C ⊗R̄∗[t,t−1] R̄∗((t)) has trivial homology as required. �
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