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During the formation and evolution of the Solar System, significant numbers of cometary

and asteroidal bodies were ejected into interstellar space1, 2. It can be reasonably expected

that the same happened for planetary systems other than our own. Detection of such Inter-

stellar Objects (ISOs) would allow us to probe the planetesimal formation processes around

other stars, possibly together with the effects of long-term exposure to the interstellar medium.
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1I/2017 U1 ‘Oumuamua is the first known ISO, discovered by the Pan-STARRS1 telescope in

October 20173.The discovery epoch photometry implies a highly elongated body with radii

of ∼ 200 × 20 m when a comet-like geometric albedo of 0.04 is assumed. Here we report

spectroscopic characterisation of ‘Oumuamua, finding it to be variable with time but similar

to organically rich surfaces found in the outer Solar System. The observable ISO population

is expected to be dominated by comet-like bodies in agreement with our spectra, yet the re-

ported inactivity implies a lack of surface ice. We show this is consistent with predictions of

an insulating mantle produced by long-term cosmic ray exposure4. An internal icy compo-

sition cannot therefore be ruled out by the lack of activity, even though ‘Oumuamua passed

within 0.25 au of the Sun.

Following the announcement of the discovery, we performed spectroscopic observations at

two facilities. The 4.2m William Herschel Telescope (WHT) on La Palma was used with the

ACAM auxillary port imager and spectrograph on 25 October 21:45 UT – 22:03 UT. An initial

analysis of this spectrum revealed an optically red body5. Spectra were also obtained using the

X-shooter spectrograph on the European Southern Observatory 8.2m Very Large Telescope (VLT)

on 27 October 00:21 UT – 00:53 UT, covering 0.3 µm–2.5 µm. Observation circumstances are

given in Table 1, and the resulting binned reflectance spectra at optical wavelengths are shown in

Figure 1.

Active comets possess strong molecular emission bands via electronic transitions within the

vibrational ground state due to fluorescence of CN at 0.38 µm and C2 at 0.52 µm 6. Although our
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spectra are noisy, no such emission is seen, in concordance with imaging reports of an apparently

inert body 3, 7–9. Asteroid spectra can show significant solid-state absorption features in this region

depending on their mineralogy, notably a wide shallow absorption centred at ∼ 0.7 µm due to

phyllosilicates (aqueously altered silicates)10. Mafic minerals seen in asteroids (typically pyroxines

and olivines) exhibit an absorption band starting at∼ 0.75 µm and centred at≥ 0.95 µm 11. Again

no such diagnostic features are observed.

Over the range 0.4µm ≤ λ ≤ 0.9µm the reflectance gradients are 17.0 ± 2.3%/100 nm

(one standard deviation) and 9.3 ± 0.6%/100 nm for the ACAM and X-shooter data respectively.

Additional measurements of the spectral slope have been reported from Palomar Observatory as

30 ± 15%/100 nm over 0.52µm ≤ λ ≤ 0.95µm on Oct 25.3UT12, and 10 ± 6%/100 nm over

0.4µm ≤ λ ≤ 0.9µm on Oct 26.2UT9. The published photometric colours range from somewhat

neutral to moderately red3, 8, 13, 14. While most of these measurements are similar within their un-

certainties, the reported (g − r) = 0.47 ± 0.04 is relatively neutral8, while we have a significant

red slope in this region. Within our own data, our spectra differ in slope by > 3σ. This is due to

the ACAM spectrum being redder than the X-shooter spectrum at 0.7µm ≤ λ ≤ 0.9µm, with the

mean reflectance increasing to 42% and 21% relative to 0.55µm respectively.

The measured rotation period is likely in the 7–8 hour range based on photometry from

different observers7, 8, 13, 14. The most complete reported lightcurve is consistent with a rotation

period of 7.34 hours and an extremely elongated shape with axial ratio ∼10:1 and a 20% change

in minimum brightness, possibly due to hemispherically averaged albedo differences3. Using this
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rotation period, our spectra are separated by 0.66 in rotational phase and near opposing minima

in the lightcurve. This implies our spectra viewed different extrema of the body and supports the

existence of compositional differences across the surface. We note the Oct 25 Palomar spectrum

would have been obtained during lightcurve maximum, while the Oct 26 Palomar spectrum would

have been near the same rotational phase as our WHT spectrum. Alternate models of non-principal

axis rotation (tumbling) combined with a variation in surface composition can also account for the

reported colour changes 15. Comparable spectral slope variations with rotation have been detected

in ground-based data on a few S-type asteroids 16 and Trans-Neptunian Objects (TNOs)17, although

these objects are significantly larger than 1I/2017 U1 .

The X-shooter spectrum contained weak but measurable signal at 1.0 ≤ λ ≤ 1.8µm. Beyond

1.8 µm the sky background is much brighter than the object, we therefore excluded this spectral

region at longer wavelengths from further analysis. In Figure 2 we show the ACAM and X-shooter

spectra, binned to a spectral resolution of 0.02 µm at λ > 1 µm. Although the signal to noise

is low, it is apparent that the reflectance is relatively neutral in this spectral region; a weighted

least-squares fit gives a slope of −1.8 ± 5.3%/100 nm at these near-infrared wavelengths. There

is a suggestion of decreasing reflectance beyond 1.4 µm, but the uncertainties are large due to the

very weak flux from the object. There is no apparent strong absorption band due to water ice at 1.5

µm, as observed on some large TNOs. The only other reported near-IR data is J-band photometry

(1.15–1.33 µm) from Oct 30.3 UT8, where (r − J) = 1.20 corresponds to a slope of 3.6%/100nm.

Our spectrum gives a larger slope of 7.7± 1.3%/100nm over 0.63µm to 1.25µm. Again assuming

a rotation period of 7.34 hours would give a rotational phase difference of 0.4, indicating a small
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change in optical-infrared reflectance properties around the body.

Comparing our spectra with the reflectance spectra for different taxonomic classes of asteroid

in the main belt and Trojan clouds 18, the closest spectral analogues are L-type and D-type asteroids

(Figure 3). L-type asteroids are relatively rare in the asteroid belt, they exhibit a flattened or neutral

spectrum beyond 0.75 µm and sometimes exhibit weak silicate absorption bands, indicating a small

amount of silicates on their surfaces. These bands are not strong enough to be visible in our data.

D-type asteroids form the dominant populations in the outer asteroid belt and Jupiter Trojans.

Most D-type reflectance spectra exhibit red slopes out to at least ∼ 2 µm in disagreement with our

spectra, although some show a decrease in spectral slope at λ > 1 µm similar to 1I/2017 U1 19.

Looking at both Trojan asteroids and more distant bodies beyond 5 au we find a good match

in spectral morphology with 1I/2017 U1 as shown in Figure 3. The spectral slopes of cometary

nuclei tend to be red in the visible range but shallower in the near-IR 20. Some TNOs also exhibit

a red optical slope but a more neutral near-infrared reflectance21. We show a spectrum of the large

active Centaur (60558) Echeclus, whose optical slope falls between our ACAM and X-shooter

spectra, demonstrating similar behaviour of a red optical slope that decreases in the near-infrared.

The reddish optical spectra of D-type asteroids, cometary nuclei and TNOs are believed to be

a result of irradiated organic-rich surfaces. The spectra presented here would place 1I/2017 U1 in

the less-red class of dynamically excited TNOs22. Irradiation of carbon-rich ices produces refrac-

tory organic residues with a wide range of slopes depending on original composition but consistent

with the diversity of slopes observed in the outer Solar system 23. To produce such changes in the
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optically active upper micron of surface only requires exposure to the local interstellar medium of

< 107 years 24. Hence we conclude that the surface of 1I/2017 U1 is consistent with an originally

organic-rich surface that has undergone exposure to cosmic rays.

It was expected that discovered ISOs would be mostly icy objects due to both formation and

observational biases. Planet formation and migration can expel large numbers of minor bodies,

most of which would contain ices because they originated beyond the snow-line in their parent

systems and would be ejected by the giant planets that form quickly in the same region1. Addition-

ally, ISOs will have been produced from Oort Clouds via the loss mechanisms of stellar encounters

and galactic tides2. Our Oort cloud is expected to hold 200 to 10,000 times as many ‘cometary’

bodies than asteroidal objects25 and we assume that exo-planetary systems’ Oort clouds may form

and evolve in a broadly similar manner. Therefore both ISO production mechanisms should pro-

duce a population dominated by ice-rich bodies.

In terms of discovery, active comet nuclei are much easier to detect than asteroids of the same

diameter; their dust comae make them visible over much greater distances, and are more likely

to attract follow-up observations that would establish their ISO nature. Prior to the discovery

of 1I/2017 U1, ISO models suggested that the typical discovered asteroidal ISO would have a

perihelion distance of q < 2 au while the typical cometary ISO would have perihelia 2 to 3 times

larger, because they can be detected at greater distances26. Thus, the combination of the ISO

production process and strong observational bias towards detecting active cometary ISOs makes

the 1I/2017 U1 discovery particularly surprising. However its perihelion distance, eccentricity, and
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inclination are in excellent agreement with the predicted orbital elements of detectable asteroid-like

ISOs 26.

Given the spectral similarity with presumed ice-rich bodies in our Solar System, it might

be expected that 1I/2017 U1 would have been heated sufficiently during its close (q = 0.25 au)

perihelion passage to sublimate subsurface ices and produce cometary activity. However, it has

been shown that cosmic-ray irradiation of organic ices, plus heating by local supernovae, can

produce devolatilised carbon-rich mantles27. Estimates of the thickness of this mantle range from

∼ 0.1 m to ∼ 2 m4. Assuming that this object has such a mantle, we have modelled the thermal

pulse transmitted through the object during its encounter with our Sun, assuming a spin obliquity

of 0◦ and physical parameters that would be expected for a comet-like surface (see methods). We

find that the intense but brief heating 1I/2017 U1 experienced around perihelion does not translate

into heating at significant depth. As shown in Figure 4, the heat wave passes only slowly into

the interior, and while the surface reached peak temperatures ∼ 600 K, H2O ice buried > 20

cm deep would only commence sublimation weeks after perihelion. Layers 30 cm deep or more

would never experience temperatures high enough to sublimate H2O ice. Taking the unphysical

extreme of a surface continuously exposed to the Sun during the orbit only increases the depth of

the ice sublimation layer by ∼ 10 cm. Therefore we conclude that if there is no ice within ∼40

cm of the surface, then we would expect to see no activity at all, even if the interior has an ice-rich

composition. Simple thermal approximations give a similar surface temperature and thermal skin

depth14.
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Would a body with interior ice have the strength significant to resist rotational disruption?

Assuming a low density of ≤ 1000 kg m−3 the required strength is estimated to be in the range 0.5

to 3 Pa3, 13. Weak materials like talcum powder have a strength of ∼ 10 Pa, sufficient to maintain

the body structure. The inactive surface of comet 67P had a tensile strength ranging from 3–15

Pa28. Therefore the unusual shape of 1I/2017 U1 does not rule out an internal ice-rich comet-like

composition.

We recognise one obvious problem with this model is that Oort cloud comets should have

undergone similar mantling due to cosmic ray exposure over 4.6 Gyr, yet many show significant ac-

tivity via sublimation of near-surface ice during their first perihelion passage 29. 1I/2017 U1 cannot

have had a significantly longer exposure to cosmic rays; even if it was formed around one of the ear-

liest stars it will not be more than∼ 3× the age of our Solar System. More likely 1I/2017 U1 dates

from the more recent generations of stars as it could not be formed before the Universe had created

enough heavy elements to, in turn, form planetesimals30. It may have become dessicated through

sublimation of surface ices during close passages to its parent star before being ejected from its

natal system. Damocloid objects in our own Solar System are thought to be similar cometary bod-

ies that have developed thick insulating mantles preventing sublimation31.Alternatively, the cause

could be the relatively small size of 1I/2017 U1 compared to active Oort Cloud nuclei with radii of

≥ 1 km. The possible minimum radius of only ∼ 20 m may have allowed most of the interior ice

to escape over its unknown history. In this case we should expect that the Large Synoptic Survey

Telescope will find many small devolatised ‘comets’ from our own Oort cloud, in addition to more

ISOs like 1I/2017 U1.
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Figure 1 Optical reflectance spectra of 1I/2017 U1 obtained with the WHT+ACAM and

VLT+X-shooter. Both spectra have been averaged over 0.01 µm bins in wavelength and

normalised at a wavelength of 0.55 µm. Uncertainties come from errors on the median

reflectance within individual spectral bins, and do not include possible systematic effects

from atmospheric extinction corrections or the different solar analogues observed. See

Methods for further details.

Figure 2 WHT+ACAM (red data points) and VLT+X-shooter (grey data points) spectra

of 1I/2017 U1, compared to reflectances of main-belt asteroids. Both spectra have been

averaged over 0.01 µm wavelength bins at λ < 1 µm and 0.02 µm bins at λ > 1 µm and

normalised at 0.55 µm wavelength. The spectral reflectance ranges of D-type, L-type and

C-type asteroids are denoted by solid colours.
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Figure 3 Comparison of our X-shooter 1I/2017 U1 spectrum with ranges of reflectance

spectra of outer Solar System bodies. The purple line shows an X-shooter spectrum of

(60558) Echeclus. 1I/2017 U1 lies between cometary nuclei and Centaurs possessing

ultra-red material. We define the Red Centaur, Trojan and Comet spectral reflectance

zones based on observed spectra of extreme examples of those populations, see Meth-

ods for details.
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Figure 4 Thermal modelling of 1I/2017 U1 during its flyby of the Sun, demonstrating the

survivability of subsurface ice. Solid lines show the temperature at various depths against

time from perihelion in days. Vacuum sublimation temperatures for pure ices are shown

as dashed lines32. See Methods for details. The spectra of 1I/2017 U1 described in this

work were acquired 46 and 48 days after perihelion.
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Methods

Observations. The apparent magnitude and position of 1I/2017 U1 relative to the Earth and

Sun at the time of the two sets of observations are given in Table 1. Details of the instrument

setup for each observation are given below. At both telescopes the observations were performed

by observatory staff in service mode. Each set of data was subsequently independently reduced by

two of the authors; intercomparison of the resulting spectra showed no significant differences for

the individual instruments.

WHT: Two 900-second exposures were obtained with ACAM33 in spectroscopic mode using

a slit width of 2 arcsec at the parallactic angle. Subsequent inspection of the data showed that the

second spectrum was contaminated by a late-type star passing through the slit, hence only the first

spectrum was usable. The reflectance spectrum was obtained though division by a spectrum of the

fundamental solar analogue 16 Cyg B taken directly afterwards with the same instrumental setup.

Flux calibration was performed via a spectrum of the spectrophotometric standard BD+25 4655

obtained through a 10 arcsec wide slit.

VLT: X-shooter contains three arms covering the UV/blue (UVB), visible (VIS), and near-

infrared (NIR) spectral regions, separated by dichroic beam-splitters to enable simultaneous obser-

vation over the 0.3 – 2.5 µm range34. Four consecutive exposures were obtained, with 900 second

exposures in the UVB and NIR arms and 855 s in the VIS arm (as the UVB and VIS arms share

readout electronics, this allows the most efficient use of the telescope while maximising the flux
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in the low-signal UV region). It was found that the signal in the last 2 exposures was very poor

and these were not used in the analysis. Subsequent matching with published photometry shows

we were near lightcurve minimum at that time3, potentially explaining the drop in flux. Slits with

widths 1.0, 0.9 and 0.9 arcseconds were used in the UVB, VIS and NIR arms respectively, all

of which were aligned with the parallactic angle at the start of the observations. Observations

of the Solar analogue star HD 1368 were obtained with the same setup to allow calculation of

reflectance spectra. Flux calibration was performed via observations of the spectrophotometric

standard LTT 7987 obtained through a 5 arcsec wide slit.

For the spectra from both facilities, the reflectance spectra were calculated from the median

reflectance in spectral bins. There was enough flux at λ < 1 µm to allow binning over 0.01 µm

bins in wavelength, but in the near-infrared the detected flux was so low this had to be increased to

0.02 µm bins to obtain a reasonable spectrum. A robust estimation of the dispersion of the original

spectral reflectance elements in each wavelength bin was performed using the ROBUST SIGMA

routine in IDL or equivalent code in Python. The reflectance uncertainty in each bin was then

calculated by dividing by the square root of the number of original spectral elements in the bin.

Spectrum Comparison. In Figures 2 and 3 we compare our observed spectra of 1I/2017

U1 with various Solar System minor bodies. Spectral types for asteroids are taken from the Bus-

DeMeo taxonomy definitions established in18 and available at http://smass.mit.edu/busdemeoclass.html

. For outer Solar System bodies we define the Red Centaur, Trojan and Comet zones based on ob-

served spectra of extreme examples. The Centaur zone upper limit is the Pholus spectrum taken
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from 35, while the lower limit is (55576) Amycus36. The Trojan spectra are also defined by pre-

viously published data37. The X-shooter spectrum of Echeclus was obtained by the authors (W.F.,

T.S.) and reduced in the same manner as the I1/2017 U1 data. It will be fully described in a

forthcoming paper.

For comet nuclei there are relatively few observations in the near-infrared, due to the fact that

nuclei are very faint targets when far enough from the Sun to be inactive, but previous observations

have shown the dust spectra of weakly active comets to match their nuclei (e.g. 67P/Churyumov-

Gerasimenko observed simultaneously with X-shooter and from Rosetta 20, 38). To define the comet

zone we take the upper limit from 19P/Borrelly from spacecraft data 39, and the lower limit from

C/2001 OG10840, as it covers a wide wavelength range.

Thermal Modelling. To determine the surface and sub-surface temperature of 1I/2017 U1 as

a function of time we solve the one-dimensional heat conduction equation with a suitable surface

boundary condition. For temperature T , time t, and depth z, one-dimensional heat conduction is

described by

dT

dt
=

k

ρC

d2T

dz2

where k is the thermal conductivity, ρ is the material density, and C is the heat capacity 41. These

properties are assumed to be constant with temperature and depth. For a surface element located

on 1I/2017 U1, conservation of energy leads to the surface boundary condition
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f(1− AB)
F�
rh(t)2

+ k

(
dT

dz

)
z=0

− εσT 4
z=0 = 0

where AB is the Bond albedo, F� is the integrated solar flux at 1 au (1367 W m−2), rh(t) is the

heliocentric distance in au of 1I/2017 U1 at time t, ε is the bolometric emissivity, and σ is the

Stefan-Boltzmann constant. f is a multiplying factor to take into account the different illumination

scenarios we considered. For instance, f has a value of 1/π to give the rotationally-averaged

temperature of a surface element located on the equator of 1I/2017 U1 when considering a pole

obliquity of 0◦. If the surface element is permanently illuminated by the Sun during the encounter

then f = 1. The true solution for 1I/2017 U1 will therefore lie between these two illumination

condition extremes.

A finite difference numerical technique was used to solve the one-dimensional heat conduc-

tion equation, and a Newton-Raphson iterative technique was used to solve the surface boundary

condition42. In particular, the depth down to 5 metres was resolved into 1 millimetre steps, and

time was propagated in increments of 1 second. Zero temperature gradient was also assumed at

maximum depth to give a required internal boundary condition. The simulation was started at

6500 days before perihelion when 1I/2017 U1 was over 100 au away from the Sun. Low albedo

isothermal objects have a temperature of ∼ 30 K at such heliocentric distances as calculated from

T =

(
F�(1− AB)

4εσr2h

)1/4
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and so the initial temperature at all depths was set to this value. The hyperbolic orbital elements of

1I/2017 U1 were then used to calculate the heliocentric distance at each time step.

Regarding the material properties of 1I/2017 U1, cometary bodies typically have low albedo

and highly insulating surfaces43, 44, and we assume that 1I/2017 U1 is similar. Therefore, we as-

sume a Bond albedo of 0.01, a bolometric emissivity of 0.95, a thermal conductivity of 0.001 W

m−1 K−1, a density of 1000 kg m−3, and a heat capacity of 550 J kg−1 K−1. The latter three prop-

erties combine to give a thermal inertia of ∼ 25 J m−2 K−1 s−1/2 calculated using Γ =
√
kρC,

which is comparable to that measured for several comets45 and outer main-belt asteroids41.

For the two illumination scenarios considered, the thermal model was propagated forward

from its initial starting point, and run until 6500 days after perihelion. The temperature at depths

of 0, 10, 20, 30, and 40 cm was recorded at 1 day intervals in the model. As shown in Figure 4, the

most significant temperature changes occur during the 400 days centred on perihelion.

We note that as the thermal penetration depth is proportional to
√
k/(ρC) our results can be

scaled to different thermal property values. Identical temperature profiles can be found at depths

given by

z = z0

√
(k/0.001)

(ρ/1000)(C/550)

For example, if the thermal inertia was∼ 250 J m−2 K−1 s−1/2 (the 3σ upper limit determined
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for Comet 103P/Hartley 246) then the depth of the temperature profiles would be ten times higher

if the difference in thermal inertia was solely due to a difference in thermal conductivity. However,

the depth would be less if the increased thermal inertia was spread equally across its three compo-

nents. Furthermore, if the geometric albedo of 1I/2017 U1 is very low, then the temperatures are

also relatively insensitive to factor of 2 changes in this parameter.

Data Availability Statement

The ACAM and X-shooter spectra that support the plots within this paper and other findings

of this study are available from the corresponding author upon reasonable request.
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Table 1: Observation circumstances

Telescope UT date r′ rh ∆ α airmass

(au) (au) degrees

WHT 2017/10/25 21:45 ut– 22:03 ut 21.7 1.38 0.42 20.5 1.16 – 1.13

VLT 2017/10/27 00:21 ut– 00:53 ut 22.5 1.43 0.50 22.9 1.33 – 1.24

r′ = 1I/2017 U1 magnitude measured from flux calibrated spectra; rh, ∆ = Heliocentric &

geocentric distances; α = phase angle.
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