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ABSTRACT 8 

Glued-in rods have potential for use as moment-resisting connections in timber structures. There has been 9 

minimal research to date conducted on the performance of glued-in rods acting under both axial force and 10 

moment. The influence of increasing embedded length of the glued-in rod on the strength of the system 11 

was assessed using a pull-bending test which subjected the connection to this force combination. The 12 

longest length (600mm) had a pull-out capacity 213% greater than the shortest (80mm). To reduce 13 

instances of splitting in the timber end distance was varied. Optimum end distance of 42mm (3.5dr) was 14 

identified with further increase having minimal impact upon overall strength. 15 

KEYWORDS: Timber; BFRP rods; glued-in rods; connections. 16 

1. Introduction 17 

Glued-in rods (GiRs) allow hidden internal strengthening and connections which are aesthetically 18 

pleasing. They can be used in the repair of deteriorated buildings, as reinforcement of timber elements or 19 

for connections in new-build including moment-resisting corner connections.  20 

GiRs are by no means a new technology. Research has been conducted on their use since the 1980s; 21 

however, the majority of this research has been focused on steel rods glued-in to glulam elements under 22 

purely axial loading. The stress distribution along the length of a GiR is generally considered to be 23 

uneven with stress peaks at each end of the glued length [1], [2]. Much of the research to date has 24 
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consisted of either direct axial-only pull-out testing or finite element modelling with the models being 25 

verified with experimental data from axial-only pull-out tests [3]. However in service a GiR in a moment 26 

resisting connection or at mid-span in a spliced beam will be subject to a combination of axial and 27 

bending forces rather than exclusively axial force as researched by [4], [5]. A further understanding of the 28 

performance of GiRs under this loading combination must be attained to better predict their behaviour in 29 

service. Some work that has been carried out in this area to date has included [6], [7] who performed 30 

frame testing where timber beams were joined to a steel plate or connector using GiR technology 31 

however their method relies on the ductility of the steel used which is a feature BFRP rods do not have. 32 

An experimental set-up was developed to study the behaviour of the GiR system under a combination of 33 

axial and bending forces. The testing method allowed controlled adjustment of variables to assess their 34 

influence on performance of the system. The materials used in this study were varied from the traditional 35 

steel rods glued-in to glulam with instead Basalt Fibre Reinforced Polymer (BFRP) rods being glued-in to 36 

sections of C16 Sitka Spruce. A summary of the benefits of using BFRP as an alternative to steel can be 37 

found in [8]. Embedded length and edge distance were identified as the most potentially influential 38 

variables on GiR performance, as such these were the key variables explored in this research. 39 

Pull-out testing was used to assess the performance of glued-in BFRP rods under a combined axial and 40 

bending load. Performance was appraised by considering both the joint performance in terms of strength, 41 

failure mode and deflection and the nature of the stress distribution along the joint interface. This was 42 

achieved by altering both embedded length and edge distance in a controlled manner and monitoring the 43 

effect this had on performance. Joint performance was determined by measuring force, deflections and 44 

strain as well as observing behaviour during loading and failure mode. 45 

2. Materials and methods 46 

2.1 Materials 47 

Class C16 Irish Sitka Spruce (Picea sitchensis), sourced from Balcas Sawmill, Co. Fermanagh, with a size 48 

of 75mm x 225mm sawn section was used.  The C16 classification shows that, at a moisture content of 49 

12%, the timber has a 5th percentile bending strength of 16N/mm2 and a density of 370kg/m3.  Material 50 

testing on a random selection of specimens established these strengths with 20 specimens being tested for 51 
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each property a summary of which are presented in Table 1. Modulus of elasticity, bending strength, 52 

compressive strength were carried out as per the recommendations outlined in BS EN 408 [9] wile shear 53 

strength and shear modulus was measured using a smaller scale test than that prescribed in the standards.  54 

Where testing was not carried out under the reference conditions outlined in EN 408 correction factors 55 

were employed to standardise the results. Moisture content of the timber in each test was monitored using 56 

a handheld moisture metre. Characteristic values, 5-percentile, were calculated using the parametric 57 

calculation methods outlined in BS EN 14358 [10] since sample sizes for the determination of each 58 

property were less than or equal to n =40. 59 

Table 1:Timber strengths established from materials testing 60 

  BS EN 338  
(C16 Graded) 

Experimental 

Bending  
strength (N/mm2) 

 

fm,k 16.0 18.4 

Shear  
strength (N/mm2) 

 

fv,k 3.2 8.7 

Compression parallel 
(N/mm2) 

fc,0,k 17.0 16.3 

Compression perpendicular 
(N/mm2) fc,90,k 

2.2 2.5 

Mean modulus  
of elasticity (kN/mm2) 

E0,mean 8.0 9.0 

Mean shear  
modulus (kN/mm2) 

Gmean 0.5 
_ 
 

Density (kg/m3) 
Ρk 310 357 

Basalt Fibre Reinforced Polymer (BFRP) rods of 12mm diameter were used throughout this experimental 61 

programme.  These rods were found to have a tensile strength of 920 N/mm2 under a loading rate of 62 

0.2kN/s and a modulus of elasticity of 54 kN/mm2 [11]. Unlike steel or some other FRPs, no extensive 63 

cleaning of the rods was required prior to bonding as they are sand-coated which provides a good surface 64 

for adhesion. 65 

A two-part Rotafix structural epoxy adhesive was used to glue-in the BFRP rods. This adhesive is 66 

thixotropic (it only flows under shear) so is ideal for applications such as overhead beam repair and 67 
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jointing overhead. The epoxy used had a bond strength of 6–10 N/mm2 dependant on the adherends and 68 

preparation of the bonding surfaces. Compressive strength of the adhesive was at least 60 N/mm2 and it 69 

had a tensile strength of 38 N/mm2 and modulus of elasticity of [12]. 70 

2.2 Pull-out test method 71 

Pull-out capacity is used as a measure of the strength of a GiR. Assessment of pull-out capacity of a rod 72 

glued-in to timber can be achieved with various test configurations as seen in the literature [13], [8]. In a 73 

moment resisting timber connection, such as an eave connection in a portal frame structure, it is highly 74 

likely that some bending forces would also be acting on the GiR rather than axial-only as in the 75 

commonly used pull-out set-ups. To include these bending effects a pull-bending set-up should be used. 76 

This involves the use of a hinge apparatus based on the concrete beam test proposed by RILEM 1982 77 

(RILEM TC, 1994). The system allows bending strength of the GiR connection to be evaluated by 78 

removing the timber in the section being loaded so that the only resistance is from the GiR connecting the 79 

two timber elements. It is this system that was used in this research to establish pull-out capacity. The 80 

pull-bending test set-up that was used is illustrated in Figure 1 with critical dimensions detailed on the 81 

figure: distance from loading head to inner support l1, internal lever arm z, edge distance a, height of 82 

beam h, embedded length lb, span L. In all specimens the distance between the inner supports, 2l1 = 83 

150mm, height of the beam, h = 225mm and span, L = 1600mm. Stress in the rod was monitored by 84 

means of an electrical resistance strain (ERS) gauge placed at mid-span on the exposed BFRP rod on each 85 

sample.  86 

Figure 1: Pull-bending test set-up 
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2.3 Specimen configuration 87 

All specimens were tested under ambient conditions of temperature and humidity. Moisture content of 88 

each specimen was recorded at the time of testing using a handheld moisture meter, moisture content was 89 

typically 10.1%. Due to the anisotropic nature of timber, to enable comparison between specimen sets 90 

rods were embedded parallel-to the grain in all specimens. 91 

Timber beams were cut to length and an auger drill bit was used to drill holes of 16mm diameter, thus 92 

producing a glueline thickness of 2mm all around the 12mm diameter rods.  This was considered the 93 

optimum value for performance based on the work by Harvey & Ansell (2000) amongst others. Guide 94 

blocks were used to ensure the holes were drilled accurately. Rods were cut to length using a grinder with 95 

a cutting blade. No surface preparation was required of the rods. Rods were sanded locally to the position 96 

of the ERS gauges. The gauges were then glued directly on to the rod. The surface of the timber around 97 

the drilled hole was sealed with wax to ensure that any glue overspill would not penetrate the sample and 98 

result in an artificial increase in strength around the hole. Holes were then 2/3rds filled with adhesive and 99 

the rods twisted into place allowing any trapped air to be expelled and ensuring the glue fully coated the 100 

surface of the rods, this method was found in preliminary tests to provide full coating of the rods. When 101 

glue emerged from the open end the rods were deemed to be sufficiently coated. A temporary support was 102 

used to hold the specimen in place to maintain the 2mm glueline all around the rod whilst drying. When 103 

the glue had hardened the steel hinges at the top and strain gauges at mid-span on the exposed rod were 104 

fitted.  The specimens were then left until the glue had a minimum of 7 days to cure fully before testing. 105 

 106 

Embedded length, lb  107 

Minimum embedded length was chosen based on the guidelines proposed for inclusion in the preliminary 108 

versions of  Eurocode 5 [16] where the recommendation was that minimum embedded length should be 109 

no less than the greater of 0.4dr
2 or 8dr. In the case of a 12mm diameter rod this gives a minimum 110 

embedded length of 96mm. Embedded length, lb=80mm was chosen to explore the performance of an 111 

embedded length lesser than that proposed. Embedded length was increased in steps of 50mm (4.167dr). 112 

Initially the final embedded length was chosen as 280mm (23.3dr) based on findings in the literature 113 

where a plateau in strength was expected to occur around 240mm (15dh = 20dr) where the use of Basalt 114 
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FRP rods were investigated [17]. However, following a preliminary investigation this plateau was not 115 

observed and thus the maximum embedded length was extended to 600mm (50dr). Table 2 details the 116 

embedded lengths investigated. 117 

Table 2: Specimens investigating embedded length, lb 118 

Set ID Embedded length (mm) Embedded length (dr) Embedded length (dh) 

LB_80 80 6.67 5.000 

LB_130 130 10.83 8.125 

LB_180 180 15.00 11.250 

LB_230 230 19.16 14.375 

LB_280 280 23.33 17.500 

LB_330 330 27.50 20.625 

LB_380 380 31.67 23.750 

LB_600 600 50.00 37.500 
 119 

Edge distance, a 120 

Edge distance, a, was set at 30mm (2.5dr) for the initial testing campaign where embedded length was 121 

being investigated. This edge distance was chosen based on the recommendation proposed in prEN1995 122 

that amin = 2.5dr. It was discovered through a test series that splitting of the tensile face of the timber 123 

occurred because of the build-up of stresses approaching failure. In an attempt to alleviate this problem, 124 

edge distance was increased. However, by increasing edge distance, a, the effective lever arm, z, in the 125 

system will decrease as per Figure 1. In moment resisting connections, the greatest moment resistance is 126 

normally achieved by maximising the lever arm. Thus, the overall maximum capacity of a moment 127 

resisting connection will be reached by finding the balance between maximum possible lever arm without 128 

causing splitting of the timber.  129 

Edge distance was increased by steps of one bar diameter (12mm) up to a maximum of a = 66mm (5.5dr). 130 

An additional edge distance of a = 112.5mm, corresponding to half the beam depth was investigated 131 

although in reality this edge distance would not be possible since the spacing required would not allow for 132 

the use of multiple rods. A fixed embedded length, lb = 280mm (23.3dr) was chosen while edge distance 133 

was being varied since this was expected to give maximum performance. Table 3 below details the edge 134 

distances investigated. 135 

 136 
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 137 

 138 

 139 

Table 3: Specimens investigating edge distance, a 140 

 141 

 142 

 143 

 144 

 145 

2.4 Test procedure 146 

Samples were loaded at a rate of 0.015mm/s to ultimate failure using a calibrated 600kN capacity 147 

hydraulic actuator. Failure load and mode of failure were recorded when the sample could not take any 148 

additional load. Deflection at mid-span and net horizontal movement of the bar as the sample was loaded 149 

was recorded with data acquisition connected to the transducer. Each test was repeated with nine 150 

specimens due to the high variability of the timber used.  151 

3 Results and Discussion 152 

Performance of the GiRs was assessed in terms of failure mode and ultimate strength. The effect of 153 

increasing embedded length was explored, as was the effect of increasing the edge distance on both 154 

failure strength and failure mode. 155 

3.1 Failure modes 156 

Failure was deemed to have occurred when the specimen could not withstand further loading. All 157 

specimens failed in a sudden, brittle manner. Two primary failure modes were identified and are shown in  158 

Figure 2: a timber plug pull-out indicative of shear failure in the timber and a ‘clean’ pull-out signifying a 159 

failure of the rod/adhesive interface. Another failure mode which was observed mainly in specimens with 160 

the longest embedded length, lb = 600mm, was failure of the timber either by crushing of the timber under 161 

the loading points and steel hinge or a failure of the timber. In these specimens the timber failed before 162 

Set ID Edge distance (mm) Edge distance (dr) 

A_30 30.0 2.5 

A_42 42.0 3.5 

A_54 54.0 4.5 

A_66 66.0 5.5 

A_112.5 112.5 9.4 
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the GiR, as such, the strength presented is taken from the load at which the timber failed however it is 163 

known that the GiR is stronger than this. 164 

Table 4 and Table 5 detail the failure modes observed in each set of specimens tested. In the GiR 165 

connections tested in this research the weakest element in the connection is the timber since the load 166 

required to fail the brittle BFRP rods is very large. It was therefore expected that failure will occur in the 167 

timber element, close to the adhesive/timber interface. Indeed, the most prevalent failure mode observed 168 

was a pull-out failure in shear of the timber with a total of 75% of all samples failing in this manner.  169 

Rod/adhesive failure occurred either when to the sand coating on the rod had not adhered  sufficiently 170 

well to the adhesive or when the sand coating detached suddenly from the rod surface. The BFRP rod 171 

never failed as the force required for the rupture of the rod was never reached. Splitting was evident in 172 

24% of all specimens. Splitting occurred as a consequence of the build-up of stresses approaching failure, 173 

the instances of splitting are noted in Table 4 and Table 5. When splitting of the timber occurred, the 174 

length of the split was often equal to the embedded length of the rod, this was also found experimentally 175 

by [18].  176 

Table 4: Summary of failure modes observed with varying lb 177 

 Major failure mode, no. (%)  

Set ID Shear pull-out 
Rod/Adhesive 

pull-out 
Timber failure 

Specimens with 
splitting 

LB_80 7 (78%) 2 (22%) 0 1 (11%) 

LB_130 8 (89%) 1 (11%) 0 3 (33%) 

Figure 2: Two primary failure modes observed 

a) Shear pull-out in the 
timber 

b) Failure in rod/adhesive 
interface
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Table 5: Summary of failure modes observed with varying a 178 

 179 

The average strength of specimens that did not split was compared to the average strength of those that 180 

did split. It was clear that when splitting occurred a lower average failure strength was reached.  This 181 

decrease is due to the specimen being weakened by the split in the cross-section of the timber and thus the 182 

having a lower resistance to the applied load. 183 

3.2 Strength 184 

Failure strength was deemed to be the peak strength reached by specimens. The failure strength could be 185 

calculated by either of two methods: By considering the applied load and the geometry of the test 186 

specimen the force in the GiR can be calculated by balancing forces in the system; From strain 187 

measurements taken at mid-span along the GiR the stress in the GiR is calculated using the modulus of 188 

elasticity of the rod material, this is then translated to a force in the rod by considering the cross-sectional 189 

area of the rod. 190 

A linear relationship between measured strain at mid-span and applied force form the testing machine was 191 

observed that allowed strength of the GiR to be calculated. The strain values obtained were used in the 192 

calculation of force in the rod at the mid-span as described above. At failure, strain dropped off 193 

LB_180 6 (67%) 3 (33%) 0 1 (11%) 

LB_230 5 (56%) 4 (44%) 0 1 (11%) 

LB_280  7 (78%) 2 (22%) 0 4 (44%) 

LB_330 7 (78%) 2 (22%) 0 5 (56%) 

LB_380 8 (89%) 1 (11%) 0 2 (22%) 

LB_600 4 (44%) 0 5 (56%) 4 (44%) 

 Major failure mode (Number of specimens)  

Set ID Shear pull-out 
Rod/Adhesive 

pull-out 
Timber failure 

Specimens with 
splitting 

A_30 7 (78%) 2 (22%) 0 4 (44%) 

A_42 7 (78%) 1 (11%) 1 (11%) 1 (11%) 

A_54 8 (89%) 1 (11%) 0 0 

A_66 6 (67%) 3 (33%) 0 1 (11%) 

A_112.5 8 (89%) 1 (11%) 0 4 (44%) 
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immediately. ERS gauges in most specimens were destroyed by the explosive type failure therefore 194 

readings beyond the point of failure were not possible. 195 

In most specimens, the value of strength calculated by geometry was slightly lower than that from strain 196 

readings. This is thought to be due to small discrepancies in dimensions of the sawn timber specimens. 197 

The strength values presented in this paper are those derived from geometry since in a few specimens the 198 

ERS gauge at mid-span failed before peak loading was reached therefore readings were incomplete, also 199 

there was much larger variation in the strengths determined from measured strain.  200 

Table 6 summarises mean failure strengths for each set calculated from the peak loads reached over an 201 

average of nine specimens. Standard deviations were calculated for each specimen set and used to 202 

determine the variation within each set, presented as coefficient of variation where zero indicates no 203 

variation within the set and increasing values show increased variation. 204 

Table 6: Summary of failure strengths for varying embedded length 205 

 
LB_ 
80 

LB_ 
130 

LB_ 
180 

LB_ 
230 

LB_ 
280 

LB_ 
330 

LB_ 
380 

LB_ 
600 

Mean failure 
strength, Pu (kN) 

29.71 42.60 59.72 64.16 74.57 79.74 75.79 93.12 

Standard 
deviation (kN) 

7.70 8.73 6.98 11.05 13.71 8.31 9.24 13.10 

Coefficient of 
variation 

0.55 0.44 0.25 0.37 0.39 0.22 0.26 0.30 

Influence of embedded length 206 
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A clear increase in pull-out strength was observed with an increase in embedded length. Figure 3[CO1] 207 

shows this relationship. An increase in pull-out capacity of 213% was observed between the shortest 208 

embedded length of 80mm and the longest length of 600mm.  It was expected that this trend would be 209 

found since the larger interface area with each increase in embedded length provides additional resistance 210 

to the applied loading. This is in line with research by [2], [15], [19] amongst others. However, the 211 

plateau found by [17] was not observed. 212 

The rate of increase of pull-out strength decreased at the higher embedded lengths. This suggested that 213 

strength was approaching a plateau as stress capacities of the connection were being reached and that 214 

perhaps the entire glued length was not resisting the applied loading effectively.  It is believed that the 215 

bending effects present in this investigation contribute to this finding, similar to the findings of [20].  216 

With increasing embedded length failure mode noticeably shifted from mainly failing in timber shear in 217 

the shortest embedded length to almost half the specimens experiencing a compressive failure of the 218 

timber in longest embedded length, this is detailed in Table 4. This change in failure mode was perhaps a 219 

Figure 4: Average shear stress at timber/adhesive interface at peak load 

Figure 3: Pull-out strength with increasing embedded length 
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result of shear stress at the timber/adhesive interface decreasing with increasing embedded length. 220 

Average shear stress at peak load was calculated by dividing the peak strength by the surface area of the 221 

timber/adhesive interface. The relationship between average timber/adhesive shear stress at peak load and 222 

embedded length is detailed in Figure 4. Shear stress at the timber/adhesive interface exhibited a general 223 

decrease with increasing embedded length. This had been anticipated since the longer embedded length 224 

results in a larger interface area to resist applied loading. 225 

 226 

Comparison with design guidelines 227 

Embedded length is one of the recurring variables that appear in most published design equations. A 228 

comprehensive review of the most commonly used design equations is presented in [21]. Comparing the 229 

experimental data obtained in this research to the three most used design guidelines, as illustrated in 230 

Figure 5, it can be seen that the data follows the same trend as both the German timber design codes, DIN 231 

1052 (DIN 2008) and Riberholt’s design equations [23]. The experimental strengths are significantly 232 

stronger than both the DIN and Riberholt predictions however this is to be expected since the guidelines 233 

are designed to give a safe prediction of strength. The GIROD prediction gives a completely linear 234 

behaviour. While this is conservative at shorter embedded lengths compared to the experimentally 235 

derived data, beyond an embedded length of 330mm the design prediction is significantly higher than the 236 

Figure 5: Comparison of experimental results with published formulae 
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experimentally obtained strengths and therefore unsafe.  237 

 238 

An embedded length of 280mm was identified as the optimum embedded length. Although strength 239 

continued to increase at embedded lengths beyond this value, the rate of increase was lesser than previous 240 

to this point. In addition, the capacity of 280mm embedded rods is sufficient to withstand the normal 241 

loading expected to be carried by these GiRs. 242 

Influence of edge distance 243 

Following a relatively high instance of splitting among the first phase of pull-out testing, particularly in 244 

the optimum embedded length set LB_280, a second testing phase was established to determine the effect 245 

of splitting by increasing edge distance and whether this increase in edge distance would have any effect 246 

on strength or failure mode of specimens. The results of this phase are presented in Table 7. 247 

Table 7: Summary of experimental results with varying edge distance 248 

Failure strengths were calculated geometrically as per the same method used for the first phase of testing. 249 

Average pull-out strength across all specimens in this phase was 68.75kN with a standard deviation of 250 

6.95kN, corresponding to a coefficient of variation of 0.101. This was comparable to the optimum 251 

specimen set identified in the first phase of testing (LB_280) which had slightly higher average strength 252 

of 74.6kN but with more variation, having a standard deviation of 12.9kN. 253 

A drop in average strength was seen where a = 4.5d and a = 5.5d with strengths where a = 4.5d varying 254 

from the mean by over one standard deviation. The specimens in these sets were examined in case of any 255 

obvious defects such as large knots or pre-existing cracks but none were present. Several samples were 256 

then taken from these specimens to inspect the strength of the timber however again there was no obvious 257 

 
 

 Failure mode  
[No. specimens (Strength)]  

Specimen 
set 

Edge 
dist. 

Overall pull-out 
strength of GiR 

(kN) 

Pull-out with 
timber 

Rod/Adhesive 
Splitting 
present  

A_30 2.5d 74.6  7 (72.6kN) 2 (81.6kN) 4 (66.9kN) 

A_42 3.5d 75.4 8 (73.8kN) 1 (88.8kN) 1 (77.8kN) 

A_54 4.5d 58.7 8 (58.4kN) 1 (61.1kN) 0 

A_66 5.5d 62.1 6 (57.4kN) 3 (71.4kN) 1 (56.1kN) 

A_112.5 9.375d 72.9 8 (72.9kN) 1 (60.1kN) 3 (69.7kN) 
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correlation between the lower strength specimens and strength of the timber. Following these 258 

considerations it was deemed appropriate to present the full complement of results. 259 

It appears that failure mode had no definite influence upon the failure strength with specimens that failed 260 

by a shear pull-out of the timber having an average failure strength of 67kN and those that exhibited 261 

failure between the rod and adhesive failing within one standard deviation at a slightly higher average of 262 

72kN. 263 

As detailed in Table 7, many specimens with the minimum edge distance exhibited splitting. Splitting 264 

was significantly reduced with increasing edge distance with no splitting occurring where a=4.5d or 265 

a=5.5d. Splitting reoccurred in the last specimen set where edge distance was at maximum, a=112.5d. 266 

When comparing specimens where splitting did occur to those that did not experience any splitting it was 267 

evident that splitting resulted in a lower failure strength with an average drop in strength of almost 8%. 268 

This finding is contrary to the findings of [2] who claimed that splitting had no influence on the overall 269 

strength of the GiR. However the previous research used an axial-only pull-out test whilst the GiRs in this 270 

research are under a combination of axial load and bending force and so may behave in a different 271 

manner.  272 

In the case of the research presented in this paper stresses induced by the bending element of the test set-273 

up result in splitting, [24] advocate that splitting occurs because of non-axial loading. Like [2], [24] 274 

reiterate that splitting is not a particular failure mode in itself but rather a symptom of the build-up of 275 

stresses perpendicular to the grain.  276 

The location of the split on the specimen varied from the smallest to largest edge distance. It was 277 

observed that splitting moved from the tension face or both tension face and the side faces in A_30 and 278 

A_42 to along the side faces exclusively in the last A_112.5. This happened because of the build-up of 279 

stresses seeking the shortest route to dissipate. Considering the stress in the system at maximum load, 280 

where a = 2.5d the stress at the rod position was τ = 1.62N/mm2. With the movement of the rod further in 281 

to the specimen this increased with a failure stress at the rod position of τ = 6.34N/mm2 when a = 9.375d 282 

this was approaching the shear strength of the timber fv=8.7N/mm2.  With the lower edge distances, any 283 
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splitting was more likely to happen on the tension face as in this case the split is following the grain of the 284 

timber. 285 

A significant effect on performance of the specimen was seen in assessing the moment capacity of the 286 

specimens. Moment capacity was not used as a measure of performance in the first phase of testing since 287 

edge distance remained constant. However, in this phase moment capacity is perhaps a more important 288 

measure of performance than strength of the section alone. As edge distance increased the distance 289 

between the applied load and the GiR resisting this loading was reduced. Thus, moment capacity of the 290 

section decreased with increasing edge distance since moment capacity is a function of the force and lever 291 

arm. Theoretically, a linear relationship is expected however it can be seen in Figure 6 that this was not 292 

achieved experimentally. The effect of the change in lever arm and the resulting moment capacity is much 293 

more significant than any effect edge distance has on failure mode or pull-out strength of the rod, thus it 294 

could be argued that the change in failure mode becomes irrelevant. 295 

Figure 6: Moment capacity of section with increasing edge distance (Experimental results for 

specimens A_30 to A_112.5) 
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In service, a multiple number of rods may be required to attain the necessary moment resistance. For 296 

instance, from Figure 6 it can be reasoned that to withstand an applied moment of 24kNm either three 297 

rods with an edge distance of 66mm or two rods with an edge distance of 30mm may be used. Group 298 

effects may then come in to play with multiple rods therefore spacing between the rods must be carefully 299 

considered. Taking this in to account 3.5dr (A_42) was identified as an optimum value for edge distance. 300 

At this edge distance, splitting was greatly reduced while strength was maintained. Although it has been 301 

evidenced in this work that there remains a chance that splitting may still occur at 3.5dr, this edge distance 302 

would allow a greater range of spacing options in cases where multiple rods are to be used when 303 

compared to the other edge distances studied herein. 304 

3.3 Deflections 305 

Deflection was recorded at each load point. In all specimens an initial increase of mid-span deflection at 306 

low load was observed. This was perhaps a settling deflection due to the hinges on the test set up having a 307 

few millimetres of movement before they connected. The load-deflection profile for a typical specimen 308 

had a linear section after this initial settlement deflection which allowed calculation of the stiffness of the 309 

system. Where there was a sudden change in deflection this was a result of cracks forming in the 310 

specimen. 311 

With varying embedded length 312 

Figure 7 displays the relationship between load-deflection and increasing embedded length. The values 313 

given are an average deflection over the nine specimens tested in this set. It can be observed that there is 314 

no distinct correlation between increasing embedded length and stiffness in the system. This is an area 315 

that has not been reported on widely in the literature given that the majority of previous research was 316 

conducted in axial-only pull-out test setups. Where a pull-bending test was used in the literature load- 317 

deflection of the system was not recorded (Sena-Cruz et al. 2012). 318 
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With varying edge distance 319 

A definite increase in stiffness was seen with increasing edge distance as illustrated in Figure 8. Stiffness 320 

increased from 0.198 in the smallest edge distance to 0.342 in the largest embedded length.  321 

Figure 7: Load-deflection with increasing embedded length 

Figure 8: Load-deflection with increasing edge distance 
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3.4 Slippage 322 

Slippage (lateral movement) of the rod was recorded at each load point via LVDTs that were mounted on 323 

the timber and rested on a clamp that was fixed at mid-span on the rod. Slippage was corrected for the 324 

elongation of the rod in each case. In most specimens slippage was seen to undergo some initial 325 

settlement after which a linear increase in slippage with increasing load was observed until a sudden 326 

increase at failure corresponding to the pull-out of the rod. 327 

With varying embedded length 328 

Slippage of the failure side was analysed for all embedded lengths and the linear portion of the load-slip 329 

curve was used to evaluate the stiffness of the system. It was evident that there was no definite correlation 330 

between increasing embedded length and stiffness despite the additional rod length providing additional 331 

resistance to loading. 332 

The values of maximum slip at the point just before failure were considered with increasing embedded 333 

length as per Figure 9. In general an increase in slip up to the point of failure was observed with 334 

increasing embedded length. This is similar to the findings of Sena-Cruz et al. (2012) who discovered a 335 

linear relationship between loaded-end slip and increasing embedded length in pull-out tests using a 336 

similar set-up to the one used in this research. It should be noted however that Sena-Cruz et al. (2012) 337 

Figure 9: Slippage at point of failure with increasing embedded length (LB_80 to LB_600) 



19 

 

remarked that due to the nature of the test configuration the slippage of the rod is a difficult variable to 338 

measure and as such the results have a relatively large coefficient of variation. The same concerns were 339 

experienced in this research with coefficient of variation for each embedded length ranging from 0.22 to 340 

0.37. 341 

4 Conclusions 342 

GiRs present an attractive alternative to traditional connections in timber structures as well as having 343 

potential for use in the repair or reinforcement of existing timber structures. Much research has been 344 

conducted on the use of GiRs over the past few decades however little is known about their behaviour 345 

under a load combination of axial and bending forces. Pull-bending tests were used as a method of 346 

assessing the performance of glued-in BFRP rods under such a loading combination and the way in which 347 

the glued length responds to this loading condition was monitored. 348 

Embedded length is considered one of the key variables influencing the strength of GiR connections. It is 349 

seen repeatedly in previous research and can be easily altered in a laboratory environment. Some previous 350 

research has identified a peak in embedded length after which strength ceases to increase however, these 351 

experiments were limited to axial-only testing and often did not test beyond an embedded length lb = 352 

350mm. In this experimental programme embedded lengths ranging from lb = 80mm to lb = 600mm were 353 

tested under a combination of axial and bending forces. An increase in strength was seen with increasing 354 

embedded length, with an increase in strength of approximately 10% beyond the anticipated plateau 355 

region seen by other researchers [25]. Based on the pull-out capacities and failure modes observed an 356 

optimum embedded length of lb = 280mm was identified and proposed for use in future applications. 357 

In the specimens tested in this research, the timber was the weakest element in the connection. It was 358 

therefore anticipated that failure would occur in the timber element, most likely close to the 359 

timber/adhesive interface since this is where stress concentrations would be at their highest. Indeed, this 360 

was found to be the case, with three-quarters of all specimens exhibiting this failure mode. 361 

A small number of specimens failed prematurely due to the occurrence of splitting. The occurrence of 362 

splitting was investigated by increasing the edge distance between the bottom face of the specimen and 363 

the rod axis. An increase in edge distance of one bar diameter was found to reduce instances of splitting 364 
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by a third without inhibiting specimen strength, this lead to a = 42mm (3.5dr) being identified as an 365 

optimum value for edge distance for this set up.  366 
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