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Abstract—Service providers must guarantee high quality
of service (QoS) for each web application in a data center
and simultaneously achieve optimal utilization of their infras-
tructure. Meeting the Service Level Objectives (SLOs), such
as response time in a dynamic environment with a dense
load and varying capacity, and simultaneously minimizing
the energy consumption of the data center is an open re-
search problem. This paper presents a control framework
that addresses both problems of load balancing and resource
allocation of consolidated web services in cloud computing
infrastructure. The proposed approach aims at succeeding the
customer requirements described in a Service Level Agreement
(SLA) while maximizing server utilization. A hierarchical two-
layer controller is established. The local (lower) level controllers
determine the capacity and admitted workload of Virtual Ma-
chines (VMs), which correspond to a set of feasible operating
points with performance guarantee. The global (upper) level
decides the number and topology of active VMs that serve the
total service demand and activates only the minimum number
of servers. The cooperation of the two control layers ensures the
system stability against the fluctuations of incoming requests
and the system constraints.

I. INTRODUCTION

Power consumption and energy efficiency are becoming
very important in the design and management of cloud
computing data centers. Due to the large number of servers
and the increasing complexity of the network infrastructure,
energy costs are quickly rising in large-scale service centers.
A sustainable and power-aware management system should
provide a trade-off between service performance and energy
consumption.

Virtualization provides a promising approach for consoli-
dating multiple online services in fewer computing resources
within a data center. This technology allows a single server
to be shared among many performance-isolated platforms
called virtual machines (VMs). Virtualization also provides
the on-demand or utility computing – a just-in-time resource
provisioning model in which computing resources such
as CPU, memory, and disk space are made available to
applications only as needed and not allocated statically based
on the peak workload demand. By dynamically provisioning
VMs, consolidating the workload, and turning on only the
necessary servers, data center operators can maintain the
desired Quality of Service (QoS) while achieving higher
server utilization and energy efficacy.

The aim of this paper is to develop optimal resource al-
location policies for web applications. The goal is to provide
services which achieve QoS requirements, while minimizing
the energy consumption of the computing infrastructure. In
this context, QoS requirements, formally stipulated in SLA
contracts, are difficult to satisfy due to the high variability of
request workloads, which may vary by orders of magnitude.
This leads to the problem of an efficient usage of the
resources and the reduction of energy consumption. Modern
cloud computing infrastructure hosts multi-tier applications
in virtualized environments. Physical resources (e.g., CPU,
disks, and network bandwidth) are partitioned into multiple
virtual ones, creating isolated VMs which run at a fraction
of the physical system capacity.

Autonomic self-managing techniques are implemented
by network controllers which can establish the set of ap-
plications executed by each server (i.e., application place-
ment problem), the request volumes at various servers (i.e.,
load balancing problem), and the capacity devoted to the
execution of each application at each server (i.e., capacity
allocation problem). In this paper we propose a two-layer
controller that addresses cooperatively the problems of load
balancing, capacity allocation while not violating SLA ob-
jectives and minimizing energy consumption (or equivalently
making optimal use of resources).

In detail, in the local level, we apply fully distributed
controllers for each VM [1]. Each controller determines a
set of feasible operation points (e.g., for an agreed response
time of 1 sec a CPU share of 20% is able to consolidate a
workload of 50 requests/sec) together with stabilizing control
strategies for each point. The local controller controls the
variables of allocated capacity regulating response time.

The global (upper) level supervisory controller, consid-
ering the available set of VMs that correspond to specific
operating points determined by the local controllers, deter-
mines the number and the size of VMs that are necessary
to satisfy the total incoming request rate. The distribution of
the workload among the activated VMs and the placement
of them in the cluster of servers is made in such a way that
the minimum number of servers is switched on.

It is worth observing that the control problem solved
by the proposed two-stage framework cannot be addressed
by approaches based on queuing theory or utility functions.
The main contributions of the proposed solution are the



following:

- Linear Parameter Varying (LPV) state space mod-
eling which captures the dynamic behaviour of the
underlying infrastructure.

- The determination of the set of feasible operating
points relaxes the complexity of the global control
optimization problem and improves scalability.

- The hierarchical two-layer controller guarantees sys-
tem stability and satisfaction of the existing con-
straints.

The rest of the paper is structured as follows. Section
II discusses related work. Section III contains an analytical
description of both global and local level controllers. In sec-
tion IV, the implementation and evaluation of the approach
is presented. Conclusions are drawn in section V.

II. RELATED WORK

In this section, we recall some representative studies
of interest that are close to the approach proposed here.
Ardagna et al. [2] presented a distributed algorithm for
capacity allocation and load balancing. They modelled the
systems dynamic behaviour with a M/G/1 queue and solved
the joint control problem as an optimization problem apply-
ing a decomposition technique for non-linear programming.
Although the resource allocation is simplified, since they
assume single tier web applications, VMs have predefined
fixed capacity and are homogeneous in terms of resources
(CPU, RAM). In [3], a joint admission control and resource
allocation framework utilized queuing theory to capture
systems dynamics. The two controllers were separated in
two different optimization subproblems that were solved
sequentially in an iterative fashion. However it was not
examined whether the sequence of solutions provides any
performance guarantee. Kusic et al. [4], [5] derived an
analytical mathematical model from queuing theory and
tackled resource provisioning as an optimization problem
solved with a predictive control method. Some system
parameters (e.g. service rate) were empirically computed
while the implementation considered the VM placement and
capacity allocation problems separately. Also the scalability
of the approach was not demonstrated. Urgaonkar et al. [6]
presented a utility based solution, which maximizes the
average application throughput and energy cost of the data
center. Using queuing theory models and an optimization
technique framework, they addressed the problems of ad-
mission control, server selection and resource allocation
separately. In [7], the authors proposed a holistic approach
for application placement, admission control, resource allo-
cation. However an assumption of linearity between server
performance and CPU frequency is made. They used queuing
theory models and a greedy algorithm to solve the placement
problem and consequently they split admission control and
capacity allocation as being two decoupled subproblems.
There, admission controller is designed separately from [8]
ignoring the resource allocation solution. Wang et. al. [9]
proposed a two level controller combined with queuing

Fig. 1: Cloud System Control Framework.

modeling. The global level determines whether the CPU
share is efficient for the total incoming workload which
activates a certain number of servers. The local controller
solves the resource allocation problem in order to satisfy
the predicted workload. However, it was assumed that the
incoming load to each application replica is proportional to
the CPU share and a linear relationship between CPU share
and processing rate is proposed. Giani et al. [10] presented
an LPV modeling combined with a PI admission control,
without addressing resource allocation. It is one of the few
studies that provided a stability analysis of their controller.
In [11], the authors combined the admission control and re-
source allocation using LPV system identification and Model
Predictive Control (MPC), which calculates the admission
probability and CPU frequency using DVFS technology.
Although their controller offers a trade-off between power
consumption and SLOs achievement, it does not guarantee
the performance among different operation points. Since all
the above solutions use queuing models they are valid only
for steady state conditions and they do not examine whether
the operational points are feasible and stable or not.

III. PROBLEM FORMULATION

Figure 1 illustrates how the total workload Λi of each
application is distributed to λj

i share to each site on a
distributed cloud computing platform. It is readily apparent
that centralized designs become quickly intractable for large
systems. Fortunately, hierarchical or decentralized control,
where multiple controllers interact with each other to satisfy
system-wide QoS goals, can be used to reduce the complex-
ity of the overall problem. In a hierarchical structure, a local
controller is responsible for optimizing the behaviour of a
subset of the components while satisfying the constraints
imposed by a higher-level controller.

In what follows, we now briefly outline a hierarchical so-
lution for controlling a large-scale computing system hosting



Fig. 2: Structure of the Hierarchical Control Framework.

multiple enterprise applications. The incoming application
workload (Λi) is dispatched to the appropriate VMs (λj

i )
hosted within the servers. The main components of our
network hierarchical framework are shown in Figure 2.
They consist of a monitor, a workload predictor and the
two layer controllers. The monitor measures the workload
and performance metrics of each application (e.g average
response time in a time interval). The workload predictor
forecasts future system load conditions based on historical
data. The controllers within the hierarchy have the following
responsibilities:

- The supervisory controller makes high-level switch-
ing decisions based on the system state and the
estimation (Λ̃) of the incoming workload intensity
(Λ) that dictates which physical servers are turned
on or off. Moreover it decides the VM placement
and chooses from a set of feasible operating points
that satisfy its optimization criterion.

- Local controllers on each server initially deter-
mine feasible equilibrium points via identification.
In addition, they dynamically optimize the CPU
share,capji provided to VMs (Resource Allocation
- RA) and the workload under their control, i.e., λj

i

(Admission control - AC) in order to regulate the
system at the chosen operating point.

A. Workload Predictor

In order to predict the incoming request rate of each ap-
plication, we use Holt’s linear exponential smoothing (LES)
filter [12], which can capture the linear trend in the time
series. For example, during time step k, the estimated value
Λ̃k of incoming request rate Λk for a one-step prediction

horizon is obtained as follows,

Λ̃k = Λ̂k + bk,

Λ̂k = αΛk + (1− α)(Λ̂k−1 + bk−1),

bk = β(Λ̂k − Λ̂k−1) + (1− β)bk−1,

(1)

where α, β are smoothing constants, Λ̂k denotes the
smoothed value for time step k and bk represents the linear
trend in the measurement series. For initialization, we use a
random value for Λ̂0 inside the range of incoming request
rate and b0 = 0.5. Table I summarizes the notation used
throughout the paper.

B. Local Level Controller

The local level controller is designed by utilizing the re-
sults in [1]. This controller addresses admission control and
resource allocation simultaneously in a unified framework,
thus making the cooperation with existing global level con-
trollers easier. In specific, Linear Parameter Varying (LPV)
state space modelling is adopted to capture the dynamic be-
haviour of the underlying infrastructure. The operating con-
ditions are determined according to an optimization criterion.
A set of feasible operating points Xref is calculated to satisfy
the desired QoS nominal values. Each equilibrium point is
described by the triplet (Tref , Cref , Lref ), where Tref is
the desired average response time (SLA highest acceptable
response time), Cref is the allocated CPU capacity of VM
and Lref is the request rate directed and served by VM.

Xref := {VMi = (Tref,i, Cref,i, Lref,i), i = 1, . . . , N}.
(2)

The resulting stabilizing state feedback control law is an
affine control law which is computed using quadratic Lya-
punov functions. The computational complexity of the con-
troller implementation is small, since at every time interval
only a linear program and a point location problem are
solved. Furthermore, convergence to the feasible operating
point and satisfaction of the system’s constraints are guar-
anteed for a number of desired operating points of interest.
Alternatively, one can design the controllers based on [13].
It is worth noting that the choice of the local controller also
depends on the modeling/identification method. Thus, for
linear parameter varying modeling one can use [1] while for
a set of linear systems the approach in [13] is more suitable.

C. Global Level Controller

The global level controller decides the number of servers
activated, the number and the sizes of VMs allocated to
the active servers and balances the workload between the
activated servers. This is done by solving a mixed integer
programming optimization problem [14] whose objective
function minimizes the number of active servers.

We assume that there are M available identical servers
in the cluster, A is the variable that represents the number
of the activated servers and Λ̃k is the prediction of the
total incoming workload. Cj represents the total capacity
of jth server. VMi,j is member of Xref and is placed to
the jth server. In order to minimize power consumption



M Total Number of Servers
A Number of Active Servers
Λk Total incoming request rate

in the kth time interval
Λ̃k Prediction of total incoming request rate

in the kth time interval
Λth Workload Threshold

VMi,j VM of ith Equilibrium point on jth server
Li

ref Target Request Rate of ith Equilibrium point
Ci

ref Target VM Capacity of ith Equilibrium point

T i
ref Target Response Time of ith Equilibrium point

Xref Set of feasible operating points

TABLE I: Notation of System Variables.

and optimize resource utilization, we formulate the following
mixed integer programming optimization problem,

min
Crefi,j

,Lrefi,j
,VMi,j ,A

{A} (3a)

subject to
∑

j∈M

∑

i∈N

Lrefi,j ≥ Λ̃k, (3b)

∑

i∈N

Crefi,j ≤ Cj , (3c)

VMi,j ∈ Xref , (3d)
1 ≤ A ≤ M. (3e)

The cost function A of the above optimization
problem(3a) is the number of active servers. In specific,
relation (3b) ensures that the solution of the problem consoli-
dates the total incoming workload. Relation (3c) corresponds
to the capacity constraints on each server. Relation (3d)
assigns to each VMi,j a feasible predetermined operating
point. Last, relation (3e) ensures that the number of active
servers is less than the number of available servers. Variable
A is an integer, thus the formulated problem (3a)-(3e) is a
mixed integer linear programming problem.

Additionally, in order to reduce overhead caused by
switching on and off servers and VMs at every time interval,
the optimization problem is solved if a significant change
of the incoming request rate is observed. Thus Λth is the
minimum workload change that activates the execution of
the optimization problem. Lower workload fluctuations are
easily handled by local level controllers. They are able
to regulate system performance near the desired operating
point. When the output of the global level controller dictates
the shut down of a VM, then the solution of the optimization
problem maintains it active for the next control time interval
in order to serve the already directed requests to it. If there
is available capacity on the server, VM is allocated with the
capacity of the previous time interval otherwise the rest of
the available capacity is allocated.

IV. EVALUATION

A simple testbed is built to evaluate the performance of
the two-layer control framework. The server cluster contains
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Fig. 3: Total Request Rate.

three identical servers (M = 3). The local controllers
provide the global level controller with the necessary set
Xref . The operating points are calculated in a grid defined
by Tref,i = 0.5 : 0.5 : 3 and Cref,i = 25 : 5 : 50 according
to [1, section 3.4]. Indicatively for Tref = 1sec the following
operating points are calculated,

(Tref , Cref , Lref ) = {(1, 20, 44), (1, 25, 50), (1, 30, 60),
(1, 35, 68), (1, 40, 77), (1, 45, 86), (1, 50, 93)}.

The value of Λth is selected empirically to 60. We make a
10% overestimation of the incoming workload which is a
common technique [9] to eliminate the prediction error. The
local level controllers compute the final control law for each
VM according to section 3.5 of [1] taking into context the
current response condition in order to guarantee the system
stability and the satisfaction of the underlying constraints.
The output of the local level controllers is updated every
30sec. The desired reference value of response time for all
VMs is set to 1sec. After the determination of the final
control law (actual CPU share and actual workload) from
the local controllers, a weighted Round Robin algorithm is
used to direct the assigned portion of the total incoming
workload to the corresponding VM. In the following fig-
ures, we illustrate the performance of the two-layer control
framework. Figure 3 illustrates the total incoming request
rate and its prediction. Initially the average workload is
around 350req/sec (heavy load) and after 1000sec drops to
200req/sec (light load). At 2000sec the workload increases
to 300req/sec (medium load) and at the last part of the
experiment is almost 400req/sec (heavy load).

Figure 4 shows the performance of four VMs on different
servers. The rest of VMs are omitted due to lack of space.
VM i

j is the ith active VM on jth server. The left column of
Figure 4 depicts the capacity (Cref - red line) of operating
point and the locally assigned capacities of VMS (cref - blue
line) by the local controllers. Initially the incoming request
rate is high and all servers are switched on. On the second
part the workload decreases and the third server is turned
off. After 2000sec, the workload gradually increases, thus
VM1

3 is activated initially. When the request rate increases
to 400req/sec, VM2

3 is also turned on. This shows that
when a sudden change happens in the prediction of the
workload, the global level controller is triggered and the
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Fig. 4: Resource allocation, admission of requests and reponse time for VM’s.
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V M1

1
25 40 40 30 40 25
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1
25 30 30 25 30 25
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1
25 30 0 25 30 25
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1
25 0 0 0 0 25

Server 1 100 100 70 80 100 100
V M1

2
30 35 45 35 35 40

V M2

2
30 35 40 35 35 30

V M3

2
30 30 0 30 30 25

Server 2 90 100 85 100 100 95
V M1

3
35 30 0 0 45 40

V M2

3
35 30 0 0 0 30

V M3

3
30 0 0 0 0 30

Server 3 100 60 0 0 40 100

TABLE II: VMs and Servers Capacities.

optimization algorithm redistributes the capacity of VMs
in order to satisfy the varying demand with the minimum
number of active servers. Table II shows the capacity of each
VM and the total capacity of server when the optimization
algorithm is executed by a workload change.

The second column of Figure 4 shows the reference value
(lref - blue line) of the workload computed by the local
controller and the real admitted request rate of each VM
(green line) and the right column of Figure (4) illustrates the
response time of each VM. It is obvious that the proposed
control framework achieves high level of QoS and succeeds
in maintaining the response time of each VM under the
desired reference value in average and has few violations
when changes in workload occurred. This happens due to
the overhead caused by the switching on and shutting down
VMs and servers and the delay of the workload prediction
to adapt to the new values.

V. CONCLUSION AND FUTURE WORK

An autonomous control framework of managing QoS
in cloud computing is proposed. A two-layer hierarchical
controller is implemented for this purpose. The main con-
tribution of the approach is the dynamic determination of
feasible operating points which allows to confront the high
non linearity of the system contrary to the steady state solu-
tions provided by queueing theory. Secondly this allows to
reduce the complexity of the supervisor control (optimization
problem) and improves scalability. Stability and constraints
satisfaction are guaranteed. Different scenarios were tested
in order to evaluate its performance. Experimental results in
a real setup indicate that the proposed solution can achieve
high level of QoS.

To improve the existing work we intend to implement
different techniques for the two-level controller. Firstly for
improving load balancing between servers we intend to insert
load balancing constraints in the optimization problem (3a)-
(3e). Secondly to reduce extensive identification procedure
we will exploit the aspect of using Takagi Sugeno (T-S)
adaptive fuzzy modelsfor identification and control of the
local systems. For the global level controller in order to

minimize overhead we will focus on constructing fuzzy
decision maker for load balancing and application placement.
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