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PURPOSE. To provide a comprehensive and current review on the available experimental
animal models of retinal vein occlusion (RVO) and to identify their strengths and limitations
with the purpose of helping researchers to plan preclinical studies on RVO.

METHODS. A systematic review of the literature on experimental animal models of RVO was
undertaken. Medline, SCOPUS, and Web of Science databases were searched. Studies
published between January 1, 1965, and March 31, 2017, and that met the inclusion criteria
were reviewed. The data extracted included animal species used, methods of inducing RVO,
and the clinical and histopathologic features of the models, especially in relation to strengths,
limitations, and faithfulness to clinical sequelae.

RESULTS. A total of 128 articles fulfilling the inclusion criteria were included. Several species
were used to model human branch and central RVO (BRVO; CRVO) with nonhuman primates
being the most common, followed by rodents and pigs. BRVO and CRVO were most
commonly induced by laser photocoagulation and all models showed early features of clinical
disease, including retinal hemorrhages and retinal edema. These features made many of the
models adequate for studying the acute phase of BRVO and CRVO, although macular edema,
retinal ischemia, and neovascular complications were observed in only a few experimental
animal models (laser-induced model in rodents, pigs, and nonhuman primates, diathermy-
induced model in pigs, and following intravitreal injection of PD0325901 in rabbits for BRVO;
and in the laser-induced model in rodents, rabbits, and nonhuman primates, diathermy-
induced model in nonhuman primates, following permanent ligation of the central retinal
vein in nonhuman primates, and with intravitreal injection of thrombin in rabbits for CRVO).

CONCLUSIONS. Experimental animal models of RVO are available to study the pathogenesis of
this disease and to evaluate diagnostic/prognostic biomarkers and to develop new
therapeutics. Data available suggest laser-induced RVO in pigs and rodents to be overall the
best models of BRVO and the laser-induced RVO rodents the best model for CRVO.

Keywords: retinal vein occlusion, retinal vein thrombosis, ischemia, experimental models,
animal models, in vivo models

Retinal vein occlusion (RVO) is the second most common
vascular cause of visual loss, surpassed only by diabetic

retinopathy.1–5 Obstruction of the retinal venous system is
commonly caused by thrombus formation, which may result in
devastating consequences, including macular edema and
neovascular complications, leading to visual impairment and
blindness.1,6–14 RVO has been typically classified into central
(CRVO), branch (BRVO), hemicentral and hemispheric types
based on the site of the occlusion.1,2,4,5,15–17 Each of these RVO
types has been further subclassified into ischemic and
nonischemic forms based on the severity of the disease and
the likelihood of developing neovascular complications. Ische-
mic RVO (iRVO) is the most severe form, associated with higher
risk of complications and having a poorer prognosis than non-
iRVO.1,2,4,15,17,18

Current treatments of RVO, including laser photocoagula-
tion, intravitreal anti-VEGF therapies, intravitreal steroids, and
pars plana vitrectomy, target the complications of RVO, namely
macular edema and neovascularization and its consequences,1,

5,7,16,17,19–24 and may not fully reverse the functional and

structural damage result of the disease.10,25–59 Furthermore,
each of these treatments carries a risk to patients, such as
destruction of the retina following laser photocoagulation,
endophthalmitis following intravitreal injections, and cataract
and glaucoma as a result of steroid administration. Treatments
for macular edema that are a result of RVO have been
predominantly investigated for the nonischemic form, with
most randomized clinical trials excluding or including only few
with the iRVO.35,39,40,45,47,52–55,60 In trials in which they have
been included, only approximately 50% or less of patients with
iRVO show a meaningful improvement in visual acuity
following these therapies,34,37,38,45,48–51,57 with often poor
final visual acuity (� 20/100) despite treatment.10,34,36–38,41,43,

51,57

Further research is still needed to improve current
understanding of the pathogenesis of RVO as well as to identify
more clinically effective and cost-effective therapeutic options.
This is especially true for patients with iRVO.

Experimental animal models often can be useful to study
disease mechanisms and to test the efficacy and potential
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toxicity of new treatments. Such animal approaches have been
successful in ophthalmic research, allowing advancement in
our understanding of pathogenesis and development of
improved novel therapies.61–66 Experimental animal models
of RVO also are available, which variably develop functional
and structural features resembling those present in people
with this disorder. Herein, we aim at providing a comprehen-
sive up-to-date review on experimental animal models of RVO
including species, methods of vessel occlusion, their clinico-
histopathologic features, and the limits of their translational
value. Taken together, this focused and in-depth review ought
to help researchers design future studies and appreciate the
strengths and weaknesses of the animal models they use.

METHODS

A systematic review of the literature was conducted, and data
sources were Medline, SCOPUS, and Web of Science databases.
Keywords including ‘‘retinal vein occlusion,’’ ‘‘retinal vein
thrombosis,’’ and ‘‘retinal vein obstruction’’ were combined
with ‘‘experimental models’’ or ‘‘animal models.’’ The search
covered published articles from January 1, 1965, to March 31,
2017, and was filtered to include articles in English only. The
included articles of studies describing methods of creating
animal models of RVO and their findings were analyzed, and
data contained in these articles were used to inform species-
specific model systems, the range of methods for inducing vein
occlusion, pathologic and clinical features developed in these
models, and strengths and limitations of available models. The
information extracted was used to populate Tables 1 through 8
of this review. In addition, their clinical value and potential
translational implications for the management of patients with
this disorder was considered. Changes on levels of cytokines/
chemokines/growth factors and other biochemical and molec-
ular events occurring as a result of the induction or RVO in
these models, as well as effects of treatments tested in these
animal models are beyond the scope of this review and, thus,
are not summarized herein.

RESULTS

Studies Included

After removal of duplicates, a total of 320 titles were identified
and their abstracts obtained and evaluated for potential
inclusion in the review. Of the 320 abstracts, 193 were found
to relate to studies outside the scope of this review and, thus,
were excluded. Full articles of the remaining 128 studies were
obtained, found to be directly related to the topic of this
review, and used to extract pertinent data.

Species

Several animal species have been used to study RVO, including
rodents,67–100 rabbits,101–114 cats,115–124 dogs,125–127 pigs,128–

156 and nonhuman primates82,111,129,157–196 (Tables 1, 2). Each
of these species has its own size and anatomic advantages, but
also ethical challenges and cost implications; these have been
summarized in Table 3. Although the retina and retinal vessels
of these animals share many anatomic features with humans,
differences still exist and are more pronounced in some
species (Table 4). None of the animal models, with the
exception of the nonhuman primate, have an anatomic macula
or fovea centralis.197 Pigs,198–202 cats,201,203 and dogs198,204

have a central retinal area with high density of ganglion cells
and cone photoreceptors known as area centralis, which
would correspond to the fovea centralis in humans but is less
specialized and cannot be identified by gross fundus examina- T
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tion.198,204 Unlike primates, the posterior segment of eyes of
cats205–208 and dogs207–209contains a reflective tapetum layer,
which serves to intensify vision in dim light, and may affect the
functional results when compared with humans.205–208 With
the exception of the rabbit, all above-mentioned animals, like
humans, have a holangiotic retinal vasculature (i.e., vessels
emerge from the optic disc and ramify, distributing over the
entire retina).210–213 Rabbits, in contrast, have a merangiotic
retinal vascular pattern (i.e., vessels are not distributed all over
the retina), by which the main temporal and nasal retinal
vessels extend horizontally from the optic disc to the sides,
giving smaller branches to form two wing-shaped vascularized
areas and leave the rest of the retina avascular.211,214,215 Some
animals, namely pigs,212,213 dogs,210 and cats,211 do not have a
single central retinal artery; instead, they have multiple retinal
arteries entering the retina at the margin of the optic disc.
Furthermore, cats do not have a single central retinal vein but
multiple veins instead.211 Unlike humans and other species
that normally have relatively straight retinal vessels (i.e.,
nontortuous), retinal vessels of dogs normally have various
degrees of tortuosity.210 Pigs are similar to humans in that they
have an intraretinal arrangement of retinal capillaries,212 as
well as comparable scleral thickness, which makes them ideal
for transscleral surgical or drug-delivery approaches.200

Generally, of all species used, nonhuman primates were
found to have the closest ocular anatomy to the human eye,210

followed by pigs. Unsurprisingly, this makes them superior
choices to most other species, especially when considering
only their retina and retinal vessel anatomy.

Methods of Inducing RVO

Several techniques have been used to induce an RVO in
experimental animals. These have been summarized, including
their advantages and disadvantages, in Table 5. In most cases,
experimental RVO has been induced by traumatizing one or
more retinal veins using laser photocoagulation.67–75,80–92,96,97,

101,104–111,115–118,125–127,129–147,156–167,174,176–194,216

Branch Retinal Vein Occlusion. Experimentally, BRVO
has been produced by using laser photocoagulation,70,80,89,96,

97,100,105,127,132,142,146,156,176,178,181,216 photodynamic coagula-
tion,93–95,112,119,148,149 diathermic cauterization,75,120–124,150–

152 or intravitreal injection of PD032590.114

Laser Photocoagulation. In this method, laser irradiation is
performed on selected retinal veins to produce BRVO.70,80,89,96,

97,100,105,127,132,142,146,156,176,178,181,216 Classically, burns are
placed approximately 0.5 to 2.0 disc areas from the optic
disc, avoiding damage to the retinal arteries.69,70,74,80,81,92,97,99,

117,186,217 Laser photocoagulation is typically done on the slit-
lamp using a contact lens.68–72,74,81–83,86,88–92,97,99,100,104,108,

117,126,132,134,135,137,139,141,186,187,192–194,196 Some studies have
combined laser photocoagulation with vitrectomy.147,176–178

Different types of laser and wavelengths have been used,
commonly 514-nm Argon, and their parameters varied depend-
ing on the type of laser used, type of animal, and use or not of
adjuvants (Table 6). Photosensitizers, such as Rose Bengal,67–70,

73,81,89,96,99–101,104,106,107,109,110,126,127,132,134,135,137,139,141,143,

146,147,217 erythrosin B,74 sodium fluorescein,71,83,85,86,88,97,142,

175,187,190–194,218 chloroaluminium sulfonated phthalocya-
nine,105 PAD-S31,186 and mono-L-aspartyl chlorin e6 (NPe6)82

have been commonly used with the laser photocoagulation to
minimize the amount of the laser energy required to produce the
RVO. Rose Bengal has been the most commonly used photosen-
sitizer,67–70,73,81,89,96,99–101,104,106,107,109,110,126,127,132,134,135,137,

139,141,143,146,147,217 whereby the dye is infused systemically (10–
50 mg/kg) and the retinal vessels are exposed to highly focused
laser irradiation.67–70,73,81,89,96,99,101,104,106,107,109,110,126,127,132,

134,135,137,139,141,143,146,147,217 Combination of intravitreal injec-T
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tion of thrombin (50 units) and laser photocoagulation has also

been reported. Endophotocoagulation has also been used to

achieve a vein occlusion; for this technique, an endolaser probe is

inserted into the eye through a sclerostomy (without removing

the vitreous) and retinal veins are then photocoagulated until

evidence of occlusion is seen.146,147

Photodynamic Therapy. Photodynamic coagulation is

another method that has been used to induce BRVO.93–95,112,

119,148,149 This method involves light illumination using a slit-

lamp and a contact lens, or an endo illuminator in combination

with vitrectomy aiming at selected retinal vein or veins, with

care not to damage retinal arteries, for a duration ranging

between 6 and 20 minutes until evidence of venous occlusion

is observed.93–95,112,119,148,149 Photosensitizers, such as Rose

Bengal,93–95,112,119,148,149 sodium fluorescein,119 and NPe6,82

have been used in different doses depending on the species
used to facilitate thrombus formation.

Diathermic Cauterization. An alternative way to produce
experimental BRVO is by using diathermy, which has been
undertaken via a pars plana sclerotomy.75,120–124,150–152 In cats,
BRVO has been induced with indirect ophthalmoscopy and 20-
gauge bipolar diathermy that is applied to the targeted vein/
veins for 5 seconds.120–124 In pigs, a technique has been
described that produces a BRVO following a temporal
canthotomy, conjunctival incision, and performance of three
sclerotomies at 10, 2, and 5 o’clock, 2 mm posterior to the
corneal limbus.150–153 In this method, a light source and a
blunt bipolar diathermy probe are inserted into the vitreous
and one or two major retinal veins are coagulated approx-
imately 1 disc diameter away from the optic disc for 5 to 7
seconds after 5 seconds of compression and under direct view

TABLE 3. Advantages and Inconveniences of Species Used as Animal Models of RVO

Animal Advantages Disadvantages

Rodents � Low cost
� Easy to obtain
� Easy to handle
� Reproducible
� Feasible for genetic manipulation
� Suitable for evaluating the effects of therapeutic

interventions
� Small size of the animal, which allows keeping

larger number of animals in smaller spaces
� Share some anatomic similarities with human

(Table 4)

� Small eyes
� Lack of macula

Rabbits � Low cost
� Easy to obtain
� Relatively large eyes
� Accessible retinal vessels
� Eye very suitable for diagnostic and surgical

procedures

� Anatomy of the rabbit’s retina significantly

different from that of humans
� Lack of macula

Cats � Relatively large eyes
� Accessible retinal vessels
� Eye very suitable for diagnostic and surgical

procedures
� Share some anatomic similarities with human

(Table 4)

� High cost
� Limited availability
� Can be aggressive and difficult to handle
� Ethical considerations
� Larger spaces required to maintain them
� Lack of macula
� Requires large housing facilities

Dogs � Relatively large eyes
� Accessible retinal vessels
� Eye suitable for diagnostic and surgical

procedures
� Share some anatomic similarities with human

(Table 4)

� High cost
� Limited availability
� Can be aggressive and difficult to handle
� Ethical considerations
� Lack of macula
� Requires large housing facilities

Pigs � Eye size and scleral thickness are nearly identical

to humans
� Eye suitable for diagnostic and surgical

procedures
� Share some anatomic similarities with human

(Table 4)

� High cost
� Large size of the animal
� Requires large housing facilities
� Lack of macula

Nonhuman primates � Anatomy almost identical to human
� Accessible retinal vessels

� High cost
� Limited availability
� Difficult to handle
� Requires highly experienced team, and special

housing facilities
� Ethical considerations
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through an operating microscope and with the aid of a fundus
contact lens.150–153 This procedure does not involve vitrecto-
my.150–153

Intravitreal Injection of Substances. PD0325901 (N-[2,3-
dihyroxy-propoxy]-3,4-difluoro-2-[fluoro-4-iodo-phenylamino]-
benzamide) is a mitogen-activated protein kinase inhibitor that
has been used in clinical trials for the treatment of solid tumors
and has been found to be associated with development of
BRVO. Based on this, one study established a rabbit model of
BRVO by a single intravitreal injection of PD0325901 (0.5 or
1.0 mg per eye) using a 27-gauge needle inserted approxi-
mately 3 mm posterior to the limbus at the superior temporal
quadrant and advanced until into the midvitreous cavity.114

Central Retinal Vein Occlusion. CRVO has been pro-
duced by laser photocoagulation,67–75,101,111,157–167 diathermic
cauterization,168–170,172,195 permanent ligation of the central
retinal vein,174 transient clamping/ligation of the optic
nerve,76–79 or intravitreal injection of thrombin,102,219

NPe6,103 or endothelin-1 (ET-1).113

Laser Photocoagulation. In this method, all major branches
are irradiated with laser to produce CRVO,67–75,101,111,142,157–

167 classically 0.5 to 2.0 disc areas from the optic disc, avoiding
damaging the retinal arteries.69,70,74,80,81,92,97,99,117,186,217 Sim-
ilar to BRVO, laser photocoagulation is typically done on the
slit-lamp using a contact lens.68–72,74,81–83,86,88–92,97,99,104,108,

117,126,132,134,135,137,139,141,186,187,192–194,196 with or without
vitrectomy.147,176–178 Different types of laser, wavelengths,
and photosensitizers have been used.67–71,73,74,81,83,85,86,88,89,

96,97,99,101,104–107,109,110,126,127,132,134,135,137,139,141–143,146,147,

166,175,186,187,190–194,217,218,220 In one study, a through-and-
through suture was placed in the cornea, in addition to the
laser photocoagulation in nonhuman primate models, to create
an aqueous leak and subsequent hypotony to produce iris
neovascularization.166

Diathermic Cauterization. Diathermic cauterization of the
central retinal vein has been achieved through a lateral
orbitotomy approach in nonhuman primates to produce
CRVO.168–170,172,195 In this method, diathermy is applied at
the central retinal vein on the inferiomedial aspect of the optic
nerve as it exits the optic nerve sheath, avoiding injury to the
ciliary vessels.168–170,172,195

Mechanical Ligation.

� Permanent ligation of central retinal vein: Mechanical
ligation of the central retinal vein was used in nonhuman
primates to produce CRVO in one study.174 Through a
lateral orbital approach and using the operating micro-
scope to aid visualization and achieve adequate magnifi-
cation, the central retinal vein was identified and ligated
using an 8–0 silk suture. Two approaches were then used
to achieve a CRVO: (1) a small incision was made
proximal to the suture and neoprene was introduced

through a cannula into the central retinal vein where it
solidified, or (2) the central retinal vein was cut after
ligation.174

� Transient ligation or clamping of the optic nerve:
Transient ligation/clamping (60–120 minutes) of the
optic nerve using a lateral orbital approach has been
used also to produce CRVO in rats and in pigs.76–79 This
method, however, included the ciliary vessels and the
central retinal artery and, thus, not reproducing an
isolated CRVO.

Intravitreal Injection of Substances.

� Thrombin: A different CRVO model, the Hirosaki model,
was developed in rabbits as described in one study.102

Based on the premise that the extrinsic coagulation
mechanism can be triggered by thromboplastin in the
perivascular connective tissues, CRVO was successfully
created through the intravitreal injection of thrombin
over the wall of the rabbit’s retinal veins (thrombin
solution 0.01 mL [5 units]) under direct vision using a 27-
gauge needle. A Goldmann contact lens and operational
microscope were used to view the fundus.102

� NPe6: Another animal model of CRVO, also in rabbits,
described in one study, involved an intravitreal injection
of a hydrophilic photosensitizer, mono-L-aspartyl chlorin
e6 (NPe6) (50 and 100 lg). In this model, there was no
direct exposure to a light source, instead the animals
were naturally exposed to the daily light-dark cycle. The
injection was performed approximately 2 to 3 mm
posterior to the limbus using a 30-gauge needle and a 1-
mL syringe.103 In this particular model, CRVO, central
retinal artery occlusion, and various degrees of vitreous
hemorrhage developed after 1 week following injec-
tion.103

� ET-1: ET-1 is a peptide with vasoconstrictive properties
normally produced by vascular endothelial cells.113

Intravitreal injection of 1000 pmol of ET-1 solution over
the disc, as observed by ophthalmoscope, using a 29-
gauge needle and a 1-mL syringe was used to induce
CRVO in rabbits in one study.113 In this model, the
occlusion lasted only 50 to 70 minutes.113

Clinical and Histopathologic Features of RVO
Models

Clinical and/or histopathologic features observed in animal
models of BRVO and CRVO were described in 89 and 38
articles, respectively, identified in our search. Macular edema
has been addressed in only 4 of 21 studies on nonhuman
primate models of BRVO, all laser-induced180,186,190,193and in
only 2 of 21 studies in nonhuman primate models of CRVO,

TABLE 4. Similarities and Differences of Retina and Retinal Vasculature of the Different Animal Species Used in RVO Studies

Rodents Rabbits Cats Dogs Pigs

Nonhuman

primates Humans References

Anatomic macula and

fovea centralis

Absent Absent Absent Absent Absent Present Present 197–204

Tapetum layer Absent Absent Present Present Absent Absent Absent 205–209

Vascular pattern Holangiotic Merangiotic Holangiotic Holangiotic Holangiotic Holangiotic Holangiotic 210–215

Central retinal vein Single Single Multiple Single Single Single Single 210–213

Central retinal artery Single Single Multiple Multiple Multiple Single Single 210–213

Major arterial and

venous branches, n

5–7 2 3 Multiple 3–4 4 4 210–215

Bold text indicates as in humans.
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both diathermy-induced.170,195 Ischemia, defined by develop-
ment of neovascular complications, extensive areas of capillary
nonperfusion (capillary dropout), or both, or capillary non-
perfusion associated with atrophy/cell loss of the inner retinal
layers, has been reported in 28 of 89 studies in laser-induced
BRVO models of rodents (n ¼ 8),80,83,85,89,90,92,96,97 pigs (n ¼
6),130–134,154 and nonhuman primates (n¼13)175,176,178–181,184,

187–190,192,193; PD0325901-induced BRVO models of rabbits (n
¼ 1) 114; and in 16 of 38 studies in laser-induced CRVO models
in rodents (n ¼ 4),67–69,74 rabbits (n ¼ 1),101 and nonhuman

primates (n¼ 9),157–160,162–166 in permanent ligation of central
retinal vein CRVO models in nonhuman primates (n ¼ 1),174

and in thrombin-induced CRVO models in rabbits (n ¼ 1).102

The features described in this section, unless otherwise
specified, do not refer to the changes observed at the site of
the occlusion and caused by the procedure used to create the
RVO itself, but rather those result of the vein occlusion.

All models showed early features classically observed in
human BRVO and CRVO, including cessation of blood flow and
venous dilation, engorgement, and tortuosity distal to the

TABLE 5. Advantages and Disadvantages of the Different Methods Used to Induce RVO

Method Advantages Disadvantages References

Laser photocoagulation 6

photosensitive dye

� Can be used to produce both

CRVO and BRVO
� Easy to undertake
� Successful in 89%–100% of

cases
� Many studies supporting this

technique

� Potential phototoxicity with

photosensitizers and sun/light

exposure
� Inner retina damage at the site

of the laser treatment
� May rupture retinal vessels and

cause vitreous hemorrhage
� Requires laser equipment

68–70, 74, 75, 80, 83–86,

88–92, 96–99, 101, 104–

107, 109–111, 125–127,

129–134, 136–142, 144–

147, 150–160, 162–167,

175, 176, 178–181, 184,

187–190, 192, 193, 220

Photodynamic therapy þ
photosensitive dye

� Produces BRVO
� Successful in 50%–100% of

cases

� Potential phototoxicity with

photosensitizers and sun/light

exposure
� Inner/outer retinal damage at

the site of the light application
� Exudative retinal detachment
� Retinal necrosis
� Requires specialized equipment

93–95, 112, 119, 148, 149

Diathermic cauterization � Produces CRVO and BRVO
� Successful in 90%–100% of

cases

� Invasive
� Requires access to surgical

facilities to produce CRVO

120–124, 150–153, 168–

170, 172, 173, 195

Permanent ligation of the central

retinal vein

� Produces CRVO
� Successful in 100% of cases

� Invasive
� Requires access to surgical

facilities to produce CRVO
� May affect ciliary vessels and

central retinal artery
� Only 1 reported study

174

Transient ligation/clamping of

optic nerve

� Produces CRVO
� Successful in 100% of cases

� Invasive
� Requires access to surgical

facilities to produce CRVO
� Affects ciliary vessels and

central retinal artery

76–79, 128

Intravitreal thrombin injection � Produces CRVO
� No mechanical vascular damage

� Successful in only 43% of cases
� Only 1 reported study

102

Intravitreal ET-1 injection � Produces BRVO
� Successful in 100% of cases
� No mechanical vascular damage

� Only 1 reported study
� Transient occlusion (50–70

minutes)
� Affects both retinal arteries and

veins

113

Intravitreal NPe6 injection � Produces BRVO
� Successful in 100% of cases
� No mechanical vascular damage

� Only 1 reported study
� May produce features unrelated

to RVO

103

Intravitreal PD0325901 injection � Produces BRVO
� Successful in 100% of cases
� No mechanical vascular damage

� Only 1 reported study
� May produce features unrelated

to RVO
� Takes 1 week to produce RVO

114

BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; RVO, retinal vein occlusion; ET-1, endothelin-1; NPe6, mono-L-aspartyl
chlorin e6.
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occlusion site. Moreover, all models, except the ET-1–induced
CRVO, showed retinal hemorrhages and various degrees of
retinal edema, which were commonly observed within the first
48 hours of RVO induction,67,70,74,75,80,83–85,89,90,93,96–99,102,104,

108,115,120–122,124–129,132,133,137,139,145,148–152,155–157,167,169,170,

178,180,187,189,191,192,195,216,221 peaked at day 4,70,74,84,98 and
resolved 7 to 28 days following occlusion.70,74,75,89,96,97,102,108,

129,156,169,170,172,192,195,221 Various degrees of exudative retinal
detachment developed in many eyes of laser-induced and
diathermy-induced BRVO 67,74,80,85,89,96,97,105,115,121,124,126,132,

186 and laser-induced CRVO eyes.67,70,174 Bullous retinal
detachment also was observed in many models that resolved
spontaneously during follow-up.67,70,74,83,85 Changes in the
thickness of the overall retina and individual retinal layers as a
result of the edema (thickening) or ischemia (thinning) were
evaluated mainly by histopathology70,74,76,89–92,94,95,114,121,129,

131–133,151,154,169,174,179,187,189,190,192; in five studies, optical
coherence tomography (OCT) was used also for this pur-
pose.75,80,90,91,100 Both CRVO and BRVO models showed
significant increase in the thickness of the inner retinal layers
1 to 4 days postinduction, followed by gradual reduction over
time, with follow-up periods ranging between 7 and 28 days. In
many models, retinal thickness was reduced during the follow-
up to values below those detected at baseline (atrophic
thinning); this was observed at 7 to 14 days from RVO
induction.75,80,90,91,100

Branch Retinal Vein Occlusion. Macular Edema. Macular
edema in the nonhuman primate models was observed as early
as 1 to 6 hours following venous occlusion190,193 and became
prominent at 7 to 9 days postocclusion.180,193 It was found in up
to 100% of treated eyes in one of the four studies on nonhuman
primate models that described macular edema in induced BRVO
(see above).180 Both intracellular neural and extracellular edema
were reported.190,193 The edema was mainly observed in the
nerve fiber layer and outer plexiform layer.190,193 Capillaries
adjacent to the extracellular edema often appeared shrunken or
compressed.190 In addition, macular edema was often associated
with photoreceptor cell loss, which persisted after resolution of
macular edema.180,186,193 Spontaneous resolution of macular
edema occurred in all occluded eyes between 14 days and 2 year
after laser photocoagulation clinically.180,186,190,193 In one study,
histopathologic examination of six eyes at 48 months showed
cystic spaces in the outer plexiform layer in four of six eyes.180

Retinal Capillary Nonperfusion and Reperfusion. Various
degrees of capillary nonperfusion in laser-induced, diathermy-
induced, and PD0325901-induced models of BRVO were
reported.70,74,80,85,89,92,97,100,132,133,150,175,179,180,189,191–193,221,

222 Areas of capillary nonperfusion were observed as early as 3
days following venous occlusion85,89 and found to progress
with time.179,192 Extensive or severe areas of capillary non-
perfusion were prominent 1 to 4 weeks following vein
occlusion132,187,192,222 and were observed in up to 75% of
eyes.96,133,221 The areas of capillary nonperfusion persisted
during the follow-up, which ranged between 1 and 20 weeks,
despite reperfusion.70,80,85,89,92,96,97,132,133,150,175,179,189,191–

193,221,222 Reperfusion in these models was either by recana-
lization/reopening of the occluded vessels in some or all
eyes,70,80,85,89,90,92,93,95–97,104,105,110,112,115,120,126,129,132,133,137,

186,187,222 or development of collateral vessels.85,89,92,96,104,105,

120,121,124,129,133,139,175,179,180,183,187,189,192,221,222 Recanaliza-
tion was observed in 0% to 100% of eyes of BRVO models 1
to 14 days following induction.70,80,85,89,92,93,95–97,104,105,110,

112,126,129,132,137,186,221 Collateral vessels were prominent 5 to
14 days following establishment of the RVO92,129,179,180,192

(Tables 7, 8).

Neovascular Complications. Posterior segment neovascu-
larization occurred in some laser-induced BRVO models in
rodents,83,89,96 pigs,132–134,154,221,222 and nonhuman pri-

mates,175,188,189,192 but not in the other BRVO models. Retinal
and/or disc neovascularization was observed in 8.3% of eyes as
early as 7 days postocclusion,89 and in 60% to 70% of eyes 14
days following laser induction in rodent models.83,89 In laser-
induced pig models, retinal and/or disc neovascularization
were described in approximately 50% to 93% of eyes 3 to 4
weeks following RVO induction132,133,221,222 and up to 100% of
eyes at 6 weeks.134,154 In laser-induced nonhuman primate
models, 9% of eyes developed retinal neovascularization at 4
weeks.192 Anterior segment neovascularization was observed
in laser-induced nonhuman primate models when three major
branches were targeted.176,178,181,184 In this model, up to 100%
of eyes developed iris neovascularization within the first 6 days
of occlusion176,178,181,184 and 17% to 20% developed neovas-
cular glaucoma within 25 days of follow-up.176,178 There was
no spontaneous regression during follow-up of 28 to 84
days.136, 90

Vascular Endothelial and Pericyte Cell Loss. Damage and
loss of the vascular endothelial cells and pericytes was
detected by histopathologic examination in experimental
animal models of BRVO,90,107,120,187,190,193 which resulted in
ghost acellular vessels with glial invasion179,187,193 observed as
early as 1 to 48 hours postocclusion.120,190,193 Endothelial cell
apoptosis was detected as early as 1 day postocclusion.90

Pericyte loss was observed 3 days following occlusion and
significantly worsened at 7 days with 40% pericyte cell loss
detected.90

Retinal Atrophy. Atrophy (thinning/loss) of the inner retinal
layers70,74,80,89,91,92,94,95,121,127,132,133,151,154,179,187,189,190,192,

193,222 and replacement with glia151,187 has been reported. The
loss of the inner retinal layers was first observed 3 days
postocclusion80 and was marked at 7 to 28 days of follow-up.70,

74,80,89,91,92,95,132,133,151,190,192 Damage of the outer retinal
layers and loss of the photoreceptors was observed distal to
the site of the occlusion in some eyes with laser-induced BRVO
and ischemia at 3 to 6 weeks postocclusion.132,133,222

Photoreceptor cell loss was observed in 67% of eyes at 3
months following the occlusion180 Damage to the photorecep-
tors was reported in photodynamic-induced thrombosis in rats
within 2 days of the occlusion, which was most likely related
to the photodynamic therapy itself rather than the result of
ischemia.112 Unspecified RPE changes were reported 4 weeks
to 3 months following occlusion in laser-induced BRVO
nonhuman primate models.152,180,192

Functional Changes. When conducted, ERG studies
showed reduction of the ‘‘a’’ and ‘‘b’’ wave amplitudes of
both scotopic and photopic ERG at 1, 2, 3, 4, 6, and 7 days
following laser-induced BRVO in rat models.80,100 In multifocal
ERG, a significant decrease in the P1 and N1 amplitudes and
prolonged implicit times in the affected retina were observed 4
weeks following thrombus formation in diathermy-induced
BRVO in pig models.151,152

Other Features. Other features also were observed in some
eyes with experimental animal BRVO, such as cotton wool
spots, detected at 3 days to 6 weeks in laser-induced
nonhuman primate models,180,192 venous sheathing between
7 days and 3 months,125,127,129,152,192 microaneurysms 1 to 8
months,120,125 and reduction of preretinal oxygen saturation
measured at different time points between 60 minutes and 3
weeks following occlusion.110,121,123,133,150,222

Central Retinal Vein Occlusion. Macular Edema. Mac-
ular edema was observed as early as 48 hours following venous
thrombosis in 14% to 66% of CRVO nonhuman primate models
induced by diathermy.170,195 This had resolved spontaneously
in all eyes 14 days following induction170,195 (Tables 7, 8).

Capillary Nonperfusion and Reperfusion. Various degrees
of capillary nonperfusion were reported in laser-induced,
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permanent ligation of the central retinal vein, and thrombin-
induced CRVO models.69,108,157,158,162,174 In one of these
studies, it was found to become extensive 2 to 4 weeks
following the induction of CRVO and progressed to involve up
to 75% of the retinal area 7 weeks postinduction of RVO by
laser photocoagulation in 67% of eyes.157 In thrombin-induced
CRVO in rabbits, extensive areas of retinal capillary non-
perfusion were observed at 3 months following the occlu-
sion.102 Recanalization or reopening of the occluded vessels
was reported in many studies of laser-induced CRVO.70,74,108,

111,157–159 This was observed 1 to 21 days postocclusion70,74,

108,111,159 in 6% to 80% of eyes.108,111,157,158 Collateral vessels
also were reported in some eyes at 2 weeks to 2 months of
follow-up following laser-induced and thrombin-induced
CRVO.102,108,157

Neovascular Complications. Neovascular complications
were observed in laser-induced and thrombin-induced
CRVO.68,69,74,102,157–160,162–166 Preretinal neovascularization
was observed 1 to 3 weeks following laser photocoagulation
in 17% to 90% of rats, with no spontaneous regression
described.67–69,74 In nonhuman primate models, however,
posterior segment neovascularization was described in only
one study, in which disc neovascularization was detected in
17% of eyes at 15 to 26 days postocclusion that resolved
spontaneously at day 87,157 but not in other studies with
follow-up periods ranging between 1 and 24 weeks.111,158,160,

162–167 Thrombin-induced CRVO in rabbits showed retinal
neovascularization in 60% of eyes at 3 months following
injection.102 Spontaneous regression of neovascularization in
this model was not reported. Iris neovascularization was
observed only in laser-induced nonhuman primate models.157–

160,162–166 This was detected 4 to 22 days postocclusion159,160,

162–166 in up to 100% of eyes,157,163,166 with some having
spontaneous regression 13 to 60 days following laser photo-
coagulation.157 Iris fluorescein leakage from iris new vessels
was observed at 5 days of follow-up in 50% of eyes.157

Neovascular glaucoma developed in 18% to 33% of eyes in the
laser-induced nonhuman primate model 12 to 21 days
following occlusion.158,160

Vascular Endothelial and Pericyte Cell Loss. Vascular
endothelial and pericyte cell loss has not been described in
experimental models of CRVO.

Retinal Atrophy. Atrophic thinning of the inner retinal
layers and cell loss was reported 7 to 21 days in rodents and
rabbit models following laser photocoagulation70,74,75,101; 3 to
10 days in diathermy-induced nonhuman primate models,
which was in this model associated with gliosis169; 3 to 7 days
in nonhuman primate models of permanent ligation of the
central retinal vein174; and 4 days in temporary (60 minutes)
ligation of the optic nerve.76 These changes were not
reversible in any of the models during the follow-up, which
ranged from 1 to 6 weeks.70,74–76,169,174 The ganglion cell loss
in overall retina (central, midperipheral, and peripheral retinal
regions) was reported to be approximately 11% at 7 days,74

30% to 31% at 14 days,70,74 and 40% at 21 days following laser-
induced RVO in rodents.74 Atrophy of the outer nuclear layers
distal to the site of laser photocoagulation was reported as
early as 4 days following vein occlusion using laser photoco-
agulation in rodent models.70,74 RPE changes were observed in
many of the CRVO models76,101,103,157,170 (Tables 7, 8).

Functional Changes. Loss of retinal function in these
models was confirmed with ERG studies that showed
significant reduction of amplitudes in both scotopic and
photopic ERG in laser-induced CRVO in rodents70 and
temporary ligation of optic nerve in rodents.79

Other Features. Disc hyperemia was observed within 48
hours in up to 100% of diathermy-induced CRVO in nonhuman

primate models, which was secondary to the procedure rather
than to the CRVO.168,195

Strengths and Limitations of Available Animal
Models

Although none of the animal RVO models described above
develop all features occurring in human RVO, almost all models
demonstrate the early characteristics of this disease, including
retinal hemorrhages and edema, which may make them
adequate models to study the acute phase of both BRVO and
CRVO. Only a few models, however, developed macular edema
(i.e., laser photocoagulation in BRVO nonhuman primate
models and diathermy in CRVO nonhuman primate models)
(Tables 7, 8),170,180,186,190,193,195 which makes the study of this
particular feature difficult.

Most animal models of RVO demonstrated spontaneous
reperfusion and/or vascular remodeling, which seemed to
occur more rapidly and effectively than in humans with RVO.
As a result, persistent ischemic features failed to develop in
most models, and iris neovascularization was not observed,
except in laser-induced nonhuman primate models,157–160,162–

166,176,178,181,184 making the study of the ischemic form of RVO
more challenging. This might be attributed, even if partly, to
the fact that the animals used for these studies were young and
healthy, whereas patients with BRVO and CRVO are often older
and many have underlying systemic risk factors, such as
hypertension, dyslipidemia, dysfunctional thrombotic respons-
es, or impaired glucose tolerance/diabetes, among others. The
ischemic form of RVO, however, is the one that requires further
research more urgently, given its very limited treatment
options and often poorer outcomes.

The laser-induced models of BRVO in rodents, pigs, and
nonhuman primates and of CRVO in rodents and nonhuman
primates were found to be the most successful at achieving
nonperfusion and posterior segment neovascularization (see
Tables 7, 8). The lack of ischemic features (i.e., extensive areas
of retinal nonperfusion and/or neovascularization) being
observed in other models may be attributed to the inadequate
follow-up time in some of the studies or may be due to other
factors such as the nature of the occlusion induced by the
various techniques, including duration of the occlusion, and
the timing and characteristics of the reperfusion that followed.
There are still limitations of the models available that
reproduce best retinal ischemia and neovascularization. For
example, the laser-induced rodent model of BRVO and CRVO
may pose difficulties due to the small size of the eye (Fig.), the
large crystalline lens, and the thin and delicate sclera, which
may make the undertaking of functional and imaging studies as
well as therapeutic interventions challenging. The lack of a
macula in many nonprimate models makes it impossible to
study macular edema and, although as stated above the
occlusion can be produced with high success (92%–100%,
see Table 8), neovascularization occurs variably (60%–70% and
17%–90% in models of BRVO and CRVO, respectively). The
laser-induced pig model of BRVO appears to be ideal due to
anatomic similarities (see Table 4), including the presence of
an area centralis, and the high success at achieving vein
occlusion (93%–100%) and development of neovascularization
(100%) in a relatively short period (6 weeks). Furthermore, the
larger size of the eye in this model facilitates functional,
structural, and interventional studies. Pigs are larger animals,
posing other difficulties (see Tables 3, 5). Nonhuman primate
models of laser-induced ischemic CRVO and BRVO best mimic
the clinical and histopathologic features observed in humans;
however, the use of this species carries major ethical
considerations and other inconveniences, such as high cost
(see Tables 3, 5) and are not available to most researchers.
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Although thrombin-induced CRVO rabbit models showed
ischemic features, namely areas of capillary nonperfusion and
development of retinal neovascularization in 60% of eyes,102

this feature was observed at or after 3 months, which makes
the study of the neovascularization in this model time-
consuming. In addition, the success rate of developing RVO
in this model is as low as 43%,102 and there are not enough
studies in the literature that would allow validating the findings
in this model. Similarly, laser-induced iCRVO101 and
PD0325901-induced iBRVO114 in rabbits do not have adequate
supporting literature.

Clinical Value of RVO Models

Although therapeutic strategies are available for people
suffering from RVO, these are limited, and a relatively large
proportion of patients still lose sight as a result, especially those
with iRVO. Treatment is, at present, delivered only once
complications (macular edema and neovascularization) have
occurred. Thus, it is clear that advances in the management of
people with RVO are much needed. Animal models of RVO have
helped to better understand the pathogenic events taking place
as a result of the disease as well as to trial new treatments. It is
likely that several pathways may be implicated in the
development and progression of the disease and that different
compensatory responses may take place, which would explain
the heterogeneity of the natural course and treatment responses
observed in humans; experimental animal models of RVO have
advanced the knowledge on this area. As retinal ischemia,
macular edema, and anterior/posterior segment neovasculariza-
tion are the major causes of visual loss due to RVO, experimental
animal models that more reproducibly develop these complica-
tions would be expected to have the major translational

potential. Understanding why reperfusion occurs more readily
in experimental animal models of RVO when compared with
humans with this disorder may provide important clues for the
development of new therapeutic interventions.

CONCLUSIONS

Several experimental animal models of RVO are available to
study the pathogenesis and to test new diagnostic/prognostic/
therapeutic interventions for this disease. Selecting the most
appropriate ones, based on the information provided in this
review, will allow researchers to better adhere to two of the
three ‘‘Rs’’ of ‘‘reduction’’ and ‘‘refinement,’’ as ‘‘replacement’’
is not an option when understanding the complex events that
take place in RVO. It will also help researchers in the
development of new treatment modalities by allowing them
to select those that mimic more closely the human disease,
that develop its features more consistently and in shorter
periods of time. This will subsequently reduce testing times
and costs and will improve the planning and design of future,
more successful studies as well as the potential for translation
to clinical practice.
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