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Abstract

An alternative stability analysis theorem for nonlinear periodic discrete–time systems is presented. The developed theorem offers a trade–
off between conservatism and complexity of the corresponding stability test. In addition, it yields a tractable stabilizing controller synthesis
method for linear periodic discrete–time systems subject to polytopic state and input constraints. It is proven that in this setting, the
proposed synthesis method is strictly less conservative than available tractable synthesis methods. The application of the derived method
to the satellite attitude control problem results in a large region of attraction.

Key words: Periodic systems, periodic control, Lyapunov functions, constrained control, satellite attitude control

1 Introduction

This work deals with stability and stabilization of periodi-
cally time-varying systems, or shortly, periodic systems. Sta-
bility analysis and stabilization of periodic systems is typ-
ically handled by means of periodically time–varying stan-
dard Lyapunov functions (LFs), see Jiang and Wang (2002)
for the nonlinear case and Bittanti and Colaneri (2009) for
the linear case. For most of the available controller syn-
thesis methods for periodic systems, existence of a period-
ically time–varying LF for the closed–loop dynamics can
be derived, either directly or by the converse result in Jiang
and Wang (2002). Consider methods based on the periodic
Riccati equation Bittanti et al. (1991), Varga (2008), output
feedback schemes De Souza and Trofino (2000), H2 syn-
thesis for the case of linear periodic systems with polytopic
uncertainties Farges et al. (2007), eigenvalue assignment
Brunovský (1970), Kabamba (1986) controllability Longhi
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and Zulli (1995), model predictive control Böhm (2011),
Gondhalekar and Jones (2011), and control with saturation
Zhou et al. (2011). In the monograph (Bittanti and Colaneri,
2009, Chapter 13), a thorough exposition of existing results
on stabilization techniques, including also frequency domain
considerations or lifting techniques, is presented.

In the presence of constraints, however, stability analysis
based on periodically time–varying standard LFs can yield a
conservative region of attraction, as shown recently in Böhm
et al. (2012). Therein, a relaxed stability analysis theorem
was derived for autonomous nonlinear periodic systems. The
main idea behind this relaxation is that the Lyapunov func-
tion is not required to decrease at each time instant, as in
Jiang and Wang (2002) or in Bittanti and Colaneri (2009)
for the linear case, but at each period. This paper considers
stabilization of linear periodic systems with inputs, subject
to polytopic state and input constraints, by means of linear
periodic state–feedback control laws. The presence of input
constraints further motivates the need for a relaxation of the
classical stability analysis theorems Jiang and Wang (2002),
Bittanti and Colaneri (2009). For the case of periodic sys-
tems with inputs, however, the relaxed periodic Lyapunov
conditions in Böhm et al. (2012) lead to a nonlinear and
non–convex optimization problem which is not tractable.

Motivated by the current status, we propose an alternative
stability analysis theorem for nonlinear periodic systems.
This new result allows the establishment of a tractable con-
strained synthesis method for linear periodic systems, by
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choosing quadratic periodic Lyapunov functions. We show
how the constrained synthesis problem with linear periodic
state–feedback can be solved by decomposing the original
non–convex optimization problem in a finite set of semi–
definite optimization problems having linear matrix inequal-
ities (LMIs) as constraints. The equivalence between the
original non–convex problem and the set of semi–definite
optimization problems is formally proven. The method is
applied successfully in the challenging magnetic satellite
attitude control problem. The developed synthesis method
yields a large region of attraction for the resulting closed–
loop system while providing non–trivial performance guar-
antees.

The remainder of this paper is structured as follows. Exist-
ing results on Lyapunov stability for periodic systems are
briefly discussed in Section 2. The problem formulation as
well as solutions from existing approaches are presented in
Section 3. The main results are established in Section 4. Ap-
plication of the established results to the satellite attitude
control problem is presented in Section 5, while conclusions
are drawn in Section 6.

Notation and basic definitions: Let R, R+, Z and Z+ de-
note the field of real numbers, the set of non-negative reals,
the set of integer numbers and the set of non-negative inte-
gers, respectively. For every c ∈ R and Π ⊆ R we define
Π≥c := {x ∈ Π | x ≥ c}, and similarly Π≤c, RΠ := Π
and ZΠ := Z ∩ Π. For N ∈ Z≥1, ΠN := Π × . . . × Π.
For a vector x ∈ Rn, [x]i denotes the i-th element of x

and ‖x‖ denotes its 2-norm, i.e., ‖x‖ :=
√

∑n
i=1 |[x]i|2.

The transpose of a matrix X ∈ Rn×m is denoted by X⊤.
For a symmetric matrix Z ∈ R

n×n let Z ≻ 0(� 0) denote
that Z is positive definite (semi-definite). For a positive def-
inite matrix Z ∈ Rn×n let λmin(max)(Z) denote its smallest
(largest) eigenvalue. Moreover, for a block symmetric ma-

trix Z =
[

a b⊤

b c

]

, where a, b, c are matrices of appropriate
dimensions, the symbol ⋆ is used to denote the symmetric

part, i.e., [ a ⋆
b c ] =

[

a b⊤

b c

]

. For the definition of functions of
class K, K∞ and KL, refer to Böhm et al. (2012).

2 Preliminaries

Let n,m ∈ Z+ be integers and let X : Z+ → Rn and
U : Z+ → R

m be maps that assign to each k ∈ Z+ a subset
of Rn and a subset of Rm respectively, which contain the
origin in their interior. We consider time–varying nonlinear
systems of the form

x(k + 1) = f(k, x(k), u(k)), k ∈ Z+, (1)

where f : Z+ × Rn × Rm → Rn is an arbitrary nonlinear
map such that f(k, 0, 0) = 0, for all k ∈ Z+. The vector
x(k) ∈ X(k) is the system state at time k ∈ Z+ and u(k) ∈
U(k) is the system input at time k ∈ Z+.

Definition 1 The system (1) is called periodic if there exists
an N ∈ Z≥1 such that for all k ∈ Z+ it holds (i) X(k) =

X(k+N); (ii) U(k) = U(k+N); (iii) f(k, x, u) = f(k +
N, x, u) for all x ∈ X(k), for all u ∈ U(k). Furthermore,
the smallest such N ∈ Z≥1 is called the period of system (1).

We consider a periodically time–varying state feedback con-
trol law g : Z+ × Rn → Rm such that g(k, 0) = 0, for
all k ∈ Z+, g(k, x) = g(k + N, x), for all k ∈ Z+, and
g(k, x(k)) ∈ U(k), for all k ∈ Z+ and for all x(k) ∈ X(k).
We assume, for simplicity, that the period of the control
law is equal to the period of system (1). The corresponding
closed–loop system is

x(k + 1) = f(k, x(k), g(k, x(k))), k ∈ Z+. (2)

System (2) is periodic with periodN , since f(k+N, x, g(k+
N, x)) = f(k, x, g(k, x)). In what follows, let X0 := X(0)

and define X :=
⋃N−1

k=0 X(k). As such, all state trajectories

of system (2) with x(0) ∈ X0 satisfy x(k) ∈ X, for all k ∈
Z+. For clarity of exposition, we will consider constant input
and state dimensions for all modes of the periodic system.
The classical time-invariant unconstrained state-space and
input domain is recovered by setting X(k) = Rn, U(k) =
Rm, for all k ∈ Z+.

We adopt the notions of asymptotic stability in a set X0

(AS(X0)), exponential stability in a set X0 (ES(X0)) and re-
gion of attraction (ROA) for system (2) from Böhm et al.
(2012). Next, the notion of a periodically positively invari-
ant (PPI) sequence of sets is recalled. Let {D(π)}π∈Z[0,N−1]

denote a sequence of sets with D(π) ⊆ X(π) for all π ∈
Z[0,N−1].

Definition 2 The sequence {D(π)}π∈Z[0,N−1]
is called pe-

riodically positively invariant for system (2) if for each
π ∈ Z[0,N−1], each k ∈ {iN + π}i∈Z+ and x(k) ∈ D(π),
it holds that x(k + N) ∈ D(π) and x(k + j) ∈ X(k + j),
for all j ∈ Z[1,N−1].

The following stability Theorems correspond to Jiang and
Wang (2002) and Böhm et al. (2012) respectively. These
results are adapted for system (2) and modified appropriately
in order to provide a framework compatible with the results
established in this article.

Theorem 1 Jiang and Wang (2002) Let {X(k)}k∈Z[0,N−1]

be a PPI sequence of sets w.r.t. (2). Let α1, α2 ∈ K∞,
ρ ∈ R[0,1) and let x(·) be a solution to (2) with x(0) :=

ξ ∈ X(0). Let V : Z+ × X → R+ be a function, such that
V (k, x) = V (k +N, x), for all k ∈ Z+, and moreover, for
all k ∈ Z+ it holds that

α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), ∀ξ ∈ X(k)
(3a)

V (k + 1, f(k, x(k), g(k, x(k)))) ≤ ρV (k, x(k)),

∀ξ ∈ X(0). (3b)

Then, system (2) is AS(X0).
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Theorem 2 Böhm et al. (2012) Let {X(k)}k∈Z[0,N−1]
be a

PPI sequence of sets w.r.t. (2). Let α1, α2 ᾱj , j ∈ Z[1,N−1]

be K∞ functions, η ∈ R[0,1) and x(·) be a solution to (2)

with x(0) := ξ ∈ X(0). Let V : Z+ × X → R+ be a
function, such that V (k, x) = V (k+N, x), for all k ∈ Z+,
and moreover, for all k ∈ Z+, for all j ∈ Z[1,N−1], it holds
that

‖x(j)‖ ≤ ᾱj(‖x(j − 1)‖), ∀ξ ∈ X(0) (4a)

α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), ∀ξ ∈ X(k) (4b)

V (k +N, x(k +N)) ≤ ηV (k, x(k)), ∀ξ ∈ X(0). (4c)

Then, system (2) is AS(X0).

3 Problem formulation

We consider non-autonomous linear periodic systems

x(k + 1) = A(k)x(k) +B(k)u(k), (5)

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, and A(k) = A(k +
N), B(k) = B(k+N), for all k ∈ Z+. Equivalently to the
nonlinear case, by choosing a linear periodic state–feedback
control law with period N , i.e.,

u(k) = g(k, x(k)) := K(k)x(k), (6)

with K(k) = K(k +N), the closed-loop system is

x(k + 1) = (A(k) +B(k)K(k))x(k). (7)

Next, we consider that system (5) is subject to polytopic
state periodic constraints

X(k) := {x ∈ R
n : ci(k)x ≤ 1, ∀(i, k) ∈ Z[1,p(k)] × Z+},

(8)
where p(k) ∈ Z≥1, for all k ∈ Z+, is the number of hy-
perplanes that define set X(k), and ci(k +N) = ci(k), for
all (i, k) ∈ Z[1,p(k)] ×Z+. Similarly, we consider polytopic
input constraints

U(k) := {u ∈ R
m : di(k)u ≤ 1, ∀(i, k) ∈ Z[1,q(k)] × Z+},

(9)
where q(k) ∈ Z≥1, for all k ∈ Z+, and di(k+N) = di(k) ∈
R1×n for all (i, k) ∈ Z[1,q(k)] × Z+.

We are now ready to state the problem of interest.

Problem 1 Given system (5), state and input constraints
X(k) (8) and U(k) (9) respectively, determine a stabilizing
linear periodic state–feedback control law (6) and a cor-
responding PPI sequence of sets {E(k)}k∈Z[0,N−1]

with re-
spect to the closed–loop system (7).

3.1 Solutions based on existing stability analysis theorems

To solve Problem 1, consider quadratic periodic Lyapunov
function candidates

V (k, x) = x⊤P (k)x, (10)

where P (k) ∈ Sn++, with P (k+N) = P (k) for all k ∈ Z+.
The candidate Lyapunov function (10) is upper and lower
bounded by α1, α2 ∈ K∞,

α1(y) := min
i∈Z[0,N−1]

|λminP (i)|y2, (11)

α2(y) := max
i∈Z[0,N−1]

|λmaxP (i)|y2, (12)

i.e.,

α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), (13)

for all ξ ∈ Rn. In this setting, one can apply Theorem 1,
which results in the periodic Lyapunov lemma (PLL), as
formally stated next.

Lemma 1 Bittanti and Colaneri (2009) Consider system (7).
Let ρ(k) ∈ R[0,1), k ∈ Z[0,N−1], and P (k) ∈ Sn++, k ∈
Z[0,N ] be positive definite matrices, with P (N) := P (0),

which define sets E(k) = {x ∈ Rn : x⊤P (k)x ≤ 1} such
that E(k) ⊆ X(k), for all k ∈ Z[0,N−1]. If the matrix in-
equalities

(A(k) +B(k)K(k))⊤P (k + 1)(A(k) +B(k)K(k))

− ρ(k)P (k) � 0, (14)

hold for all k ∈ Z[0,N−1], then system (7) is ES(E(0)).

Next, it is shown how Theorem 2 could be applied to solve
Problem 1. To this end, for all k ∈ Z[0,N−1] define the
monodromy matrices Bittanti and Colaneri (2009)

Φ(k) :=

N−1
∏

i=0

(A(k + i) +B(k + i)K(k + i)).

Lemma 2 Consider system (7). Let η ∈ R[0,1), and P (k) ∈
Sn++, k ∈ Z[0,N ] be positive definite matrices, with P (N) :=

P (0), which define sets E(k) = {x ∈ R
n : x⊤P (k)x ≤ 1}

such that E(k) ⊆ X(k), for all k ∈ Z[0,N−1]. If the matrix
inequalities

Φ(k)⊤P (k)Φ(k)− ηP (k) � 0, (15a)

(A(k) +B(k)K(k))⊤P (k + 1)(A(k) +B(k)K(k))

−P (k) � 0, (15b)

hold for all k ∈ Z[0,N−1], then system (7) is AS(E(0)).
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Remark 1 The closed–loop system (7) is a time–varying
linear system with a finite number of time–invariant subsys-
tems. Also, the corresponding periodic Lyapunov function
(10) is periodically time–varying. Since the upper and lower
K∞ bounds (11), (12) of the Lyapunov function (10) are
time-invariant, exponential stability of the closed-loop sys-
tem (7) can be deduced following the proof of (Böhm et al.,
2012, Theorem 9), by exploiting the specific form of (11) and
(12). Consequently, if conditions (15a),(15b) of Lemma 2
hold, then the system (7) is ES(E(0)). The formal details of
this straightforward derivation are omitted for brevity.

Remark 2 Lemma 2 is a strict relaxation of the result stated
in Lemma 1. Indeed, a feasible set of matrices P (k), k ∈
N[0,N−1], and periodic state feedback gains K(k), k ∈
N[0,N−1], that satisfies (14), satisfies relations (15) as well,
but the converse is not true. Regarding computational as-
pects, the conditions (14) of Lemma 1 can be reformulated
as an equivalent semidefinite program, while finding a so-
lution to the conditions (15) of Lemma 2 requires solving a
non–convex and nonlinear program. Therefore, it of inter-
est to establish a trade–off between the additional degree of
freedom introduced by Lemma 2 and the tractability of the
conditions of Lemma 1.

4 Main results

The first main result of this paper is an alternative stabil-
ity analysis theorem for periodic nonlinear systems, which
provides a trade–off between Theorem 1 and Theorem 2, as
formally stated next.

Theorem 3 Let {X(k)}k∈Z[0,N−1]
be a PPI sequence of

sets w.r.t. (2). Let α1, α2 ∈ K∞, scalars ρ(j) ∈ R[0,1],

j ∈ N[0,N−1], and x(·) be a solution to (2) with x(0) :=

ξ ∈ X(0). Let V : Z × X̄ → R+ be a function, such that
V (k, x) = V (k +N, x), for all k ∈ Z+, and moreover, for
all j ∈ Z[0,N−1], it holds that

V (j + 1, x(j + 1)) ≤ ρ(j)V (j, x(j)), ∀ξ ∈ X(0) (16a)

α1(‖ξ‖) ≤ V (k, ξ) ≤ α2(‖ξ‖), ∀ξ ∈ X(k) (16b)

0 ≤
N−1
∏

i=0

ρ(i) < 1. (16c)

Then, system (2) is AS(X0).

Proof From (16a) and (16b), for any j ∈ Z[1,N ], it holds
that

α1(‖x(j)‖) ≤ V (j, x(j)) ≤ ρ(j − 1)V (j − 1, x(j − 1))

≤ ρ(j − 1)α2(‖x(j − 1)‖),

or

‖x(j)‖ ≤ α−1
1 (ρ(j − 1)α2(‖x(j − 1)‖)).

Thus, relation (4a) of Theorem 2 is satisfied with

ᾱj(s) := α−1
1 (ρ(j − 1)α2(s)), ∀j ∈ Z[1,N−1].

Moreover, from (16a), for any k ∈ Z+ and for any x(k) ∈
X(k), it holds that

V (k+N, x(j+N)) ≤ ρ(N−1)V (j+N−1, x(j+N−1)).

Applying the previous inequality successively, it holds that

V (k +N, x(j +N)) ≤
ρ(N − 1)ρ(N − 2)V (k +N − 2, x(k +N − 2)) ≤

≤ ... ≤
N−1
∏

i=0

ρ(i)V (k, x(k)).

Taking into account (16c), relation (4c) of Theorem 2 is sat-

isfied with η :=
∏N−1

i=0 ρ(i) ∈ R[0,1). Thus, by Theorem 2,
system (2) is AS(X0). �

Remark 3 To compare the available stability analysis the-
orems observe the following: (i) Theorem 1 requires V (·) to
decrease at every time instant k ∈ Z+; (ii) Theorem 3 re-
quires V (·) not to increase at every time instant k ∈ Z+ and
to decrease at every N time instants, i.e., at every period;
(iii) Theorem 2 requires V (·) to decrease at every period.
Furthermore, notice that condition (16c) does not fix a par-
ticular time instant when the decrease should take place,
within each period.

Remark 4 While existence of a function V (·) that satisfies
conditions of Theorems 1–3 is necessary and sufficient 1 for
the system (2) to be AS(X0), the feasible solution sets of
the underlying conditions are ordered as follows: A function
V (·) satisfying conditions (3) of Theorem 1 satisfies condi-
tions (16) of Theorem 3, which in turn satisfy conditions (15)
of Theorem 2. The opposite is not true.

Since Theorem 3 still provides a strict relaxation of Theo-
rem 1, it is of further interest to utilize Theorem 3 for solving
Problem 1. To this end, consider the following result.

Theorem 4 Consider system (5) and constraints X(k) (8),
U(k) (9). Let ρ(k) ∈ R[0,1], X(k) ∈ Sn++, Y (k) ∈ Rm×n,

for all k ∈ Z[0,N−1], where X(N) := X(0), Y (N) :=
Y (0), be a feasible solution to the following set of matrix
inequalities, for all k ∈ Z[0,N−1], for all i ∈ Z[1,p(k)] and

1 Theorem 1 further requires a continuity assumption on the dy-
namics of the system (2).
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all j ∈ Z[1,q(k)]:

[

ρ(k)X(k) ⋆

A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (17a)

0 ≤
N−1
∑

l=0

ρ(l) < N, (17b)

[

1 ⋆

X(k)ci(k)
⊤ X(k)

]

� 0, (17c)

[

1 ⋆

Y (k)⊤dj(k)
⊤ X(k)

]

� 0. (17d)

Then, the sequence {E(k)}k∈Z[0,N−1]
, where E(k) := {x ∈

Rn : x⊤X(k)−1x ≤ 1}, k ∈ Z[0,N−1], is PPI for the closed-
loop system (7) with linear periodic state feedback control
law u(k, x) = Y (k)X(k)−1x, where u(k+N, x) = u(k, x)
for all k ∈ Z+. Moreover, system (7) is ES(E(0)).

Proof First, we show that the sets E(k), k ∈ Z[0,N−1], are

contained in X(k) and Ux(k) for all k ∈ Z[0,N−1], where

Ux(k) := {x ∈ R
n : di(k)Y (k)X(k)−1x ≤ 1,

∀(i, k) ∈ Z[1,q(k)] × Z+},

for all k ∈ Z[0,N−1]. Applying the Schur complement in

(17c) and exploiting the periodicity of X(k) we obtain

ci(k)
⊤X(k)ci(k) ≤ 1, ∀(i, k) ∈ Z[1,p(k)] × Z+. (18)

From (Athanasopoulos et al., 2013, Lemma 12), inequality
(18) implies E(k) ⊂ X(k), for all k ∈ Z+. Equivalently,
applying the Schur complement in (17d) we obtain

dj(k)Y (k)X(k)−1Y (k)⊤dj(k)
⊤ ≤

(dj(k)Y (k)X(k)−1)X(k)(X(k)−1Y (k)⊤dj(k)
⊤) ≤ 1,

(19)

for all (j, k) ∈ Z[1,q(k)] ×Z+. From (Athanasopoulos et al.,

2013, Lemma 12), inequality (19) implies E(k) ⊂ Ux(k),
for all k ∈ Z+.

Next, we show that V (k, x) = x⊤X(k)−1x is a periodic
Lyapunov function that satisfies Theorem 3 for the closed–
loop system (7). The matrix inequality (17a) is equivalent to

(A(k)X(k) +B(k)Y (k))⊤X(k + 1)−1(A(k)X(k)

+B(k)Y (k))− ρ(k)X(k) � 0.

Pre–multiplying and post–multiplying by X(k)−1, the pre-

vious inequality becomes

(A(k) +B(k)Y (k)X(k)−1)⊤X(k + 1)−1(A(k)

+B(k)Y (k)X(k)−1)− ρ(k)X(k)−1 � 0.
(20)

Thus, condition (16a) of Theorem 3 is satisfied with
V (k, x) = x⊤X(k)−1x. Also, condition (16b) holds with

α1(y) = min
i∈Z[0,N−1]

|λmin(X(i)−1)|y2 (21)

α2(y) = max
i∈Z[0,N−1]

|λmax(X(i)−1)|y2. (22)

Lastly, since ρ(k) ∈ R[0,1], from (17b) it necessarily holds
that

0 ≤
N−1
∏

l=0

ρ(l) < 1, (23)

thus, condition (16c) of Theorem 3 is also satisfied. Thus,
from (20)–(23), Theorem 3 is satisfied, system (7) is
AS(E(0)) and {E(k)}k∈Z[0,N−1]

is a PPI sequence of sets
w.r.t. system (7). Moreover, taking into account Remark 1,
the system (7) is ES(E(0)). �

Still, conditions (17) of Theorem 4 cannot be used directly
to form a tractable synthesis method that solves Problem 1,
since (17a) consists of N products between the scalars ρ(k)
and matrices X(k), k ∈ N[0,N−1]. In specific, condition
(17a) is a special case of a bilinear matrix inequality that
will be denoted in what follows as a bilinear scalar matrix
inequality (BsMI). Although ρ(k) is a scalar for each k ∈
N[0,N−1], finding a solution to the N joint BsMI conditions
corresponding to (17a) is challenging, since the bisection
method cannot be used. The second main result of this paper
provides an equivalent formulation of the conditions (17)
that can be solved by semidefinite programming. To this end,
first, consider the following problem.

Problem 2 Given system (5), constraints X(k) (8),
U(k) (9), and a fixed k̄ ∈ Z[0,N−1], solve the feasibility
problem

find X(k), Y (k), ρ,X(k), Y (k), k ∈ Z[0,N−1]\{k}. (24)
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subject to

[

X(k) ⋆

A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (25a)

[

ρX(k) ⋆

A(k)X(k) +B(k)Y (k) X(k + 1)

]

� 0, (25b)

0 ≤ ρ < 1, (25c)
[

1 ⋆

X(l)ci(l)
⊤ X(l)

]

� 0, (25d)

[

1 ⋆

Y (l)⊤dj(l)
⊤ X(l)

]

� 0, (25e)

with X(N) := X(0), for all k ∈ Z[0,N−1] \ {k}, l ∈
Z[0,N−1], i ∈ Z[1,p(l)], j ∈ Z[1,q(l)].

Lemma 3 Consider system (5), constraints X(k) (8) and
U(k) (9). Then, the matrix inequalities (17) define a
nonempty feasible solution set if and only if there exists an
index k̄⋆ ∈ Z[0,N−1] such that Problem 2 is feasible with

k = k
⋆
.

Proof Suppose Problem 2 is feasible for a k = k
⋆ ∈

Z[0,N−1]. Then, relations (17) are also feasible setting

ρ(k) = 1, for all k ∈ Z[0,N−1] \ {k⋆}, ρ(k
⋆
) := ρ, and

X(k̄⋆), Y (k̄⋆), X(k), Y (k), k ∈ Z[0,N−1], the solutions
to Problem 2. Conversely, suppose that conditions (17)
have a nonempty feasible solution set. Then, there exists

at least one k
⋆ ∈ Z[0,N−1] such that ρ(k

⋆
) < 1. Setting

k̄ := k̄⋆ and ρ := ρ(k
⋆
) the corresponding matrix inequal-

ities (25b)–(25e) in Problem 2 are satisfied. Moreover, for

any k̂ ∈ Z[0,N−1] \ {k̄⋆} such that ρ(k̂) < 1, relation (17a)
implies

[

X(k̂) ⋆

A(k̂)X(k̂) +B(k̂)Y (k̂) X(k̂ + 1)

]

�

(1− ρ(k̂))X(k̂) � 0.

Thus, (25a) is also satisfied, and consequently, Problem 2

has a solution for k = k
⋆
. �

Remark 5 Comparison of conditions (17a) of Theorem 4
with condition (25b) in Problem 2, reveals the significance
of the previous result. Lemma 3 shows that existence of a
feasible solution to the constraint set (17), which involves N
BsMIs, is equivalent to existence of a solution in (at least)
one of the N feasibility problems (24)–(25), which involve a
single bilinear term, i.e., the product of the scalar ρ and the

matrix X(k) in (25b). Furthermore, since the single bilin-
ear term in (25b) consists of a matrix and the constrained
nonnegative scalar ρ ∈ R[0,1), solution of Problem 2 is

equivalent to solving a series of LMIs via bisection, which
is guaranteed to converge to a feasible solution, if a feasi-
ble solution exists. Still, it is worth noting that the computa-
tional burden induced by the proposed method is higher than
the one stemming from the application of the PLL synthesis
method, which involves fewer decision variables and strict
LMIs, see e.g. Zhou et al. (2011). This is the price to be paid
for exploiting the less conservative results of Theorem 4.

4.1 Additional synthesis objectives

In constrained synthesis, together with computing a stabi-
lizing control law, it is of relevance to aim for a large basin
of attraction E(0) ⊆ R(X0), where E(0) = {x ∈ Rn :
x⊤X(0)−1x ≤ 1}. To this end, a semi–definite optimization
problem that is solved for every k̄ ∈ Z[0,N−1], maximizes

the volume of E(0) and solves Problem 1, i.e.,

min
X(k),Y (k),ρ,X(k),Y (k),k∈Z[0,N−1]\{k}

−trace(X(0)), (26)

subject to (25). Alternative optimization criteria that describe
the size of E(0) can be chosen as well (see e.g. Boyd et al.
(1994)).

Moreover, the quantities
∏N−1

l=0 ρ(l), where ρ(k), k ∈
N[0,N−1], obtained from Theorem 4, and ρ̄, obtained from
Problem 2, represent the exponential decrease of the cor-
responding periodic Lyapunov functions at each period,
and consequently the speed of convergence of the closed–
loop system trajectories. Thus, the proposed method of-
fers the possibility to embed performance specifications
in the synthesis procedure. In order to achieve a desired
decrease ρ̂ ∈ R[0,1) at each period for the closed–loop
system, it is sufficient to replace (25d) with 0 ≤ ρ ≤ ρ̂.
Similarly, in Theorem 4, relation (17b) can be replaced by

0 ≤ ∑N−1
l=0 ρ(l) ≤ N N

√
ρ̂.

An additional relevant problem is computation of a PPI se-
quence of sets {E(k)}k∈Z[0,N−1]

that includes a given set of

initial conditions X0 ⊆ X(0). To this end, Problem 2 can
be modified such that the first element E(0) of the PPI se-
quence includes X0. First, consider a polytopic set X which
is described as the convex hull of a finite set of vertices
vi ∈ Rn, i ∈ Z[1,q]. i.e., X := convhull({vi}i∈Z[1,p]

).

Lemma 4 Let E ∈ Sn++ and vi ∈ Rn, for all i ∈ Z[1,q]

with q ∈ Z≥1. The polytope X := convhull({vi}i∈Z[1,p]
) is

contained in the ellipsoid E := {x ∈ Rn : x⊤Ex ≤ 1} if
and only if v⊤i Evi ≤ 1, ∀i ∈ Z[1,q].

Then, a stabilizing linear periodic state–feedback control law
(6) and a PPI sequence of sets {E(k)}k∈Z[1,N−1]

such that

X0 ⊆ E(0) can be computed from the solution of Problem 2
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having the additional constraint

[

1 ⋆

vi X(0)

]

� 0, ∀i ∈ Z[0,q]. (27)

5 Satellite attitude control

A detailed comparison of the established results with the
synthesis method that corresponds to the PLL Bittanti and
Colaneri (2009) was provided in Athanasopoulos et al.
(2013) for an illustrative, two dimensional academic ex-
ample. In order to also illustrate the applicability of the
results to challenging real–life control problems, we con-
sider the problem (see for example, Lovera and Astolfi
(2004), Böhm (2011) and the references therein) of attitude
control of a low Earth orbit satellite via magnetic actuators.
The linearized continuous–time attitude dynamics of the
satellite can be described Böhm (2011) by the following
time–varying differential equation

ẋ(t) = Acx(t) +Bc(t)u(t), (28)

where 2 Ac ∈ R6×6, [Ac]13 = (1− s1)ω0, [Ac]14 =
−4s1ω

2
0 , [Ac]25 = −3ω0s2, [Ac]13 = − (1 + s3)ω0,

[Ac]16 = s3ω
2
0 , [Ac]41 = [Ac]52 = [Ac]63 = 1 and

[Ac]ij = 0 for all the other index pairs (i, j). Furthermore,

Bc(t) ∈ R3×6, [Bc(t)]12 = − b3(t)
J2

, [Bc(t)]13 = b2(t)
J3

,

[Bc(t)]21 = b3(t)
J1

, [Bc(t)]23 = − b1(t)
J3

, [Bc(t)]31 = − b2(t)
J1

,

[Bc(t)]32 = b1(t)
J2

and [Bc(t)]ij = 0 for all the other index

pairs (i, j). In detail, s1 := J2−J3

J1
, s2 := J3−J1

J2
, s3 :=

J1−J3

J3
, where the constants Ji, i ∈ Z[1,3] are the moments

of inertia, with values J1 = 1250kgm2, J2 = 2800kgm2,
J3 = 2600kgm2. The input matrix Bc(t) depends on the
components bi(t), i ∈ Z[1,3], of the Earth magnetic field,
which are approximated by the trigonometric functions

bi(t) = αi cos(ω0t) + βi sin(ω0t) + γi, i ∈ Z[1,3].

The satellite follows a circular orbit with altitude of 600km
and inclination angle of 77o. A full rotation around the
Earth requires T0 = 96.7min, resulting in the frequency
of ω0 = 0.0649 rad

min
. The relevant coefficients that describe

sufficiently the components of the Earth magnetic field are
α1 = 2.2365 · 10−5, α2 = −8.2537 · 10−8, α3 = 7.7377 ·
10−6, β1 = −3.9411 · 10−6, β2 = −3.8422 · 10−7, β3 =
4.4820 · 10−5, γ1 = −2.8863 · 10−8, γ2 = −4.5491 · 10−6,
γ3 = −1.4166 · 10−7. Thus, the input matrix Bc(t) is peri-
odic with period T0 such that Bc(t + T0) = Bc(t), for all
t ∈ R+. The state vector x ∈ R6 consists of the three angu-
lar rates ωi, i ∈ Z[1,3] and the three angles of the pointing

2 For a matrix A ∈ R
n×m, its element in the i-th row and j-th

column is denoted by [A]ij .

error φi, i ∈ Z[1,3] with respect to each principal axis (re-
ferred to as roll, pitch, and yaw angle), i.e.,

x = [ω1 ω2 ω3 φ1 φ2 φ3]
⊤
.

The input vector u ∈ R
3 consists of the magnetic dipole

moments which are induced by three coils placed along
the axes of the satellite. Each input is subject to hard
constraints −400Am2 ≤ ui(t) ≤ 400Am2, i ∈ Z[1,3],

which can be written in the form (9) with d1 = [1 0 0],
d2 = [0 1 0], d3 = [0 0 1], d4 = −d1, d5 = −d2,
d6 = −d3. The continuous–time system (28) is dis-
cretized with N = 10 discretization steps at each period,

i.e., with a sampling rate δ := T0

N
= 9.67min. Conse-

quently, the discretized non–autonomous system is of the
form (5) with system matrices A(k) = eAcδ k ∈ Z+,

B(k) =
∫ (k+1)δ

kδ
eB((k+1)δ−τ)Bc(τ) dτ, k ∈ Z[0,9]. The

Fig. 1. The elements Es(s), s ∈ Z[0,9] of the resulting PPI se-
quences, for ωi = 0, i ∈ Z[1,3]. The set E0(0) is depicted in yel-
low color, while sets Es(s), s ∈ Z[0,9] \ {0} are depicted in grey.

control problem consists of computing a stabilizing state
feedback control law and an estimation of the region of at-
traction of the closed–loop system. The desired decrease rate
at each period of the closed–loop system is set to ρ̂ := 0.410.
For the problem under study, each mode s ∈ Z[0,9] of the pe-

riodic system, i.e., x(k+1) = Ax(k)+B(s)u(k), describes
the dynamics of the satellite in an area of its orbit. Thus, it
is relevant to assume that the initial condition can be applied
to any mode of the periodic system (5), which corresponds
to all instances of the orbit of the satellite. Furthermore, we
consider a preassigned set X0 ⊂ R6 of initial conditions
of interest, where X0 := {x ∈ R6 : xi = 0,−60o ≤ xj ≤
60o, i ∈ Z[1,3], j ∈ Z[4:6]}. Setting ωi = 0, i ∈ Z[1,3] in the
initial condition set X0 is a reasonable choice since the rota-
tional energy of the satellite can be minimized using a rate
damping controller Böhm (2011); Silani and Lovera (1998).
The set X0 is a three dimensional cube in the subspace of
the state variables xj , j ∈ Z[4,6] and can be equivalently

written in the form X0 = convhull({vi}i∈Z[1,8]
), where

vi ∈ R6, i ∈ Z[1,8]. In order to meet the preassigned initial
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condition set specifications, different linear periodic con-
trol laws were computed to cover all the cases where the
initial condition is applied. Moreover, in order to satisfy
the performance requirements, Problem 2 was modified in
order a decrease ρ of the Lyapunov function to be enforced
in five out of the ten modes of the system, with index Is,
resulting in ρ = 0.42. Thus, the decrease rate in one pe-
riod is ρ̂ = (0.42)5. This yields the following optimization
problems, which were solved for each s ∈ Z[0,9]:

min
X(k),Y (k),X(k),Y (k),k∈Z[0,9]\Is

−trace(X(s)) (29)

subject to

∀k ∈ Z[0,9] \ Is :
[

X(k) ⋆

AX(k) +B(k)Y (k) X(k + 1)

]

� 0, (30a)

∀k ∈ Is :
[

ρX(k) ⋆

AX(k) +B(k)Y (k) X(k + 1)

]

� 0, (30b)

∀(l, j) ∈ Z[0,9] × Z[1,6] :
[

1 ⋆

X(l)ci(l)
⊤ X(l)

]

� 0, (30c)

[

1 ⋆

Y (l)⊤dj(l)
⊤ X(l)

]

� 0, (30d)

∀i ∈ Z[1,8] :
[

1 ⋆

vi X(s)

]

� 0, (30e)

with X(N) := X(0). The optimization constraints (30b)
enforce a decrease ρ of the Lyapunov function in all modes

k ∈ Is, while the optimization constraints (30e) guarantee
that the initial condition set will be included in the region of
attraction, i.e., X0 ⊂ Es(s). All optimization problems were
feasible for a choice of each index set Is, s ∈ Z[0,9]. The
solution of problem (29),(30) resulted in ten stabilizing lin-
ear periodic state feedback control laws u(k) = Ks(k)x(k),
s ∈ Z[0,9] and corresponding PPI sequences {Es(k)}k∈Z[0,9]

,
s ∈ Z[0,9].

In Figure 1, the elements Es(s), s ∈ Z[0,9] of the resulting
PPI sequences are depicted for ωi = 0, i ∈ Z[1,3]. The solu-
tion of each optimization problem (29),(30) was computed in
Matlab R2011b, using the YALMIP interface and the semi-
definite quadratic programming solver SDPT3–4.0. The con-
trol law is implemented in the following fashion. First, the
mode s ∈ Z[0,9] of the periodic system where the initial con-

dition lies is identified. Second, the control strategy u(k) =
Ksx(k) is applied, for all k ∈ Z+. The continuous–time
closed–loop system was simulated in Matlab R20011b, for
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Fig. 2. State trajectories for φi, i ∈ Z[1,3] (φ1

-red, φ2 -blue, φ3 -green) and initial condition

x0 = [0 0 0 60o − 60o − 60o]⊤ applied in mode s = 0.

the initial condition x0 = [0 0 0 60o − 60o − 60o]⊤

and mode s = 0. In Figure 2, the state response of the state
variables φi, i ∈ Z[1,3] is shown.

Remark 6 For the considered problem setting, a compari-
son with relevant methods was made. To this end, applica-
tion of the PLL synthesis method (Lemma 1) did not result
in a feasible solution, due to the preassigned initial condi-
tion set specification. On the other hand, modification of the
stability analysis method in Böhm et al. (2012) to synthesis
(Lemma 2) did not return a solution. In contrast, the com-
puted region of attraction by the developed method spans a
range of [-60, 60] in all three angles of the pointing error,
which is a significant range, while using only 10 feedback
gain matrices. Last, comparing with predictive control ap-
proaches, the explicit model predictive control solution of
(Böhm, 2011, Section 5.4), which employs 30 feedback gain
matrices, reports a feasible solution for the initial condition

x0 = [0 0 0 30o 30o 30o]
⊤

.

6 Conclusions

An alternative stability analysis theorem for nonlinear peri-
odic discrete–time systems was presented. In addition, the
derived theorem was used to devise a tractable stabilizing
controller synthesis method for linear periodic discrete–time
systems subject to polytopic state and input constraints. The
application of the derived method to satellite attitude control
resulted in a large region of attraction.
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Böhm, C., Lazar, M., Allgower, F., 2012. Stability of peri-
odically time-varying systems: Periodic Lyapunov func-
tions. Automatica 48, 2663–2669.

Boyd, S., El Ghaoui, L., Feron, E., Balakishnan, V., 1994.
Linear Matrix Inequalities in System and Control Theory.
Society for Industrial and Applied Mathematics.
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