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ABSTRACT 

 

Porous conductive polymers are one of important materials, featuring lightweight, large specific surface 

area and high porosity. Non-solvent induced phase separation is widely employed to prepare porous 

polymer sheet materials. Through utilizing water vapor in ambient environment as the non-solvent, a facile 

approach was developed to produce porous conductive polymer nanocomposites using the conventional 

solution-casting method. Without using any non-solvent liquids, porous carbon nanofiber/thermoplastic 

polyurethane (CNF/TPU) nanocomposites were prepared directly by solution casting of their 

dimethylformamide (DMF) solutions under ambient conditions. The strength of the CNF framework 

played a key role in preventing the collapse of pores during DMF evaporation. The dependence of porous 

structures on CNF loading was studied by scanning electron microscopy and porosity measurement. The 

influence of CNF loading on the mechanical properties, electrical conductivity and piezoresistive behavior 

was explored.  
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Introduction 

Thermoplastic polyurethane (TPU) is a kind of multi-block copolymers, typically synthesized from a di-

isocyanate and a long-chain diol with a small molecule diol as the chain extender1. Through end-use-

oriented choice of the di-isocyanates and diols, a huge number of TPUs with various physical properties 

have been developed2. TPU elastomers feature soft segments with glass transition temperature (Tg) lower 

than room temperature (typically, -30 ~ 20 oC)3. The hard segment comprises rigid backbone moieties, 

rich of potential hydrogen-bonding sites (i.e. urethane groups), forming the hard domain through 

microphase separation, and serving as the physical cross-linkage in TPU elastomers4. Owing to their 

mechanical robustness, high resilience, small compression set, and excellent resistance to impacts, 

abrasions, tears, and weather, TPU elastomers have been extensively used over the fields of coatings, 

footwear, automotives and biomedical industry5.  

Recently, electrically conductive TPU composites have arisen comprehensive interest in electrical 

areas like antistatic, electromagnetic shielding and sensing materials6. To prepare conductive TPU 

composites, embedding conductive fillers (e.g. conductive carbon black, nanotubes, nanofibers, graphene, 

silver nanowires, metal microparticles) within TPU elastomers is one attractive method, in terms of the 

advantages of manufacture simplicity, cost-effectiveness, and tuning of conductivity7. However, it is 

difficult to develop highly conductive TPU composites by increasing the loading of conductive fillers and 

simultaneously conserve the outstanding resilience originating from TPU elastomers8. This drawback will 

eventually worsen the stretchability and durability of the material. Porous structures (e.g. foams, sponges, 

aerogels), which feature lightweight, large specific surface area and high porosity, have been explored as 

a promising measure to tackle this issue. The application of porous materials have been widely spread 

over biological scaffolds9, catalyst carriers10, membrane filters11, thermal insulators12, super chemical 

adsorbents13, and energy absorbers14. Meanwhile, porous conductive polymer composites have 

demonstrated great potential in novel electronics, including electromagnetic interference shielding15, 

triboelectric generators16 and piezoresistive sensors17. The introduction of appropriate porous structures 

not only helps to effectively reduce the density and cost, but also enables the materials with improved 

flexibility, stretchability, and strain at break. 

There are many approaches to introduce porous structures to TPU elastomers, such as in situ 

polymerization/batch foaming18, extrusion foaming19, template leaching20, phase inversion21, solution 

blowing22, thermally induced phase separation23, selective laser sintering24, and electrospinning25-27. Most 

of these methods can be readily employed to develop porous conductive TPU composites. For instance, 
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Li et al. printed macroporous CNT/TPU composite materials from CNT-coated TPU particles using 

selective laser sintering28. The resulting materials exhibited high conductivity, good flexibility and great 

durability. The electrical conductivity showed a low percolation threshold of 0.2 wt.% and 0.1 S/m was 

achieved at 1 wt.% CNT loading. Lately, Hou et al. reported a set of porous graphene/TPU composites 

prepared by the infiltration of TPU into graphene scaffolds29. A maximum graphene loading of 10 wt.% 

was achieved, and the porous graphene/TPU composites showed high compression modulus and low 

thermal conductivity. Porous conductive CNT/TPU composites were also developed by using carbon 

dioxide as foaming agent30. It was found the percolation threshold of porous CNT/TPU nanocomposites 

was higher than their solid counterparts, attributed to the volume expanding. Freeze drying method is a 

combination of thermally induced phase separation and template-leaching-like techniques. Porous 

conductive CNT/TPU and graphene/TPU composites prepared by freeze drying exhibited high porosity 

(up to 90%) and well-defined piezoresistive behavior17,31,32. Phase inversion, involving non-solvent 

induced phase separation, is considered as a facile and low-energy-consuming approach to prepare 

membranes with well-defined cell structures33. It was found that when exposed to water vapor, TPU 

dissolved in dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) would be precipitated. If the 

concentration was high enough, the TPU solution would transform into an organogel. But, the porous 

structure in the TPU organogel could not be held during the evaporation of solvent because of the 

evaporation-induced shrinkage, as illustrated in a following section. To avoid the collapse of the porous 

structure, Chen et al. immersed the organogel into non-solvent water to solidify the framework and the 

resultant porous graphene/TPU composites exhibited lower modulus, larger elongation at break, and lower 

hysteresis7.  

In this study, to avoid the collapse of the porous structure in TPU organogel, we utilized carbon 

nanofibers (CNFs) to cement the porous structure and developed a facile approach to produce porous 

conductive TPU nanocomposite films using the conventional solution-casting method. Without using any 

non-solvent liquids, porous CNF/TPU nanocomposites were prepared directly by solution casting of their 

DMF solutions in the ambient environment. The porous structures and their dependence on CNF loadings 

were studied by using scanning electron microscopy (SEM) and porosity measurement. The influences of 

CNF loading on the mechanical properties, electrical conductivity and piezoresistive behavior of the 

porous nanocomposites were investigated. To the best of our knowledge, few studies have declared the 

preparation of microcellular polymer nanocomposites directly by solution casting. This study provides a 

novel and facile approach to produce lightweight conductive polymer films. 
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Results and discussion 

Preparation of porous CNF/TPU nanocomposites 

 

Figure 1. Digital photographs of a TPU DMF solution (0.08 g/mL) (a), TPU DMF organogel at room 

temperature (b) and at 50 oC (c). Cross-section SEM images of TPU samples prepared from TPU 

organogel by solvent exchanging with water (d) and DMF evaporation (e). 

 

As discussed above, TPU DMF solution is not stable when exposed to the humid air at room temperature, 

which is known as water-vapor induced phase separation7. Figure 1a illustrates a TPU DMF solution (0.08 

g/mL). Once removing the cap, the gelation occurred under the ambient conditions, starting at the liquid 

surface and extending into the depths beneath. In this case, the gelation fully completed in 12 h and the 

resultant TPU DMF organogel is shown in Figure 1b. The TPU DMF organogel was found thermally 

responsive such that the sample enclosed in a vial could regain the capability to flow at a temperature 

higher than 50 oC (as shown in Figure 1c) and recovered after cooled down to room temperature. To obtain 

TPU sheets, we removed DMF from the TPU DMF organogel using two methods. One was solvent 
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exchanging with water (immersing the organogel in water followed by drying to remove water); the other 

was allowing the evaporation of DMF in a fume cardboard at room temperature. The cross-section SEM 

images of the resultant two TPU sheets are shown in Figure 1d and 1e. It can be seen that, without the 

solidification using water, the porous structure in the TPU DMF organogel was not able to retain after the 

evaporation of DMF (Figure 1e). It was because that the TPU-phase framework in the organogel was not 

strong enough to withstand the shrinkage caused DMF evaporation. By contrast, owing to the restriction 

from the container, the uneven bottom surface of the DMF-evaporation sample still preserved the traces 

of the porous structure in the TPU DMF organogel. It was also noted that the top surfaces of both samples 

were fully covered by numerous uniform, connected TPU micropartiles (size ~5 µm), suggesting the 

growth of TPU DMF organogel by coalescence processes.34 The morphologies derived from TPU 

aggregation at the liquid surface and in the bulk liquid phase were different, which might be related to the 

diffusion of water vapor and the convective flow induced by DMF evaporation.  

 

Figure 2.  (a) Schematic illustration of the pathway to prepare porous CNF/TPU nanocomposites by 

solution casting. (b) Photographs of a self-standing CNF/TPU DMF organogel (0.3g/0.7g/15mL). SEM 

images of TPU30: the cross section (c) and top surface (d). The inset of c is a photograph of TPU30. 
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Figure 3.  Cross-section SEM images of CNF/TPU nanocomposites: TPU10 (a, b), TPU20 (c, d), TPU30 

(e, f), and TPU40 (g, h). 

 

Rigid conductive fillers were proposed to cement the TPU-phase framework in the organogel so that 

porous structures could be achieved using the conventional solution-casting method. Figure 2a illustrates 

the pathway to utilize CNFs to reinforce the organogel and prepare porous CNF/TPU nanocomposites 

directly by solution casting. The obtained CNF/TPU DMF organogel was quite strong as shown in Figure 

2b. After removing DMF through evaporation, the resultant CNF/TPU nanocomposite sheets were porous 
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and flexible, as shown in Figure 2c. It can be seen from Figure 2d that the top surface of CNF/TPU 

nanocomposites was smoother than that of the neat TPU sample as shown in Figure 1e. This indicates the 

presence of CNFs significantly suppressed the formation of TPU microparticles at the liquid surface 

because they spatially blocked the coalescence of small TPU nucleus particles.34 A set of CNF/TPU 

nanocomposites with various CNF loadings (i.e. 10, 20, 30 and 40 wt.%) were prepared using this method. 

Their porous structures were investigated by SEM, as shown in Figure 3. The straight wires in SEM 

images are individual CNFs. The CNF/TPU nanocomposite with 10 wt.% CNF (TPU10) exhibited 

underdeveloped porous structures (Figure 3a,b), indicating that the CNF-reinforced TPU framework at 10 

wt.% CNF loading was not able to fully withstand the shrinkage caused DMF evaporation. With further 

increasing CNF loading, the porous structures in CNF/TPU nanocomposites became well-developed. 

From Figure 3(c-h), TPU20, TPU30 and TPU40 showed a well-defined open-cell structure and the pore 

size decreased with increasing CNF loading. The porosity (void fraction) of CNF/TPU nanocomposites is 

shown in Figure 4. It can be seen the porosity significantly increased when increasing CNF loading to 20 

wt.% and reached a plateau at approximately 80 %.  

 

Figure 4. Porosity of TPU and CNF/TPU nanocomposite samples 

 

FT-IR spectra were analyzed in order to elucidate the chemical structure of TPU, CNFs and CNF/TPU 

nanocomposites, as shown in Figure S1 and Table S1 in SI. TPU exhibits the characteristic IR absorptions 

of polyether-diol based polyurethanes: 3330 and 3340 cm−1 (N-H stretching in carbamate), 2970 and 2950 

cm-1 (C-H  stretching), 1730 cm−1 (C=O stretching in carbamate), 1596 cm−1 (C=C stretching in benzene 

ring of the rigid isocyanate segment), 1533 cm-1 (amide II in carbamate), 1464 and1413 cm-1 (CH2 

vibrations in polyether diol), 1360 cm-1 (CH3 wagging), 1309 cm-1 (aromatic C-N vibration in carbamate), 
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1254 cm-1 (amide III in carbamate), 1221 and 1160 cm−1 (C-O-C stretching in polyether diol)35,36. It was 

noted that TPU showed only one well-defined peak at 1730 cm−1, corresponding to free C=O37, indicating 

most of carbonyl groups in TPU were not involved in hydrogen bonding. For TPU cast from its THF 

solution, 56% of carbonyl groups were involved in hydrogen bonding37. The difference in the hydrogen-

bonding state of carbonyl groups might be related to the solvent used for solution casting. CNFs show no 

obvious IR absorption peaks and the percent transmittance monotonically increases with the wavenumber 

decreasing, due to their highly graphitic structure, which is in great agreement with previous report38. The 

percent transmittance was significantly reduced with the introduction of CNFs and decreased with 

increasing CNF loading. Resonant Mie scattering (RMieS) was observed39-41, indicated by the pronounced 

oscillation of the baseline around 1740 and 2970 cm−1. This suggests the thickness of TPU phase coated on 

CNFs decreased with increasing CNF loading which is consistent with the SEM observations. 

 

Mechanical properties of porous CNF/TPU nanocomposites 

 

Figure 5. Tensile properties of porous CNF/TPU nanocomposites: representative tensile stress-strain 

curves (a,b), ultimate tensile strength and elongation at break (c), and Young’s modulus (d). (e) Specific 

stiffness vs. specific strength for porous CNF/TPU nanocomposites. 

 

Mechanical properties of porous CNF/TPU nanocomposites were investigated by tensile testing. Figure 

5a and 5b show the tensile stress-strain curves. The averaged results are summarized in Figure 5c and 5d, 
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with the error bars referring to standard deviations. TPU is not an ideal linear viscoelastic material, where 

the modulus changes with the strain42. Ultimate tensile strength, elongation at break, and Young’s modulus 

(at initial linear stage) were 7.41 MPa, 798%, and 2.92 MPa for neat TPU, respectively. In comparison to 

neat TPU, tensile strength and Young’s modulus of TPU10 (with a porosity of 24.3%) were raised by 34% 

and 22%, respectively, due to the reinforcement effect of CNFs. For highly porous samples, namely 

TPU20 (80.1% porosity), TPU30 (87.3% porosity) and PU40 (84.5% porosity), their tensile strength and 

Young’s modulus were remarkably lower than that of neat TPU and TPU10 owing to high porosity. It was 

noticed that there was no clear trend in the Young’s modulus. This was caused by the fact that a higher 

CNF loading is expected to lead to a higher Young’s modulus in its non-porous TPU nanocomposite; yet 

the Young’s modulus of a porous nanocomposite is also inversely affected by the porosity which is again 

dependent on the CNF loading. The values of elongation at break were 810%, 149%, 87% and 12% for 

TPU10, TPU20, TPU30 and TPU40, respectively. The dramatic decline in elongation at break from 

TPU10 to TPU20 can be explained by the fact that the latter had a much higher porosity which reduced 

the uniformity of the material, resulting in more defects and other stress concentrations. Although these 

values were lower than that of neat non-porous TPU, the mechanical performance of TPU20, TPU30 and 

TPU40 was commendable considering such high porosities. Specific stiffness and specific strength of 

samples are shown in Figure 5e. It can be seen that TPU30 presented the best stiffness-to-weight ratio 

while TPU10 showed the best strength-to-weight ratio. 

 

Electrical properties of porous CNF/TPU nanocomposites 

The CNF network provides a continuous conductive network in the insulating TPU matrix. The 

experimentally determined electrical conductivity (σ) increases with the CNF loading, from 2.66×10-3 

S/cm with 10 wt.% CNFs to 2.98×10-2 S/cm with 40 wt% CNFs (Figure 6a). It was found that the 

resistance of CNF/TPU nanocomposites changed under stretching. At 50% stain, the resistance was raised 

by 17.2 and 1.7 times for TPU10 and TPU20, respectively. The increment at 30% stain was 5.0, 0.8 and 

1.7 times for TPU10, TPU20 and TPU30, respectively.  It suggests that highly porous samples, TPU20 

and TPU30, exhibited less sensitive dependence on strain, in comparison with TPU10. This means the 

high porosity could significantly reduce the interference of stretching operations on the conductivity and 

benefit the stability of the electrical conductive performance of materials in the application of flexible 

electronics. 
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Figure 6. (a) Electrical conductivity of CNF/TPU nanocomposites versus the CNF loading. (Inset) 

Demonstration of the electrically conductive property of TPU40 in an LED circuit. (b) The normalized 

resistance (R/R0) of CNF/TPU nanocomposites as a function of strain. (c) R/R0 of CNF/TPU 

nanocomposites as a function of time at different strains as represented by percentages in blue. 

 

The relaxation behavior of each sample at different strains is shown in Figure 6c. The sample was 

stretched to a desired strain (e.g., 5% and 10%) at a speed of 50 mm/min and then waited for 1 min before 

further stretching. It is apparent that all the samples had a remarkable creep and the relaxation amplitude 

increased with increasing strain. Taking TPU30 for an example, the relative resistance relaxed by 0.11 at 

5% strain and 0.35 at 30% strain. This overshoot behavior was commonly observed in conductive 

elastomer composites43,44. This was caused by the relaxation of conductive networks in conductive 

elastomer nanocomposites, which was expected to be controlled by the relaxation behavior of elastomer 

matrix. Therefore, to determine the relaxation time, the experimental relaxation curves of the CNF/TPU 
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nanocomposites as a function of time (t) at different strains were fitted with the stretched exponential 

Kohlrausch’s equation (1)45. 

 

 

Figure 7. Time dependence on the normalized resistance for CNF/TPU nanocomposites at different 

strains. 

 

��������	
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��

                     (1) 

Here, R∞, R1, τ, and β refer to the fitting constants. τ is the relaxation time and β is the stretching 

parameter (0< β≤1). The experimental data were well fitted with the theoretical values and the obtained 

relaxation times are given in Figure 7. The relaxation time reflects the responding rate of the sample to 

reach the stable resistance. It can be seen the relaxation time at 5% strain for each sample was in the range 

of 14 -20 s. The differences in relaxation time might be related to the different porous structures in 
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nanocomposites and the different CNF loadings. The relaxation time increased with increasing strain (For 

TPU30, the relaxation time was 14.5 s at 5% strain, 16.9 s at 15% strain, and 18.0 s at 25% strain), because 

of the non-equilibrium rate dependent response of TPU. That is consistent with previous studies on stress 

relaxation behavior of TPU4,46. 

 

Figure 8. Piezoresistive properties of porous CNF/TPU nanocomposites: the normalized resistance versus 

pressure (a) and the normalized resistance versus time for the as-established device in response to pulse 

pressure application of approximately 4.8 MPa. The inset of (a) is the schematic setup for the pressure-

responsive test. 
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Conductive elastomer composites usually demonstrate the piezoresistive effect, owing to the raised 

electrical conductivity caused by the compression-induced reduction in the thickness of insulating 

polymer layer47. The piezoresistive effect in CNF/TPU nanocomposites was investigated, as shown in 

Figure 8a. The device setup with a sandwich configuration was shown in the inset of Figure 10a. As 

anticipated, the resistance of TPU10 decreased with increasing pressure in the range from 1.6 MPa 

pressure up to 9.5 MPa. The resistance was reduced by ~10% at 9.5 MPa. Highly porous CNF/TPU 

nanocomposites (i.e., TPU20, TPU30 and TPU40) demonstrated stronger piezoresistive effects in 

comparison to TPU10. For instance, the resistance reductions for TPU20, TPU30 and TPU40 were 

approximately 40% at 9.5 MPa.  To demonstrate repeatability of the piezoresistive behavior, dynamic 

pressure sensitivity was monitored while measuring the resistance variations with the repeated application 

of ~4.8 MPa for five cycles (Figure 8b). Under a compression of ~4.8 MPa, the measured resistance 

becomes noticeably lower; once the force was released, the resistance gradually increased to the initial 

value. The as-established device exhibited a significant change in the resistance and good reproducible 

dynamic responses. 

 

Conclusions 

Porous conductive TPU nanocomposites were successfully prepared by a conventional solution-casting 

method. As a rigid conductive filler with high aspect ratio, CNFs were utilized to cement the porous 

structure in the water vapor-induced TPU organogel. The CNF loading played an important role in the 

formation of final porous structures in TPU nanocomposites. With a CNF loading lower than 10 wt.%, 

the CNT-reinforced TPU-phase framework was not strong enough to withstand the shrinkage caused by 

DMF evaporation. With increasing CNF loading higher than 20 wt.%, the porous structures in TPU 

nanocomposites became well-developed. The porosity significantly increased with increasing CNF 

loading to 20 wt.% and reached a plateau at approximately 80%.  The electrical conductivity of TPU 

nanocomposites increased with the CNF loading. The highest conductivity was achieved as 2.98×10-2 

S/cm with 40 wt.% CNFs. The conductivity for all nanocomposite samples exhibited relaxation behavior 

due to the viscoelasticity of TPU elastomer. The mechanical properties of highly porous samples were 

different from the solid samples. TPU30 presented the best specific stiffness. All nanocomposite samples 

showed piezoresistive behavior. Highly porous CNF/TPU nanocomposites demonstrated stronger 

piezoresistive effect in comparison to TPU10, exhibiting good reproducible dynamic responses in 
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dynamic tests. This study provides a novel and facile approach to produce lightweight conductive polymer 

films which have potential in pressure sensors, electromagnetic interference shielding, and filtration 

membranes. 

 

Methods 

Materials 

Thermoplastic polyurethane elastomer (IROGRAN PS 455-203) was obtained from Huntsman, which has 

a Shore A hardness of 78 and density of 1.19 g/cm3. Carbon nanofibers (outer diameter: 100 nm and 

length: 20-200µm) and N,N-dimethylformamide (99.8%) were purchased from Sigma-Aldrich. All 

materials were used as received.   

 

Preparation of porous CNF/TPU nanocomposites 

CNF/TPU nanocomposites with various concentrations were prepared by solution blending followed by 

solution casting.  Firstly, CNFs (0.3 g) were dispersed into 15 mL DMF by sonication in an ultrasonic 

bath (Fisherbrand 15051) for 30 min. Then, a desired amount of TPU was weighed and dissolved in the 

suspension under magnetically stirring for 5 hours. The resultant mixture was poured into a 

polytetrafluoroethylene (PTFE) dish and was kept in a fume cupboard for 2 h to allow the formation of 

TPU DMF organogel at a relative humidity of ~80% and for another 22 h to allow the evaporation of 

DMF. The residual solvent was removed in vacuum at 40 oC for 24 h. The residual solvent was removed 

in vacuum at 40 oC for 24 h. Samples with 0%, 10%, 20%, 30% and 40% mass percentages of CNFs were 

obtained by this method and designated as TPU, TPU10, TPU20, TPU30 and TPU40, respectively. 

 

Characterization  

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out on a 

Frontier Optica spectrophotometer (PerkinElmer). The wavenumber region was between 4000 to 600 cm−1 

with a resolution of 1 cm−1. The cross-section and top surface of TPU and CNF/TPU nanocomposites 

were investigated by scanning electron microscopy (SEM) on Inspect F (FEI) using a 10 kV acceleration 

voltage. For cross-sectional imaging, the samples were fractured in liquid nitrogen and coated with gold 

prior to SEM observations. Tensile tests were carried out at room temperature (25 oC) on a Hounsfield 

universal testing machine (Tinius Olsen Ltd.), where a 10 N load cell and a 100 mm/min testing speed 

were employed. For each sample, five specimens were tested. The electrical properties of the sample were 
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monitored using 4-point probes method via a benchtop Agilent 34401A multimeter (Keysight 

Technologies Inc.). For the conductivity test, a disk-like sample (Φ16 mm) was used and contacted to the 

circuit via two plate aluminium electrodes. For the piezoresistivity measurement, the resistance of the 

sample was recorded under various external pressures applied by the Hounsfield universal testing machine. 

The porosity (void fraction) of samples was calculated from the true density measured on AccuPyc-II-

1340 pycnometer (Micromeritics Instrument Corp.) and the bulk density. 
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