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2 ABSTRACT 

Lung cancer, particularly non-small cell lung cancer (NSCLC) subtype, is the leading 
cause of cancer-related death related worldwide. Numerous gene polymorphisms in 
DNA repair, folate and glutathione pathways have been associated with susceptibility 
of NSCLC. We conducted this study to evaluate the effects of ERCC1, ERCC2, ERCC5, 
XRCC1, XRCC3, MTHFR, MTR, MTHFD1, SLC19A1 and GSTP1 gene polymorphisms on 
risk of NSCLC. 

No association between these gene polymorphisms and susceptibility of NSCLC were 
found in our patients, suggesting that genetic variations in genes involved in DNA 
repair, folate and glutathione metabolism pathways may not influence the risk of 
NSCLC.  

3 INTRODUCTION 

Lung cancer is one of the most common and serious types of cancer in the world, being 
the main cause of cancer mortality worldwide [1]. The incidence of lung cancer is 
approximately 14% in both genders (second after prostate cancer in men and breast 
cancer in women)[1]. The latest statistics of cancer in the United States have estimated 
224,300 new cases and 158,000 deaths in 2016 [1].  

Lung cancer is classified into two major types: small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC), which is divided into three types: squamous cell 
carcinoma, adenocarcinoma and large cell carcinoma [2, 3]. NSCLC cases account for 
approximately 80% of all lung cancers [4-6]. Most patients are diagnosed in older age 

(65 years) and in late-stage (IIIB-IV), according to the guidelines of the American Joint 
Committee on Cancer (AJCC) showing low overall survival rates at 5 years (5% for IIIB 
and 1% for IV stages) [4, 6, 7]. 

Smoking is by far the biggest cause of lung cancer (It causes more than 80% of the 
cases), although different genetic factors may have an increased risk of lung cancer. 
Recently, genetic factors, such as single nucleotide polymorphisms (SNPs) have 
showed a strong association with risk of lung cancer [2, 8]. One of the most studied 
pathway is repaired DNA, which plays an essential role on carcinogenesis [9]. The DNA 
may be damaged through many factors such as tobacco smoke, dietary factors, 
infectious agents and radiation [10]. These modifications may introduce errors during 
the replication and the transcription, that induce dysfunction of repair DNA machinery 
[10]. The leading systems involved in repairing DNA damage are nucleotide-excision 
repair (NER), base excision repair (BER) and double-strand break repair (DSB) [11, 12]. 
NER pathway is involved in repairing helix-distorting DNA lesions through ERCC1 
(excision repair cross-complementing group 1) and ERCC2 (excision repair cross-
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complementation group 2), ERCC5 (excision repair cross-complementation group 5) 
genes [11]. Defective repair in Chinese hamster cells 1 (XRCC1) is the key gene in BER 
pathway, that removes damaged DNA by small, non-helix-distorting lesions [13]. Most 
serious modifications, such as deletions and chromosomal aberrations, are repaired by 
DBS pathway, through X-ray repair complementing defective repair in Chinese hamster 
cells 3 (XRCC3) gene [14]. Therefore, polymorphisms in these genes may play a crucial 
role on development of lung cancer [15-23]. 

Other pathways involved in risk of lung cancer are folate and glutathione metabolism. 
Folate metabolism is involved in DNA synthesis and DNA methylation [24]. The MTHFR 
(methylenetetrahydrofolate reductase), MTHFD1 (methylenetetrahydrofolate 
dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1) and MTR (5-
methyltetrahydrofolate-homocysteine methyltransferase) enzymes are involved in 
methylation of DNA. Genetic alterations in these genes are associated with aberrant 
methylation of tumor-suppressor genes and hypomethylation of proto-oncogenes 
[25]. SLC19A1 (reduced folate carrier 1) is also one of the key genes in folate pathway, 
because of its function as folate transporter [26]. In fact, polymorphisms in this gene 
are related with DNA synthesis disorders that lead to genomic instability [27]. 
Therefore, genetic variations in these genes may lead to alteration in the DNA 
methylation and synthesis, inducing tumorigenesis [28-32]. The damage caused by 
cytotoxic and carcinogenic agents is catalysed by glutathione transferases enzymes, 
such as GSTP1 (glutathione S-transferase P1) [33]. This gene, which is located in 
chromosome 11q13, is mainly expressed in lung tissues and exerts an important 
function on inhaled carcinogens, such as tobacco carcinogens [34-37]. Thus, 
polymorphisms in GSTP1 are believed to be associated with risk of lung cancer [37, 38]. 

Based on above, we conducted this study to evaluate the effects of ERCC1, ERCC2, 
ERCC5, XRCC1, XRCC3, MTHFR, MTR, MTHFD1, SLC19A1 and GSTP1 gene 
polymorphisms on risk of NSCLC. To prepare this paper a thorough search was made. 
These SNPs were selected based on their effects on gene or protein 
function/expression, etc confirmed by data from biochemical/function studies 

4 MATERIAL AND METHODS 

A retrospective case-control study was performed. 

1.1 Study Subjects  

This study involved 174 NSCLC cases and 298 controls of South Spanish Caucasian 
origin. The eligible cases included patients histologically or cytologically diagnosed as 
NSCLC between 2003-2015 at the University Hospital Virgen de las Nieves, Granada, 
Spain. The participants of control group were Caucasian individuals older than 18 years 
from the same geographic area (South Spain), with available follow-up records at the 
same hospital. Individuals with prior cancer history were excluded from this study. The 
subjects enrolled in this case-control study provided their written informed consent 
form for blood/saliva sample collection and donation to the Biobank. The identification 
of samples was based on non-patient identifiers and they were treated confidentially. 

This case-control study was conducted in accordance with the declaration of Helsinki 
under the approval of the Ethics and Research Committee of the Sistema Sanitario 
Público de Andalucía Biobank.  

ACCEPTED M
ANUSCRIP

T



 5 

1.2 Sociodemographic and clinical variables 

Sociodemographic (gender, smoking status and age at diagnosis) and clinical variables 
(previous lung disease) were collected from clinical records. Smoking status was 
classified as current-smokers, former-smokers and never-smokers. Individuals were 
categorized as never smokers if they smoked less than 100 cigarettes; former smokers 
had quit at least 5 years prior to the recruitment and current smokers continued to 
smoke or quit less than 5 years prior to the recruitment. Tumor histology and stage 
were also collected for the case group. Tumor staging was categorized according to the 
guidelines of the American Joint Committee on Cancer (AJCC) [39]. 

1.3 Genetic variables 

1.3.1 DNA isolation 

DNA samples isolated from blood or saliva were obtained from the Hospital 
Universitario Virgen de las Nieves Biobank, a part of the Sistema Sanitario Público de 
Andalucía Biobank.  

1.3.2 Detection of gene polymorphisms 

ERCC1 (rs11615), ERCC1 (rs3212986), ERCC2 (rs13181), ERCC2 (rs1799793), ERCC2 
(rs50872), ERCC2 (rs238405), ERCC2 (rs238416), ERCC5 (rs104778), ERCC5 (rs17655), 
ERCC5 (rs2296147), ERCC5 (rs2094258), ERCC5 (rs873601), XRCC1 (rs1799782), XRCC1 
(rs25487), XRCC3 (rs861539), MTHFR (rs1801131), MTHFR (rs1801133), MTHFD1 
(rs2236225), MTR (rs1805087), SLC19A1 (rs1051266) and GSTP1 (rs1695) gene 
polymorphisms were analyzed by Real-Time PCR using TaqMan® probes. Genotyping 
methodology was previously described [40]. Briefly, the presence of wild-type and 
variant alleles was defined by comparing the relative end-point fluorescence created 
by the degradation of each fluorescently labelled TaqMan® probe (FAM/VIC). Allelic 
calls were determined using StepOne™ Software v2.3. To evaluate internal 
consistency, 86% of samples were duplicated, and 15% of the results were confirmed 
by sequencing analysis.  

1.4 Statistical Analysis 

Descriptive analysis was performed using R 3.0.1 [49]. Quantitative data were 
expressed as the mean (± standard deviation) for normally-distributed variables or 
medians and percentiles (25 and 75) for non-normal distributed variables. The Shapiro-
Wilks test was performed to assess normality.  

Hardy-Weinberg equilibrium and pairwise haplotype frequencies were estimated, and 
Lewontin’s D prime (D’) and the linkage disequilibrium coefficient (r2) were calculated. 
The bivariate association between NSCLC risk and polymorphisms was assessed for 
multiple models (genotypic, additive, allelic, dominant and recessive), using the 
Pearson’s chi-square and Fisher’s exact test, and evaluated by odds ratio (OR) and their 
corresponding 95% confidence intervals (CI). The models were defined as follows: 
allelic (D vs d), dominant ((DD, Dd) vs dd), recessive (DD vs (Dd, dd)) and genotypic (DD 
vs Dd vs dd) and additive, being D the minor allele and d the major allele. Permutation 
analysis (EMP1) was used for multiple comparisons, that compares the observed 
statistic with 100,000 statistics obtained in permutations in the correspondent SNP. To 
control the family-wise error rate when testing multiple SNPs, the observed statistic 
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was compared with the maximum of permuted statistics over all SNPs (EMP2). 
Unconditional multiple logistic regression models (genotypic, dominant and recessive) 
were considered to determine the influence of potential confounding variables on the 
risk of lung cancer. All tests were two-sided with a significant level of p<0.05, and were 
performed using the free, open-source whole genome association analysis toolset R 
3.2.2 or PLINK [41, 42]. 

2 RESULTS 

2.1 Patients characteristics 

Clinical, sociodemographic and pathologic characteristics of the 174 NSCLC patients 
and 298 controls are described in Table 1. The patients had an average age of 

60.6710.58 and  consisted of 109 adenocarcinomas (109/174; 62.64%) and 61 
squamous cell carcinoma (61/174; 35.06%), most of them with advanced stage 
(119/174; 68.39%). The median age for the controls was 72.90 [67,80], and the 
proportion of current smokers was lower in this group (p<2.2·10-16; Table 1). 
Distribution of previous lung disease was similar in both groups (p=0.618; Table 1). 

2.2 Genotype distribution 

Genotype frequencies were in agreement with the values expected under the Hardy-
Weinberg equilibrium model. Linkage disequilibrium values D’ and r2 are shown in 
Table S1.  No linkage disequilibrium was showed in any case. All SNPs presented minor 
allele frequencies over 1%, therefore none of them were excluded from the analysis 
(Table S2). 

2.3 Influence of gene polymorphisms on risk of NSCLC 

The bivariate analysis was performed in multiple models: genotypic, additive, allelic, 
dominant and recessive (Table 2). ERCC5 rs104778 was the only gene polymorphism 
associated with risk of NSCLC in the recessive model. Carriers of the CC genotype were 
in higher risk of NSCLC compared with those with T allele (p=0.04507; OR=1.624; 
CI95%=1.005, 2.617). This significant association was confirmed after adjusting by 
permutation analysis (Table 3). However, no significant association was found in the 
logistic regression analysis (Table 4). Similarly, no significant differences for other gene 
polymorphisms (rs11615, rs3212986, rs13181, rs1799793, rs50872, rs238405, 
rs238416, rs17655, rs2296147, rs2094258, rs873601, rs1799782, rs25487, rs861539, 
rs1695, rs1801131, rs1801133, rs2236225, rs1805087 and rs1051266) in allele or 
genotype frequencies were shown between NSCLC patients and controls (Table 2).  

5 DISCUSSION 

Smoking is the main risk factor for lung cancer development. However, genetic 
alterations in genes involved in DNA repair pathway, folate and glutathione 
metabolisms have been reported to play a crucial role in risk of NSCLC. We conducted 
this study to evaluate the effect of variants in genes involved in DNA repair, folate and 
glutathione metabolism pathways on NSCLC risk. 

DNA repair pathway plays a crucial function in protecting against gene mutation 
caused by carcinogenesis. ERCC1 is the key enzyme in the NER pathway [43]. ERCC1 
rs11615 and rs3212986 gene polymorphisms are the most studied [20]. A meta-
analysis, which evaluated 11 studies from Caucasian and Asian population (5009 
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cases/5542 controls) reported that in the overall population individuals carrying at 
least one C allele of ERCC1 rs11615 gene polymorphism were in lower risk of NSCLC 
(OR=0.90; CI95%=0.81, 0.99; I2=56.3%; Pheterogeneity=0.011; C vs T) [20]. However, 
stratified analysis by ethnicity showed no significant association between rs11615 and 
lung cancer risk in either Asian or Caucasian subgroups [20]. Similarly, a meta-analysis 
that included 3 studies with 3060 cases and 2729 controls from Caucasian and Asian 
population failed to find an association between ERCC1 rs3212986 and NSCLC 
incidence (OR=1.03; CI95%=0.95, 1.11; I2=0%; Pheterogeneity=0.746; A vs C)  [20]. In our 
study, we did not find a significant association between neither of those gene 
polymorphisms and risk of NSCLC, which was consistent with the results of both meta-
analyses in Caucasian population. ERCC2 also plays an essential function on DNA repair 
pathway [44]. Numerous SNPs in ERCC2 gene have been described, being ERCC2 
rs13181 and rs1799793 the most investigated [16, 21]. A meta-analysis comprising 28 
studies, with 23370 subjects (10242 cases/13128 controls) from Caucasian and Asian 
origin has recently evaluated the role of ERCC2 Lys751Gln polymorphism in risk of lung 
cancer [21]. This meta-analysis presented the C allele of ERCC2 rs13181 as an 
increased risk factor for developing lung cancer, both in overall population (OR=1.186; 
CI95%=1.089, 1.292; Pheterogeneity=0.000; A vs GG) and subgroup analysis (Caucasian: 
OR=1.113; CI95%=1.033, 1.199; Pheterogeneity=0.005; C vs AA and Asian: OR=1.252; 
CI95%=1.015, 1.544; Pheterogeneity=0.238; C vs AA) [21]. For ERCC2 rs1799793, a meta-
analysis analyzed a total of 17 studies involving 5820 lung cancer cases and 7378 
controls showed that Asian and smoking carriers of ERCC2 rs1799793-A allele were in 
higher risk for developing NSCLC (OR=1.84; CI95%=1.31, 2.27; Pheterogeneity=0.238; A vs GG 
and OR=1.56; CI95%=1.31, 1.87; Pheterogeneity=0.528; A vs GG, respectively) [16]. However, 
in our study we did not find a significant association between ERCC2 rs13181 and 
rs1799793 gene polymorphisms and risk of NSCLC. We also evaluated the role of other 
ERCC2 gene polymorphisms (rs50872, rs238405 and rs238416) on risk of NSCLC, but no 
significant association was detected either. To date, no other studies have explored 
the association between these polymorphisms and NSCLC incidence. Other gene with 
an important role on DNA repair pathway is ERCC5 [45]. ERCC5 rs17655 and rs104778 
gene polymorphisms are the most studied [17]. Recently, a meta-analysis has 
evaluated the effect of ERCC5 rs17655 on risk of lung cancer [17, 18, 22]. This meta-
analysis gathered 6 studies from Caucasian and Asian population including a total of 
2293 patients and 2586 controls, and reported higher risk of NSCLC for CC genotype 
(OR=1.24; CI95%=1.04, 1.48; I2=40.8%; Pheterogeneity=0.13; CC vs GG) [17]. No significant 
association was observed in our patients between ERCC5 rs17655 and risk of NSCLC. 
The ERCC5 rs104778-CC genotype has been associated with a significantly increased 
risk of lung cancer (OR= 1.79, CI95%= 1.19, 2.63; CC vs TT) in Caucasian population but 
not in Asian (OR= 1.23, CI95%= 0.53, 2.85; CC vs TT) [18, 22]. In our study, the recessive 
model was in consonance with these results. However, the logistic regression analysis 
did not show significant association. We also analyzed ERCC5 rs2296147, rs2094258 
and rs873601 gene polymorphisms, but they did not show any effect on NSCLC risk. To 
date, no other studies have evaluated the role of these gene polymorphisms on risk of 
NSCLC. XRCC1 is the main gene in DSB pathway [13]. XRCC1 rs1799782 and rs25487 
gene polymorphisms are the most studied [15, 23]. For XRCC1 rs1799782 
polymorphism, a meta-analysis, which comprised a total of 16 studies with 4848 cases 
and 6592 controls from Caucasian and Asian origin, has reported that individuals 
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carrying the AG genotype had lower risk of lung cancer (OR=0.88; CI95%=0.79-0.97; 
Pheterogeneity=0.37; AG vs AA) [15]. No other associations were significant (OR=1.07; 
CI95%=0.85-1.33; Pheterogeneity=0.21; GG vs AA and OR=0.91; CI95%=0.83-1.00; 
Pheterogeneity=0.21; G vs AA) [15]. Recently, a study that recruited 222 healthy controls 
and 102 patients with lung cancer from Caucasian origin has described increased risk 
for lung cancer for the GG genotype (OR=10.667; CI95%=1.309-86.933; p=0.007; GG vs 
A)[23]. The XRCC1 rs25487-A allele was proposed as protective for lung cancer in a 
meta-analysis that included a total of 30 studies with 10214 cases and 12599 controls 
(OR=0.86; CI95%=0.77-0.97; Pheterogeneity=0.08; G vs AA) [15]. However, in our study, no 
significant association for none of these gene polymorphisms was found. XRCC3 is the 
most important gene in DBS pathway [14, 46]. XRCC3 rs861539 gene polymorphism is 
the most relevant [19]. A recent meta-analysis has been performed to evaluate its role 
on risk of lung cancer [19]. A total of 21 studies, including 6880 lung cancer cases and 
8329 controls from Caucasian and Asian population, were included, but no significant 
association was found (OR=1.02; CI95%=0.91-1.13; I2=59%; Pheterogeneity=0.0006; T vs C) 
[19]. Our study is in consonance with this result, since we did not find significant 
association between XRCC3 rs861539 and risk of NSCLC.  

Other pathways involved in risk of NSCLC are folate and glutathione metabolism. 
Several proteins are crucial in folate metabolisms such as MTHFR, MTHFD1, MTR and 
SLC19A1 and have been found to be associated with risk of lung cancer [28-32]. Two 
polymorphisms in MTHFR, rs1801131 and rs1801133 are the most studied [29, 30]. For 
MTHFR rs1801131, a meta-analysis that included a total of 7 studies with 5087 cases 
and 6232 controls from Asian origin, reported no significant association with risk of 
lung cancer (OR=0.99; CI95%=0.93-1.05; I2=24.4%; Pheterogeneity=0.24; C vs A) [29]. 
Similarly, we did not found a significant association between MTHFR rs1801131 and 
risk of lung cancer. The MTHFR rs1801133-TT genotype has been associated with 
higher risk of lung cancer in a meta-analysis that comprised a total of 19 studies with 
11644 cases and 12024 controls from Caucasian and Asian population (OR=1.19; 
CI95%=1.03-1.37; I2=61%; Pheterogeneity=0.0003; TT vs C) [30]. However, we did not find a 
significant association between MTHFR rs1801133 and risk of lung cancer. One of the 
most investigated polymorphisms in MTHFD1 gene is rs2236225. The importance of 
MTHFD1 rs2236225 has been evaluated in a previous study composed by 500 lung 
cancer patients and 517 controls from Asian origin [31]. Although the T allele of 
rs2236225 polymorphism in MTHFD1 was associated with lower risk of lung cancer 
[31], this effect was not confirmed in our study (OR=0.76; CI95%=0.59-0.99; T vs CC). 
The role of SLC19A1 and MTR gene polymorphisms on risk of lung cancer has also been 
previously studied. In particular, SLC19A1 rs1051266 and MTR rs1805087 have been 
investigated, but no significant results have been reported [28, 31, 32]. Thus, our 
results were in agreement with these previous studies. GSTP1 is the key enzyme 
involved in glutathione metabolism [47]. The most studied polymorphism in GSTP1 
gene is rs1695 [37, 38]. A meta-analysis that enrolled 13 studies with 2026 cases and 
2451 controls from Asian origin has reported higher risk of lung cancer for GSTP1 
rs1695-GG genotype (OR=1.36; CI95%=1.01-1.84; I2=31.7%; Pheterogeneity=0.137; GG vs 
AA)[38]. However, this effect has not been confirmed in Caucasian population. A meta-
analysis, which included a total of 14 studies with 2054 case series and 5525 controls 
from Caucasian origin has reported no association between GSTP1 rs1695-G allele/GG 
genotype and susceptibility of squamous cell carcinoma, a subtype of NSCLC (OR=1.06; 
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CI95%=0.93-1.21; I2=53%; Pheterogeneity=0.01; G vs A and OR=1.20; CI95%=0.94-1.53; 
I2=37%; Pheterogeneity=0.09) [37]. These results in Caucasian population are in accordance 
with our study [37]. 

The main limitation of this study was the limited size of the sample compared to other 
studies, particularly in the cases group. This may have led to a lack of power to detect 
associations in some polymorphisms. The strengths of our study include a very 
homogeneous cohort of cases, only composed by NSCLC patients diagnosed by the 
same team of pathologists, recruited from the same geographic area, which increases 
their uniformity.  

In summary, we investigated the effect of ERCC1 (rs11615), ERCC1 (rs3212986), ERCC2 
(rs13181), ERCC2 (rs1799793), ERCC2 (rs50872), ERCC2 (rs238405), ERCC2 (rs238416), 
ERCC5 (rs17655), ERCC5 (rs104778), ERCC5 (rs2296147), ERCC5 (rs2094258), ERCC5 
(rs873601), XRCC1 (rs1799782), XRCC1 (rs25487), XRCC3 (rs861539), MTHFR 
(rs1801131), MTHFR (rs1801133), MTHFD1 (rs2236225), MTR (rs1805087), SLC19A1 
(rs1051266) and GSTP1 (rs1695) gene polymorphisms on NSCLC risk. The results 
showed no association between these gene polymorphisms and susceptibility of 
NSCLC, suggesting that genetic variations in genes involved in DNA repair, folate and 
glutathione metabolism pathways may not influence the risk of NSCLC. 

6  CONCLUSIONS & FUTURE PERSPECTIVE 

This study failed to identify an association between ERCC1, ERCC2, ERCC5, XRCC1, 
XRCC3, MTHFR, MTR, MTHFD1, SLC19A1 and GSTP1 gene polymorphisms and 
susceptibility to NSCLC. Further studies including a wider spectrum of gene 
polymorphisms and larger samples will be required to definitely rule out the influence 
of these genes on risk of NSCLC. 

7 EXECUTIVE SUMMARY 

Relationship between gene polymorphisms in DNA repair, folate and glutathione 
pathways and NSCLC risk. 

 DNA repair genes such as ERCC1, ERCC2 and XRCC1 play a crucial role on 

development of lung cancer. 

 Polymorphisms in folate metabolism are related with DNA synthesis disorders 

that lead to genomic instability and subsequently cancer susceptibility. 

 GSTP1 is expressed mainly in lung tissues and exerts an important function on 

inhaled carcinogens, such as tobacco carcinogens. Thus, polymorphisms in this 

gene are believed to be associated with risk of lung cancer. 

Conclusions 

Genetic variations in genes involved in DNA repair, folate and glutathione metabolism 
pathways may not influence the risk of NSCLC. 
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Table 1. Clinico-pathologic characteristics of NSCLC cases and controls cases.   

 

 Cases Controls χ² p-value Reference OR IC95% 

n (%) n (%)      

Gender        

Female 46 (26.44) 135 (45.3) 
15.7488 7.233·10-05 Female 2.3 1.53-3.46 

Male 128 (73.56) 163 (54.7) 

Previous lung disease        

YES 44 (25.29) 83 (27.85) 
0.2486 0.618 

   

NO 130 (74.71) 215 (72.15) 

Smoking status        

Current-Smokers 85 (48.85) 17 (6.32) 

123.5797 < 2.2·10-16 

   

Former-smokers 62 (35.63) 107 (39.78) 

Non-smokers 27 (15.52) 145 (53.90) 

Age at NSCLC diagnosis  60.6710.58 72.90 [67,80] 73.4962 < 2.2·10-16    

Histology        

Adenocarcinoma 109 (62.64) - 

- - - - - Squamous cell carcinoma 61 (35.06) - 

Unknown 4 (2.30) - 

Tumor stage        

I, II or IIIA 55 (31.61) - 
- - - - - 

IIIB or IV 119 (68.39) - 

Qualitative variables: number (percentage) 
Quantitative variables: 
Normal distribution: mean ± standard deviation. 
Non-normal distribution: P50 [P25, P75]. 

 

*Test Wilcoxon 

 

Table 2. Polymorphisms and association with risk of NSCLC 

Chr SNP 
Minor 

Allele 

Mayor 

Allele 
Model Cases Controls χ² 

p-value 

 χ² 

p-value  

Fisher 
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1 rs1801131 C A 

Genotypic 13/67/94 20/121/157 0.2492 0.8829 0.8783 

Additive 93/255 161/435 0.009469 0.9225 0.9225 

Allelic 93/255 161/435 0.009349 0.923 0.9395 

Dominant 80/94 141/157 0.07904 0.7786 0.8484 

Recessive 13/161 20/278 0.09754 0.7548 0.8519 

1 rs1801133 T C 

Genotypic 30/97/47 55/138/105 4.363 0.1129 0.1142 

Additive 157/191 248/348 1.12 0.29 0.29 

Allelic 157/191 248/348 1.101 0.294 0.307 

Dominant 127/47 193/105 3.403 0.06509 0.06708 

Recessive 30/144 55/243 0.1098 0.7403 0.8044 

1 rs1805087 G A 

Genotypic 6/48/120 7/76/215 0.8201 0.6636 0.6592 

Additive 60/288 90/506 0.7406 0.3895 0.3895 

Allelic 60/288 90/506 0.7534 0.3854 0.4067 

Dominant 54/120 83/215 0.54 0.4624 0.464 

Recessive 6/168 7/291 0.4956 0.4814 0.5631 

11 rs1695 G A 

Genotypic 13/81/80 34/122/142 2.581 0.2751 0.2718 

Additive 107/241 190/406 0.1302 0.7182 0.7182 

Allelic 107/241 190/406 0.1306 0.7178 0.7714 

Dominant 94/80 156/142 0.1236 0.7252 0.7745 

Recessive 13/161 34/264 1.9 0.1681 0.203 

13 rs2094258 A G 

Genotypic 8/59/107 11/97/190 0.375 0.829 0.8033 

Additive 75/273 119/477 0.3423 0.5585 0.5585 

Allelic 75/273 119/477 0.3382 0.5609 0.5601 

Dominant 67/107 108/190 0.2414 0.6232 0.6231 

Recessive 8/166 11/287 0.2336 0.6288 0.6341 

13 rs2296147 C T 

Genotypic 38/84/52 64/165/69 2.996 0.2236 0.2242 

Additive 160/188 293/303 0.9462 0.3307 0.3307 

Allelic 160/188 293/303 0.8924 0.3448 0.3801 
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Dominant 122/52 229/69 2.611 0.1062 0.1259 

Recessive 38/136 64/234 0.008525 0.9264 1 

13 rs1047768 T C 

Genotypic 39/85/50 45/154/99 4.175 0.124 0.13 

Additive 163/185 244/352 3.222 0.07266 0.07266 

Allelic 163/185 244/352 3.118 0.07744 0.08853 

Dominant 124/50 199/99 1.023 0.3117 0.3557 

Recessive 39/135 45/253 4.016 0.04507 0.04711 

13 rs17655 G C 

Genotypic 14/66/94 17/120/161 1.069 0.5859 0.572 

Additive 94/254 154/442 0.1587 0.6904 0.6904 

Allelic 94/254 154/442 0.156 0.6929 0.702 

Dominant 80/94 137/161 6.58x10-07 0.9994 1 

Recessive 14/160 17/281 0.9813 0.3219 0.3397 

13 rs873601 G A 

Genotypic 15/59/100 23/118/157 1.522 0.4673 0.4549 

Additive 89/259 164/432 0.4045 0.5248 0.5248 

Allelic 89/259 164/432 0.4224 0.5157 0.5428 

Dominant 74/100 141/157 1.015 0.3137 0.3387 

Recessive 15/159 23/275 0.1209 0.7281 0.7287 

14 rs2236225 T C 

Genotypic 32/81/61 64/137/97 0.7285 0.6947 0.7107 

Additive 145/203 265/331 0.6597 0.4167 0.4167 

Allelic 145/203 265/331 0.6993 0.403 0.4147 

Dominant 113/61 201/97 0.3101 0.5776 0.6136 

Recessive 32/142 64/234 0.6456 0.4217 0.4775 

14 rs861539 T C 

Genotypic 16/86/72 43/148/107 3.277 0.1943 0.1924 

Additive 118/230 234/362 2.865 0.09052 0.09052 

Allelic 118/230 234/362 2.693 0.1008 0.1087 

Dominant 102/72 191/107 1.398 0.2371 0.24 

Recessive 16/158 43/255 2.752 0.09715 0.1129 

19 rs25487 A G Genotypic 23/84/67 42/131/125 0.8301 0.6603 0.6605 
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Additive 130/218 215/381 0.1531 0.6956 0.6956 

Allelic 130/218 215/381 0.1558 0.693 0.7262 

Dominant 107/67 173/125 0.5389 0.4629 0.4972 

Recessive 23/151 42/256 0.07092 0.79 0.8901 

19 rs1799782 T C 

Genotypic 1/25/148 3/46/249 NA NA 0.9221 

Additive 27/321 52/544 0.2624 0.6084 0.6084 

Allelic 27/321 52/544 0.2675 0.605 0.6286 

Dominant 26/148 49/249 NA NA 0.6975 

Recessive 1/173 3/295 NA NA 1 

19 rs13181 G T 

Genotypic 30/68/76 33/134/131 4.022 0.1339 0.1389 

Additive 128/220 200/396 0.954 0.3287 0.3287 

Allelic 128/220 200/396 1.008 0.3155 0.322 

Dominant 98/76 167/131 0.003537 0.9526 1 

Recessive 30/144 33/265 3.613 0.05733 0.06804 

19 rs238416 A G 

Genotypic 25/85/64 55/141/102 1.341 0.5114 0.5273 

Additive 135/213 251/345 0.9931 0.319 0.319 

Allelic 135/213 251/345 1.003 0.3167 0.337 

Dominant 110/64 196/102 0.3141 0.5752 0.6177 

Recessive 25/149 55/243 1.305 0.2534 0.309 

19 rs50872 T C 

Genotypic 6/63/105 9/92/197 1.585 0.4526 0.462 

Additive 75/273 110/486 1.395 0.2376 0.2376 

Allelic 75/273 110/486 1.336 0.2477 0.2694 

Dominant 69/105 101/197 1.583 0.2083 0.2332 

Recessive 6/168 9/289 0.06544 0.7981 0.7913 

19 rs1799793 A G 

Genotypic 27/69/78 32/128/138 2.346 0.3094 0.3141 

Additive 123/225 192/404 0.9121 0.3395 0.3395 

Allelic 123/225 192/404 0.9681 0.3251 0.3524 

Dominant 96/78 160/138 0.0971 0.7553 0.7746 
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Recessive 27/147 32/266 2.294 0.1299 0.1493 

19 rs238405 A T 

Genotypic 38/84/52 79/137/82 1.308 0.5199 0.5172 

Additive 160/188 295/301 1.026 0.3111 0.3111 

Allelic 160/188 295/301 1.09 0.2964 0.3116 

Dominant 122/52 216/82 0.3031 0.582 0.5979 

Recessive 38/136 79/219 1.286 0.2569 0.2711 

19 rs3212986 T G 

Genotypic 14/68/92 21/117/160 0.1625 0.9219 0.9121 

Additive 96/252 159/437 0.0914 0.7624 0.7624 

Allelic 96/252 159/437 0.09195 0.7617 0.7618 

Dominant 82/92 138/160 0.02952 0.8636 0.9238 

Recessive 14/160 21/277 0.1597 0.6894 0.7177 

19 rs11615 C T 

Genotypic 30/85/59 47/144/107 0.2764 0.8709 0.8709 

Additive 145/203 238/358 0.2756 0.5996 0.5996 

Allelic 145/203 238/358 0.2739 0.6007 0.6307 

Dominant 115/59 191/107 0.1923 0.661 0.6902 

Recessive 30/144 47/251 0.1738 0.6768 0.6995 

21 rs1051266 A G 

Genotypic 43/80/51 71/162/65 4.056 0.1316 0.1358 

Additive 166/182 304/292 0.9854 0.3209 0.3209 

Allelic 166/182 304/292 0.9603 0.3271 0.3452 

Dominant 123/51 233/65 3.332 0.06794 0.07644 

Recessive 43/131 71/227 0.0472 0.828 0.8246 

1 rs1801131 C A 

Genotypic 13/67/94 20/121/157 0.2492 0.8829 0.8783 

Additive 93/255 161/435 0.009469 0.9225 0.9225 

Allelic 93/255 161/435 0.009349 0.923 0.9395 

Dominant 80/94 141/157 0.07904 0.7786 0.8484 

Recessive 13/161 20/278 0.09754 0.7548 0.8519 

1 rs1801133 T C 

Genotypic 30/97/47 55/138/105 4.363 0.1129 0.1142 

Additive 157/191 248/348 1.12 0.29 0.29 
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Allelic 157/191 248/348 1.101 0.294 0.307 

Dominant 127/47 193/105 3.403 0.06509 0.06708 

Recessive 30/144 55/243 0.1098 0.7403 0.8044 

1 rs1805087 G A 

Genotypic 6/48/120 7/76/215 0.8201 0.6636 0.6592 

Additive 60/288 90/506 0.7406 0.3895 0.3895 

Allelic 60/288 90/506 0.7534 0.3854 0.4067 

Dominant 54/120 83/215 0.54 0.4624 0.464 

Recessive 6/168 7/291 0.4956 0.4814 0.5631 

11 rs1695 G A 

Genotypic 13/81/80 34/122/142 2.581 0.2751 0.2718 

Additive 107/241 190/406 0.1302 0.7182 0.7182 

Allelic 107/241 190/406 0.1306 0.7178 0.7714 

Dominant 94/80 156/142 0.1236 0.7252 0.7745 

Recessive 13/161 34/264 1.9 0.1681 0.203 

13 rs2094258 A G 

Genotypic 8/59/107 11/97/190 0.375 0.829 0.8033 

Additive 75/273 119/477 0.3423 0.5585 0.5585 

Allelic 75/273 119/477 0.3382 0.5609 0.5601 

Dominant 67/107 108/190 0.2414 0.6232 0.6231 

Recessive 8/166 11/287 0.2336 0.6288 0.6341 

13 rs2296147 C T 

Genotypic 38/84/52 64/165/69 2.996 0.2236 0.2242 

Additive 160/188 293/303 0.9462 0.3307 0.3307 

Allelic 160/188 293/303 0.8924 0.3448 0.3801 

Dominant 122/52 229/69 2.611 0.1062 0.1259 

Recessive 38/136 64/234 0.008525 0.9264 1 

13 rs1047768 T C 

Genotypic 39/85/50 45/154/99 4.175 0.124 0.13 

Additive 163/185 244/352 3.222 0.07266 0.07266 

Allelic 163/185 244/352 3.118 0.07744 0.08853 

Dominant 124/50 199/99 1.023 0.3117 0.3557 

Recessive 39/135 45/253 4.016 0.04507 0.04711 
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13 rs17655 G C 

Genotypic 14/66/94 17/120/161 1.069 0.5859 0.572 

Additive 94/254 154/442 0.1587 0.6904 0.6904 

Allelic 94/254 154/442 0.156 0.6929 0.702 

13 rs17655 G C 

Dominant 80/94 137/161 6.58e-07 0.9994 1 

Recessive 14/160 17/281 0.9813 0.3219 0.3397 

13 rs873601 G A 

Genotypic 15/59/100 23/118/157 1.522 0.4673 0.4549 

Additive 89/259 164/432 0.4045 0.5248 0.5248 

Allelic 89/259 164/432 0.4224 0.5157 0.5428 

Dominant 74/100 141/157 1.015 0.3137 0.3387 

Recessive 15/159 23/275 0.1209 0.7281 0.7287 

14 rs2236225 T C 

Genotypic 32/81/61 64/137/97 0.7285 0.6947 0.7107 

Additive 145/203 265/331 0.6597 0.4167 0.4167 

Allelic 145/203 265/331 0.6993 0.403 0.4147 

Dominant 113/61 201/97 0.3101 0.5776 0.6136 

Recessive 32/142 64/234 0.6456 0.4217 0.4775 

14 rs861539 T C 

Genotypic 16/86/72 43/148/107 3.277 0.1943 0.1924 

Additive 118/230 234/362 2.865 0.09052 0.09052 

Allelic 118/230 234/362 2.693 0.1008 0.1087 

Dominant 102/72 191/107 1.398 0.2371 0.24 

Recessive 16/158 43/255 2.752 0.09715 0.1129 

19 rs25487 A G 

Genotypic 23/84/67 42/131/125 0.8301 0.6603 0.6605 

Additive 130/218 215/381 0.1531 0.6956 0.6956 

Allelic 130/218 215/381 0.1558 0.693 0.7262 

Dominant 107/67 173/125 0.5389 0.4629 0.4972 

Recessive 23/151 42/256 0.07092 0.79 0.8901 

19 rs1799782 T C 

Genotypic 1/25/148 3/46/249 NA NA 0.9221 

Additive 27/321 52/544 0.2624 0.6084 0.6084 

Allelic 27/321 52/544 0.2675 0.605 0.6286 
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Dominant 26/148 49/249 NA NA 0.6975 

Recessive 1/173 3/295 NA NA 1 

19 rs13181 G T 

Genotypic 30/68/76 33/134/131 4.022 0.1339 0.1389 

Additive 128/220 200/396 0.954 0.3287 0.3287 

Allelic 128/220 200/396 1.008 0.3155 0.322 

Dominant 98/76 167/131 0.003537 0.9526 1 

Recessive 30/144 33/265 3.613 0.05733 0.06804 

19 rs238416 A G 

Genotypic 25/85/64 55/141/102 1.341 0.5114 0.5273 

Additive 135/213 251/345 0.9931 0.319 0.319 

Allelic 135/213 251/345 1.003 0.3167 0.337 

Dominant 110/64 196/102 0.3141 0.5752 0.6177 

Recessive 25/149 55/243 1.305 0.2534 0.309 

19 rs50872 T C 

Genotypic 6/63/105 9/92/197 1.585 0.4526 0.462 

Additive 75/273 110/486 1.395 0.2376 0.2376 

Allelic 75/273 110/486 1.336 0.2477 0.2694 

Dominant 69/105 101/197 1.583 0.2083 0.2332 

Recessive 6/168 9/289 0.06544 0.7981 0.7913 

19 rs1799793 A G 

Genotypic 27/69/78 32/128/138 2.346 0.3094 0.3141 

Additive 123/225 192/404 0.9121 0.3395 0.3395 

Allelic 123/225 192/404 0.9681 0.3251 0.3524 

Dominant 96/78 160/138 0.0971 0.7553 0.7746 

Recessive 27/147 32/266 2.294 0.1299 0.1493 

19 rs238405 A T 

Genotypic 38/84/52 79/137/82 1.308 0.5199 0.5172 

Additive 160/188 295/301 1.026 0.3111 0.3111 

Allelic 160/188 295/301 1.09 0.2964 0.3116 

Dominant 122/52 216/82 0.3031 0.582 0.5979 

Recessive 38/136 79/219 1.286 0.2569 0.2711 

19 rs3212986 T G Genotypic 14/68/92 21/117/160 0.1625 0.9219 0.9121 
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Chr: chromosome; NA: not applicable  

 

Table 3. Permutation analysis 

 

SNP 

Genotypic Additive Recessive Dominant 

EMP1 EMP2 EMP1 EMP2 EMP1 EMP2 EMP1 EMP2 

rs1801131 0.8774 1 0.9324 1 0.8502 1 0.8478 1 

rs1801133 0.1133 0.8579 0.2846 0.9973 0.8046 1 0.06727 0.6692 

rs1805087 0.3312 1 0.4109 0.9998 0.3171 1 0.2832 1 

rs1695 0.2744 0.9942 0.7636 1 0.2045 0.9548 0.7743 1 

rs2094258 0.7184 1 0.5978 1 0.7013 1 0.6119 1 

rs2296147 0.2274 0.9833 0.364 0.9991 1 1 0.1275 0.8479 

Additive 96/252 159/437 0.0914 0.7624 0.7624 

Allelic 96/252 159/437 0.09195 0.7617 0.7618 

Dominant 82/92 138/160 0.02952 0.8636 0.9238 

Recessive 14/160 21/277 0.1597 0.6894 0.7177 

19 rs11615 C T 

Genotypic 30/85/59 47/144/107 0.2764 0.8709 0.8709 

Additive 145/203 238/358 0.2756 0.5996 0.5996 

Allelic 145/203 238/358 0.2739 0.6007 0.6307 

Dominant 115/59 191/107 0.1923 0.661 0.6902 

Recessive 30/144 47/251 0.1738 0.6768 0.6995 

21 rs1051266 A G 

Genotypic 43/80/51 71/162/65 4.056 0.1316 0.1358 

Additive 166/182 304/292 0.9854 0.3209 0.3209 

Allelic 166/182 304/292 0.9603 0.3271 0.3452 

Dominant 123/51 233/65 3.332 0.06794 0.07644 

Recessive 43/131 71/227 0.0472 0.828 0.8246 
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rs1047768 0.1271 0.8826 0.08115 0.7392 0.04669 0.517 0.3549 0.9979 

rs17655 0.5838 1 0.6915 1 0.3355 0.9984 0.9978 1 

rs873601 0.4638 1 0.5174 1 0.8598 1 0.3385 0.998 

rs2236225 0.7126 1 0.4227 0.9999 0.4763 0.9999 0.6155 1 

rs861539 0.1923 0.9715 0.08657 0.8038 0.1113 0.8246 0.2397 0.9878 

rs25487 0.655 1 0.7299 1 0.8903 1 0.4972 1 

rs1799782 1 1 0.6322 1 1 1 1 1 

rs13181 0.1369 0.904 0.3173 0.9989 0.06758 0.6392 1 1 

rs238416 0.5175 1 0.3405 0.9985 0.3089 0.9908 0.6167 1 

rs50872 0.2754 0.9999 0.2372 0.9912 0.7015 1 0.1625 0.9766 

rs1799793 0.3097 0.9974 0.3668 0.9992 0.1493 0.8963 0.773 1 

rs238405 0.5193 1 0.3182 0.9981 0.2705 0.9913 0.598 1 

rs3212986 0.9327 1 0.7831 1 0.7188 1 0.9228 1 

rs11615 0.8629 1 0.6151 1 0.7008 1 0.6922 1 

rs1051266 0.1349 0.8991 0.3411 0.9988 0.9117 1 0.07669 0.7009 

 

EMP1: point-wise empirical p-value obtained by permutation; EMP2: empirical p-value that 

controls for multiple SNPs 

 Genotypic Dominant Recessive Additive 

ACCEPTED M
ANUSCRIP

T



 24 

Table 4. Influence of clinical characteristic and ERCC5 rs1047768 gene polymorphisms on risk 

of NSCLC 

 

 

 

 

TT vs CC CT vs CC T- vs CC TT vs C- T- vs C- 

p-value OR CI95% p-value OR IC95% p-value OR IC95% p-value OR IC95% p-value OR IC95% 

Age                

≤60 <0.001 4.85 2.80-8.54 <0.001 4.85 2.80-8.54 <0.001 4.88 2.83-8.59 <0.001 4.84 2.80-8.53 <0.001 4.86 2.82-8.55 

Smoking status                

Current-Smokers <0.001 6.52 3.52-12.59 <0.001 6.52 3.52-12.59 <0.001 6.54 3.53-12.60 <0.001 6.49 3.50-12.52 <0.001 6.49 3.51-12.52 

Non-Smokers <0.001 0.31 0.18-0.53 <0.001 0.31 0.18- 0.53 <0.001 0.31 0.18-0.53 <0.001 0.31 0.18-0.53 <0.001 0.31 0.18-  0.53 

ERCC5 rs1047768 0.549 1.23 0.62-2.46 0.616 0.87 0.51- 1.49 0.859 0.95 0.58-1.59 0.053 1.34 0.73-2.46 0.68 1.07 0.76-  1.51 
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