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Complexity–driven Construction of Controlled Invariant Polytopic Sets

Nikolaos Athanasopoulos, George Bitsoris, and Mircea Lazar

Abstract— In this article, the problem of constructing con-
trolled invariant polytopic sets of a specified complexity, for
discrete–time linear systems subject to linear state and control
constraints, is investigated. First, geometric conditions for

enlarging a polytopic set such that the resulting polytopic set
has an a priori chosen number of vertices are formulated. Next,
results concerning the enlargement of controlled invariant sets
such that the resulting set remains controlled invariant are
presented. Finally, having established this necessary theoretical
background, a method of constructing nondecreasing sequences
of admissible controlled invariant sets with complexity specifi-
cations is established.

I. INTRODUCTION

A problem of interest in both the analysis and the design of

linear systems in the presence of state and control constraints

is the computation of the admissible domain of attraction

for the autonomous case and of the admissible stabilizability

region for the case of systems with inputs. For example,

in the model predictive control scheme, the computation of

the controlled contractive region determines the domain of

state space where the convergence to the target state can

be guaranteed. Also, the problem is relevant in many control

applications, where the goal is to determine whether a desired

set of initial states belongs to the admissible domain of

attraction. Since controlled contractive, and as a consequence

controlled invariant, subsets of the state space provide an

approximation of the admissible domain of attraction, con-

struction of an invariant set is one of the typical approaches

to solve the aforementioned problem.

In numerous real–life applications, state constraints are

specified by linear inequalities that define bounded poly-

hedral sets, which, in the linear case, can be equivalently

formulated via bounded and closed polyhedral sets that

contain the origin in their interior. In this setting, several

methods of constructing an admissible invariant polyhedral

set for both continuous–time and discrete–time linear sys-

tems are available. These methods can be grouped in two

categories, according to the approach used. The first category

exploits the algebraic necessary and sufficient conditions of

existence of invariant sets, stemming mainly from Lyapunov

theory [1]–[9]. Among the early works that belong to this

category are [1]–[3] for bounded polyhedral sets, [4], [5]

for both bounded or unbounded sets and [6] for polytopic

sets in vertex representation. These conditions can be used
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directly to verify invariance of a given set, while exploiting

them in order to construct an invariant set requires the

analysis of the spectral properties of the system [7], [10],

resulting in symmetric polytopic sets. The second category

consists in computing convergent sequences of sets, that

are mainly related to the inverse reachability map and start

from specially chosen sets [11]–[19]. These methods provide

polytopic approximations of the maximal controlled invariant

set with any desired accuracy, but of arbitrary complexity.

Thus, although a number of works in the control research

field deals with the characterization and computation of

controlled invariant sets, there is small progress towards

characterizing and constructing polytopic controlled invariant

sets of bounded complexity and non–trivial size, except the

works [20]–[24] that utilize heuristic methods combined with

special types of polytopic sets. Motivated by this lack of

systematic constructive methods and the need to compute

controlled invariant sets of low complexity, the goal of

this article is to establish the theoretical foundations for

developing design methods of construction of admissible

controlled contractive polytopic sets with specified com-

plexity for discrete–time systems. These methods can then

be used for solving different kinds of constrained control

problems where the complexity of the controlled contractive

sets is considered as an additional constraint that must be

respected. The main idea behind the approach consists in

the addition of vertices to the convex hull of polytopic sets,

resulting in conditions that can be easily verified by solving

a series of linear programs.

The paper is organized as follows. In Section II, some

basic definitions and the problem statement are given. In

Section III, the theoretical framework for enlarging polytopic

sets with specified complexity while preserving controlled

invariance is established. In Section IV, systematic meth-

ods for constructing admissible controlled invariant sets by

computing sequences of nondecreasing polytopic sets are

presented, along with an illustrative example that demon-

strates the effectiveness of the approach. Last, conclusions

are drawn in Section V.

II. PROBLEM STATEMENT

Throughout the paper, capital letters denote real matrices

and lower case letters denote column vectors or scalars.

R
n denotes the real n-space, R+ denotes the set of non-

negative real numbers, N denotes the set of nonnegative

integers, N[q1,q2] denotes the set of integers belonging to

the interval [q1, q2] and R
n×m denotes the set of real

n × m matrices. The column and the row vectors of a
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matrix G ∈ R
s×n are denoted by gi and gTi respectively,

i.e. G =
[

g1 g2 · · · gn
]

=
[

g1 g2 · · · gs
]T

.

Given two real matrices A = [aij ], B = [bij ], A,B ∈
R

n×m, the inequality A ≤ B (A < B) with A,B ∈ R
n×m

is equivalent to aij ≤ bij (aij < bij), for all i ∈ N[1,n],

j ∈ N[1,m]. Similar notation holds for vectors. The p-

dimensional vector with all its elements equal to one is

denoted by ep and the n × m real matrix with all its

elements equal to zero is denoted by 0n×m. Finally, given a

subset S ⊂ R
n and a real number r, rS denotes the set

rS := {y ∈ Rn : (∃x ∈ S : y = rx)}.

The half-space representation of a convex polyhedral set

having the origin as an interior point is defined by a vector

inequality Gx ≤ ep, G ∈ R
p×n and is denoted by P(G), i.e.

P(G) := {x ∈ R
n : Gx ≤ ep}.

If the set P(G) is bounded then it is a polytope and can be

equivalently defined as the convex hull of a set of vectors

v1, v2, .., vq, namely

Q(V) := conv(v1, v2, .., vq),

where V = {v1, v2, .., vq}. In such a description, some of

vectors v1, v2, .., vq may be redundant. The minimal set

of vectors vi that defines a polytope constitutes the set of

its vertices. In this paper, the notation Q(V) is used for

describing polytopes having the origin as an interior point.

The complexity of a polytopic set can be characterized

by the number of its vertices, the number of its faces, the

structure of the induced face lattice etc [25]. In this paper,

the complexity of a polytopic set is defined as the number

of its vertices.

We consider discrete-time linear systems described by

difference equations of the form

x(t+ 1) = Ax(t) +Bu(t) (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector,

A ∈ R
n×n and B ∈ R

n×m are the system and input matrices

respectively and t ∈ N+ is the time variable. Throughout the

paper, it will be assumed that the pair (A,B) is stabilizable.

Autonomous systems

x(t+ 1) = Ax(t) (2)

will also be considered as a special case of (1).

The state vector is constrained to belong to a bounded

subset of the state space defined by a vector inequality of

the form

Gxx ≤ epx
, (3)

where Gx ∈ R
px×n. This means that the trajectories x(t;x0)

of the system are confined in the polyhedral set P(Gx).
Constraints are also imposed on the control input which

has to satisfy linear inequalities of the form

Guu ≤ epu
, (4)

where Gu ∈ R
pu×m.

Definition 1: Given system (1), a set S ⊂ R
n containing

the origin as an interior point is said to be a controlled

ε−contractive set with contraction factor ε if and only if

0 ≤ ε < 1 and there exists a state-feedback control u =
f(x), f : Rn → R

m such that for any initial state x0 ∈ S the

corresponding trajectory x(t;x0) of the resulting closed-loop

system satisfies the relation x(t;x0) ∈ εS for all x0 ∈ S,

t0 ∈ T and t ≥ t0.

Definition 2: Given system (1) and constraints (3) and (4),

a set S ⊂ R
n containing the origin as an interior point is

said to be an admissible controlled ε−contractive set with

contraction factor ε if and only if 0 ≤ ε < 1 and there exists a

state-feedback control u = f(x), f : Rn → R
m such that for

any initial state x0 ∈ S the corresponding trajectory x(t;x0)
of the resulting closed-loop system and the control input

f(x(t;x0)) respect the constraints (3) and (4) respectively

for all t ≥ t0 and x(t;x0) ∈ εS for all x0 ∈ S, t0 ∈ T and

t ≥ t0.

If there exists a ε satisfying the conditions of the above

definition then the set S is said to be an admissible controlled

contractive set. Finally, if the relation x(t;x0) ∈ εS in

Definition 2 is satisfied with ε = 1 then the set S is said

to be an admissible controlled invariant set.

Definition 3: Given the autonomous system (2) and the

state constraints (3), a set S ⊂ R
n containing the origin as

an interior point is said to be an admissible ε−contractive set

with contraction factor ε if and only if 0 ≤ ε < 1 and for any

initial state x0 ∈ S the corresponding trajectory x(t;x0) of

the resulting closed-loop system respects the state constraints

(3) and satisfies the relation x(t;x0) ∈ εS for all x0 ∈ S,

t0 ∈ T and t ≥ t0.

Remark 1: Positively invariant and controlled invariant

sets are special cases of contractive and controlled contrac-

tive sets by setting ε = 1. Thus, the exposition of the results

will be made for the general case when 0 ≤ ε ≤ 1.

If the pair (A,B) of an unconstrained system (1) is

stabilizable, then it is possible to determine a controlled

contractive polytope Q(V0) = conv(v01, v02, ..., v0q0) [7],

[10]. Then, by proper scaling, we can determine a suffi-

ciently ”small” admissible controlled contractive polytope

Q(rV0) = conv(rv01, rv02, ..., rv0q0 ). Moreover, if the pair

(A,B) is controllable it is always possible to construct an

admissible controlled contractive polytope Q(V0) consisting

of 2n parallel faces. This, for example, can be done by first

determining a stabilizing control u(t) = Fx(t) that assigns

the eigenvalues of the resulting closed-loop system matrix

A+BF in the unit rhombus of the complex plane and then

by computing a contractive polytope Q(V) of complexity 2n

[4]. Thus, by appropriate scaling, an admissible contractive

polytope Q(V0) can be obtained.

However, as it is already underlined, the aforementioned

method produces symmetric polytopic sets that might be not

practical for constrained control problems, while computing

them when the system is not controllable may become

involved, especially for high dimensional systems. On the

other hand, while the reachability–based methods [11]–[19]

converge to the maximal admissible controlled contractive

set, the sets produced are usually of high complexity.

Thus, the problem investigated in this article has a different



setting: Given the system (1), the state and input constraint

sets (3) and (4), an admissible controlled ε–contractive set

Q(V) of complexity q, find a systematic method of comput-

ing admissible controlled ε–contractive supersets Q(V∗) of

a specified complexity q∗.

III. THEORETICAL FOUNDATIONS

A simple method of enlarging an admissible controlled

contractive polytopic set Q(V) = conv(v1, ..., vq) is to add

a new component v∗ /∈ Q(V) in its vertex description to

obtain a new admissible controlled contractive polytopic set

Q(V∗) = conv(v1, ..., vq, v∗). Then, Q(V) ⊂ Q(V∗). In

this subsection, we establish the necessary and sufficient

conditions for such an enlargement approach to produce an

admissible controlled contractive polytopic set of specified

complexity.

A. Enlargement of polytopes with specified complexity

Addition of a new vertex v∗, situated outside a polytope

Q(V) = conv(v1, v2, ..., vq) will generate an enlarged poly-

tope Q(V∗) = conv(v1, ..., vq, v∗). The set Q(V∗) will not

necessarily be of higher complexity because some of the

vertices v1, ..., vq might be redundant. Consequently, the set

Q(V∗) may have equal or even lower complexity, depending

on where the new vertex v∗ is located in the state space. In

this subsection, we establish necessary and sufficient con-

ditions for this enlargement procedure to produce polytopic

sets with specified complexity.
Let S ⊂ R

n be a polytopic set with q vertices and p faces

and with vertex and half-plane representations

Q(V) = conv(v1, ..., vq) (5)

and

P(G) = {x ∈ R
n : Gx ≤ ep} (6)

respectively.
With each vertex vk, k ∈ N[1,q] of the polytope S = Q(V)

we associate the set of indices NS(v
k) ⊂ N[1,q], defined by

the relation

NS(v
k) := {j ∈ N[1,p] : g

T
j v

k = 1}. (7)

The set NS(v
k) represents the set of indices j which

correspond to the faces gTj x = 1 of the polytope S = Q(V)
that pass through the vertex vk. Moreover, with each vertex

vk, k ∈ N[1,q] of the polytope S = Q(V) we associate the

sets Ak, , k ∈ N[1,q], defined by the relation

Ak := {x ∈ R
n : gTj x > 1, j ∈ NS(v

k)}. (8)

The sets Ak are polyhedral cones which point outside the

set S, formed by the faces of the polytope S = Q(V) defined

by the equations gTk x = 1.
In the following theorem, we establish conditions for the

proposed enlargement approach not to produce a polytope of

higher complexity.
Theorem 1: Given a polytope S ⊂ R

n with vertex and

half-space representations (5) and (6) respectively, the poly-

tope

Q(V∗) = conv(v1, ..., vq, v∗) (9)

satisfies the set relation

Q(V) ⊂ Q(V∗) (10)

and is of equal or lower complexity than Q(V) if and only

if

v∗ ∈ A1 ∪ A2... ∪ Aq. (11)

Proof: a) Sufficiency: If v∗ ∈ A1 ∪ A2... ∪ Aq then

there exists an index k ∈ N[1,q] such that v∗ ∈ Ak. By

definition (8), this yields

gTj v
∗ > 1, j ∈ NS(v

k), (12)

which implies that v∗ /∈ Q(V). Therefore,

Q(V) ⊂ Q(V∗). (13)

Furthermore, (12) yields [26, Theorem 1]

conv(v1, v2, ..., vq) ⊂ conv(v1, v2, ..., vk−1, vk+1, ...vq, v∗)

which in turn implies that

conv(v1, v2, ..., vk−1, vk+1, ...vq, v∗)

= conv(v1, v2, ..., vq, v∗).

Therefore, the polytope Q(V∗) is of equal or lower complex-

ity than Q(V).
b) Necessity: If Q(V) ⊂ Q(V∗), that is

conv(v1, v2, ..., vq) ⊂ conv(v1, v2, ..., vq, v∗), (14)

then v∗ /∈ Q(V). If, in addition, the polytope Q(V∗) is

of equal or of lower complexity, then there exists at least

one index k ∈ N[1,q] such that the corresponding vertex vk

is redundant for the description of set Q(V∗). Therefore,

relation (14) can be written as

conv(v1, v2, ..., vk−1, vk, vk+1, ...vq)

⊂ conv(v1, v2, ..., vk−1, vk+1, ...vq, , v∗).

However, this last relation implies [26, Theorem 1] that

gTj v
∗ > 1, j ∈ NS(v

k),

or, equivalently, v∗ ∈ Ak.. Consequently, v∗ ∈ A1 ∪A2... ∪
Aq .

Using this result we can establish conditions for the

enlargement of a polytope by adding a new vertex to produce

a new polytope with specified lower complexity.

Theorem 2: Given a polytope S ⊂ R
n of complexity

q with vertex and half-space representations (5) and (6)

respectively, the polytope

Q(V∗) = conv(v1, ..., vq, v∗)

satisfies the set relation

Q(V) ⊂ Q(V∗) (15)

and is of complexity lower or equal to q∗ = q − l, l ∈
N[1,q−N−1] if and only if there exist at least l + 1 indices

k1, k2, ..., kl+1 ∈ N[1,q] such that

Ak1
∩ Ak2

∩ ... ∩ Akl+1
6= ∅ (16)



and

v∗ ∈ Ak1
∩Ak2

∩ ... ∩ Akl+1
(17)

Proof: a) Sufficieny: From (16), (17) it follows that

v∗ ∈ Aki
for i = 1, 2, ..., l+ 1. (18)

Thus, by Theorem 1, it holds that

conv(v1, v2, ..., vq) ⊂

conv(v1, v2, ..., vki−1, vki+1, ...vq, v∗) = Q(V∗),

for i = 1, 2, ..., l + 1. Consequently, the vectors vki i =
1, 2, ..., l+1 are redundant in the description of Q(V∗), thus

the polytope Q(V∗) is of complexity q∗ lower or equal to

q∗ = q − l.
b) Necessity: If Q(V) ⊂ Q(V∗), or equivalently

conv(v1, v2, ..., vq) ⊂ conv(v1, v2, ..., vq, v∗), (19)

then v∗ /∈ Q(V). If, in addition, the polytope is of complexity

q∗ lower or equal to q − l, then there exist at least l indices

ki ∈ N[1,q] i = 1, 2, ..., l + 1, such that the corresponding

vertices vki are redundant for the description of set Q(V∗).
Therefore, from relation (19) it follows that

conv(v1, v2, ..., vki−1, vki , vki+1, ..., vq)

⊂ conv(v1, v2, ..., vki−1, vki+1, ..., vq, v∗),

for i = 1, 2, ..., l+ 1. This relation implies [26, Theorem 1]

that

gTj v
∗ > 1, j ∈ NS(v

ki), ∀i = 1, 2, ..., l+ 1,

or, equivalently, v∗ ∈ Ak1
∩ Ak2

∩ ... ∩Akl+1
.

A direct consequence of Theorems 1 and 2, which is of

practical importance, follows.

Corollary 1: Given a polytope S ⊂ R
n of complexity

q with vertex and half-space representations (5) and (6)

respectively, the polytope

Q(V∗) = conv(v1, ..., vq, v∗)

satisfies the set relation

Q(V) ⊂ Q(V∗) (20)

and is of equal complexity to that of Q(V) if and only if

there exists an index k ∈ N[1,q] such that

v∗ ∈ Ak \ (A1 ∪ A2 ∪ ...Ak−1 ∪ Ak+1 ∪ ... ∪ Aq). (21)

Illustrative Example 1: Combining the results established

in this subsection enables one to partition the region outside

a given polytope S = Q(V) to subregions where a new

vertex vk must be situated for the enlarged polytope Q(V∗)
to be of specified complexity. To show this graphically, we

consider a polytopic set S ⊂ R
2 with eight vertices, shown

in Figure 1 in white color. We are interested in identifying

the regions which correspond to different complexity of the

set Q(V∗) for the subset X ⊂ R
2 of the state space, which

is the square of length 2. By calculating first the index

sets NS(v
k), k ∈ N[1,8] and next the sets Ak ∩ X , k ∈

N[1,8], application of Theorem 1, Theorem 2 and Corollary 1

yields the polytopic regions for which the complexity of the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

+1

+1

+1

+1

0 0

0
0

0
0 −1

−1

−1

−1

−1

−1

−2
−2

−2

−2−2

−3

X

S

x1

x
2

Fig. 1. The polytopic sets S = Q(V) and X , and the partition of the set
X \Q(V) in regions according to the resulting complexity of the resulting
set when a vertex is added to the convex hull of S.

set Q(V∗) is identified. Thus, as shown in Figure 1, the

complexity of Q(V∗) is increased by one for regions that

are depicted with +1, the complexity remains the same for

the regions with 0, and is reduced by one, two and three for

the regions shown with −1,−2 and −3 respectively.

B. Enlargement of contractive polytopes

The results stated in the previous subsection can be

utilized to identify, given a polytope, the regions of the

state space where a new vertex can be added to its convex

hull, such that the resulting enlarged polytope has a desired

complexity. In this subsection, we establish the additional

conditions that must be satisfied for the enlarged polytope

Q(V∗) = conv(v1, ..., vq, v∗) to be controlled ε–contractive

when the initial set Q(V) = conv(v1, ..., vq) is controlled

ε–contractive [27]–[29].
Theorem 3: Given a controlled ε−contractive set Q(V)

= conv(v1, ..., vq) with respect to system (1) and a vector

v∗ ∈ R
n, the polytope Q(V∗) = conv(v1, ..., vq, v∗) is a

controlled ε−contractive set if and only if there exist vectors

u∗ ∈ R
m, p∗ ∈ R

q and a scalar p∗q+1, such that

Av∗ +Bu∗ = V p∗ + p∗q+1v
∗ (22)

eTq p
∗ + p∗q+1 ≤ ε (23)

p∗ ≥ 0 (24)

p∗q+1 ≥ 0, (25)

where V =
[

v1 v2 · · · vq
]

.
Proof: If Q(V) is a controlled invariant set then there

exist a nonnegative matrix P ∈ R
q×q
+ and a matrix U ∈

R
m×q [30, Theorem 4.41] such that

AV +BU = V P (26)

eTq P ≤ εeTq , (27)

where V = [v1 ... vq]. Let P ⋆ ∈ R
(q+1)×(q+1)
+ , where

P ⋆ :=

[

P p∗

01×q p∗q+1

]



and matrices V ⋆ := [V v∗], V ⋆ := [U u∗] . Taking into

account relations (22)–(25), it follows that conditions (26),

(27) are also satisfied for Q(V∗), with P = P ⋆, V = V ⋆.

Thus, Q(V) is also a controlled ε–contractive set. Conversely,

if Q(V) is a controlled ε–contractive set, there exists a

nonnegative matrix P̂ ∈ R
(q+1)×(q+1)
+ satisfying conditions

(26), (27) with V = V ⋆ and U = U⋆. Then, relations

(22)–(25) are satisfied with p∗i = P̂(q+1)i, i = 1, ..., q and

p∗q+1 = P̂(q+1)(q+1).

A direct consequence of Theorem 3 is the following

result which concerns the ε–contractiveness with respect to

autonomous discrete–time systems.

Corollary 2: Given a ε−contractive set Q(V)
= conv(v1, ..., vq) with respect to system (2) and a

vector v∗ ∈ R
n, the polytope Q(V∗) = conv(v1, ..., vq, v∗)

is a ε−contractive set if and only if there exist a vectors

p∗ ∈ R
q and a scalar p∗q+1, such that

Av∗ = V p∗ + p∗q+1v
∗ (28)

eTq p
∗ + p∗q+1 ≤ ε (29)

p∗ ≥ 0 (30)

p∗q+1 ≥ 0, (31)

where V =
[

v1 v2 · · · vq
]

.

IV. ADMISSIBLE CONTROLLED CONTRACTIVE SETS

WITH SPECIFIED COMPLEXITY

Using the results developed in the subsections III-

A and III-B we can establish necessary and sufficient

conditions for the enlargement of a polytopic admissi-

ble contractive set Q(V) = conv(v1, v2, ...vq) by adding

one new vector v∗ to its vertex description Q(V) =
conv(v1, v2, ...vq) to produce an admissible contractive set

Q(V∗) = conv(v1, v2, ...vq, v∗) of specified complexity.

Theorem 4: Let Q(V) = conv(v1, ..., vq) be an admissi-

ble controlled ε–contractive set of the discrete–time system

(1) with respect to state and input constraints (3), (4), of

complexity q and with half-space representation P(G), G ∈
R

p×n. Then, given an index of complexity qmax and a vector

v∗ ∈ R
n, the set Q(V∗) = conv(v1, ..., vq, v∗) is an admissi-

ble controlled ε-contractive invariant set of complexity qmax

if and only if there exist vectors u∗ ∈ R
m, p∗ ∈ R

q , a scalar

p∗q+1 ∈ R and indices i = 1, 2, ..., q − qmax + 1 satisfying

the algebraic relations

Av∗ +Bu∗ = V p∗ + v∗p∗q+1 (32)

p∗ ≥ 0 (33)

p∗q+1 ≥ 0 (34)

eTq p
∗ + p∗q+1 ≤ ε (35)

Gxv
∗ ≤ epx

(36)

Guu
∗ ≤ epu

(37)

gTj v
∗ > 1, ∀j ∈ NS(v

ki), (38)

where V =
[

v1 v2 · · · vq
]

.
Proof: From Theorem 3, relations (32)-(35) are nec-

essary and sufficient conditions for the set Q(V∗) to be

controlled ε–contractive. Moreover, since Q(V) is admissible

controlled ε–contractive set, it holds that, for all vertices vi,
i ∈ N[1,q] there exist control inputs ui ∈ R

m, i ∈ N[1,q],

such that Gxv
i ≤ epx

, Guu
i ≤ epu

. Since (37) holds, it

follows that the set Q(V∗) is also an admissible controlled

ε–contractive set [30, Theorem 4.41]. Last, from Theorem 2

and (38), it holds that there exists indices ki, i = 1, ..., q −
qmax + 1 such that v⋆ ∈ Ak1

∩ Ak2
∩ ... ∩ Akq−qmax+1

,

and consequently, the complexity of the set Q(V⋆) is q∗ =
q − (q − qmax) = qmax.

Corollary 3: Let Q(V) = conv(v1, ..., vq) be an ad-

missible ε–contractive set with respect to system (2) and

state constraints (3), of complexity q and with half-space

representation P(G), G ∈ R
p×n. Then, given an index of

complexity qmax and a vector v∗ ∈ R
n, the set Q(V∗) =

conv(v1, ..., vq, v∗) is an admissible controlled ε–contractive

invariant set of complexity qmax if and only if there exist

a vector p∗ ∈ R
q , a scalar p∗q+1 ∈ R and indices i =

1, 2, ..., q − qmax + 1 satisfying the algebraic relations

Av∗ = V p∗ + v∗p∗q+1 (39)

p∗ ≥ 0 (40)

p∗q+1 ≥ 0 (41)

eTq p
∗ + p∗q+1 ≤ ε (42)

Gxv
∗ ≤ epx

(43)

gTj v
∗ > 1, ∀j ∈ NS(v

ki), (44)

where V =
[

v1 v2 · · · vq
]

.
Remark 2: The importance of Theorem 4 as well as

Corollary 3 for the autonomous case lies in the fact that

from a given or determined admissible ε–contractive poly-

topic set Q(V) = conv(v1, ..., vq) we can construct an

enlarged admissible ε–contractive polytopic set Q(V∗) =
conv(v1, ..., vq, v∗) with specified complexity by solving

the set of algebraic relations (32)–(38) and determine the

unknown variables v∗, u∗, p∗q , and p∗q+1 for different sets of

integers{k1, k2, ..., kq−q∗+1}. Relations (33)–(38) are linear,

while relation (32) involves a bilinear scalar–vector product,

where the scalar p∗q+1 is bounded between zero and one.

Thus, for each index selection ki, i ∈ N[1,q−qmax+1] such

that relation (38) holds, and considering p∗q+1 as a scalar

parameter, the algebraic relations become linear with respect

to the unknown variables v∗, u∗, p∗q .

A possible approach to the determination of the unknown

variables v∗, u∗, p∗q , p
∗
q+1, is to pose an optimization problem

having (32)-(38) as constraints. If a linear optimization

criterion is chosen, this optimization problem can be solved

by a series of linear programming problems as indicated in

Remark 2. For example, choosing as optimization criterion

the minimization of the parameter ε, we can compute a

new vertex v∗ making the enlarged polytope Q(V) =
conv(v1, ..., vq, v∗) an admissible controlled ε–contractive

set of complexity q∗ by solving the optimization problem

max
v∗,u∗,p∗

q ,p
∗

q+1

{eTq p
∗ + p∗q+1}

under constraints (32)-(38).



Remark 3: Additional linear constraints can be considered

in order to satisfy design requirements. For example, if an

enlargement of the polytope Q(V) = conv(v1, ..., vq) to a

specific direction g ∈ R
n of the state space is desired, this

specification can be achieved by considering an additional

linear constraint describing this direction. Thus, if the new

vertex v∗ is desired or required to be located in a half space

defined by the inequality

gT v∗ ≥ 1,

where g ∈ R
n, this inequality must be considered as an

additional linear constraint of the optimization problem. For

this particular case, solving the constrained optimization

problem (32)–(38) having

max
v∗,u∗,p∗

q ,p
∗

q+1

{gT v∗} (45)

as optimization criterion, an enlarged admissible controlled

ε–contractive set Q(V∗) of complexity qmax with the new

vertex v∗ belonging to the half space defined by the in-

equality gT v∗ ≥ 1 and located as far as possible from the

boundary gT v∗ = 1.

Illustrative Example 2: We demonstrate how the results

of Section IV can be used to enlarge an initial admissible

controlled ε −contractive set Q(V∗) by respecting a priori

given complexity requirements. To this end, we consider the

benchmark example of the discretized double integrator. The

double integrator is of the form (1) with system matrices

Fig. 2. Sequence of the admissible controlled–invariant sets Xi, i =
1, ...,11, applying the method proposed in this article.

A =

[

1 Ts

0 1

]

, B =

[

T
2
s

2

Ts

]

,

and sampling time Ts = 0.1sec. The system is subject to hard
state and input constraints (3) and (4) respectively, with

Gx =









25
−1

0

0 5
−1

−25
−1

0

0 −5
−1









, Gu =

[

1

−1

]

.

Fig. 3. Sequence of admissible controlled–invariant sets Yi, i = 1, ..., 148,
produced by applying iteratively the one–step backward reachability method
starting from the singleton {02}, [12].
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Fig. 4. The state constraint set X , the maximal controlled invariant set
Y148 [12] (106 vertices, red dots) and the low-complexity set X11 produced
by iteratively applying the method presented in this article (10 vertices, blue
circles).

The objective in this case is to compute an admissible

controlled invariant polytopic set of a non–trivial size, whose

complexity does not exceed qmax = 10 vertices. For com-

parison purposes with other methods in the literature, we

also apply the method described in [12] for the computation

of the largest controlled invariant set. The method in [12]

is based on computing a sequence {Yi} of monotonically

increasing controlled invariant sets Yi, using the one–step

inverse reachability mapping starting from the singleton set

Y0 := {02}.

The results from Theorem 4 were utilized in order to

produce a monotonically increasing sequence of sets {Xi}
of bounded complexity qXi

≤ qmax, where Xi = P(Gi) =
Q(Vi) and P(Gi) = {x ∈ R

2 : Gix ≤ epi
}, Q(Vi) =

conv(v1i , v
2
i , ..., v

qi
i ). For this particular case, the set X0 was

set equal to Y2, which is guaranteed to be an admissible

controlled invariant full-dimensional polytopic set that in-



1 20 40 60 80 100 120 140
0

50

100

1 2 3 4 5 6 7 8 9 10 11

4

6

8

10

q Y
i

Iterations

Iterations

q X
i

Fig. 5. Number of vertices for the sets produced applying the one-step
backward reachability map [12] (upper plot), and the sets produced by
applying the method proposed in this article (lower plot). The black dotted
line in the lower plot indicates the complexity constraints.

cludes the origin in its interior [13]. At each iteration i, the

optimization problem with cost (45) and constraints (32)–

(38) was solved pi times, choosing the vector g in the

optimization cost (45) to be equal to each row of matrix

Gi. For this case, the sequence of sets {Xi} converges at

the 11th iteration and the resulting set X11 is of complexity

qX11
= 10. In Figure 2 the sets Xi, i = 1, .., 10 are shown

in yellow color while set X11 is depicted in blue. Applying

the method in [12], the maximal controlled invariant set was

reached in 148 iterations, resulting in the maximal controlled

invariant set Y148 of complexity qY148
= 106. In Figure 3

sets Y7i, i = 1, .., 20 are shown in yellow color while the set

Y148 is depicted in blue. In Figure 4 the sets X11 and Y148

are shown, along with the state constraint set X . It is worth

noticing that the two sets are of comparable volume, while

their complexity differs significantly. Lastly, in Figure 5,

the complexities of the sequences {Yi}, {Xi} are shown as

functions of the set iterations. In the lower plot, the dotted

line corresponds to the complexity constraints set by the

problem specifications.

A. A note on computational complexity

At each iteration of the enlargement procedure described

in Example 2, the optimization problem (45), (32)–(38) is

solved separately for (at most) all feasible index selections

ki, i ∈ N[1,q−qmax+1], i.e., the index selections for which

(38) defines a non–empty constraint set. Each of these

separate optimization problems involves a single bilinear

product between a bounded scalar variable and a vector. This

problem can be reduced to a sequence of linear programming

problems using the bisection method. Thus, the complexity

of this optimization problem is similar to the one related

to the enlargement procedure described in [29]. However,

since at each iteration the optimization problem (45), (32)–

(38) has to be solved for each feasible index selection ki,
i ∈ N[1,q−qmax+1], the number of optimization problems

can be larger. Moreover, since this number depends on

the number of half–spaces that describe the polytopic set

produced at each iteration, it is not directly controlled by the

method (although there exists an upper bound of the number

of half–spaces as a function of the number of vertices and the

polytope dimension, see e.g. the discussion in [24, Section

4.4.4]). In fact, a small number of half–spaces describing a

polytopic set does not imply the same for the vertices and

vice versa. It is the object of future research to define a

complexity measure for polytopes which offers a balance

between the complexities of the two representations.

Moreover, at each iteration, a transformation from the

vertex representation to the half–space representation, which

is known to be computationally expensive, is required. On

the other hand, at each iteration, the redundant vertices can

be directly computed exploiting Theorems 1 and 2, while the

added vertices are the solutions of the optimization problem

(45), (32)–(38). Thus, it is not needed to perform neither

the transformation from the half–space representation to the

vertex representation nor the computation of the minimal

vertex representation.

V. CONCLUSIONS

The problem of constructing controlled invariant poly-

topic sets of a specified complexity, for discrete–time linear

systems subject to linear state and control constraints was

investigated. Geometric conditions for enlarging a polytopic

set such that the resulting polytopic set has an a priori

chosen number of vertices were formulated. Also, conditions

concerning the enlargement of controlled invariant sets such

that the resulting set preserves the controlled invariance

property were presented. The efficacy of the established

results was illustrated in the benchmark example of the

double integrator where an iterative approach was taken in

order to construct a controlled invariant set of non–trivial

size and pre–specified complexity. It is worth noting that

the results presented here can be extended, under suitable

modifications, to the continuous–time case.
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