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Abstract. Loads are often represented as a weighted combination of constant 

impedance (Z), current (I) and power (P) components, so called ZIP models, by 

various power systems network simulation tools. However, with the growing 

need to model nonlinear load types, such as LED lighting, ZIP models are 

increasingly rendered inadequate in fully representing the voltage dependency of 

power consumption traits. In this paper we propose the use of small-signal ZIP 

models, derived from a neural network model of appliance level consumption 

profiles, to enable better characterizations of voltage dependent load behavior. 

Direct and indirect approaches to small-signal ZIP model parameter estimation 

are presented, with the latter method shown to be the most robust to neural 

network approximation errors. The proposed methodology is demonstrated using 

both simulation and experimentally collected load data.  

Keywords: ZIP models, exponential models, load modelling, neural networks. 

1 Introduction 

This paper proposes an enhancement of existing static load modelling techniques to 

facilitate greater accuracy in the characterization of active and reactive power 

consumption, as functions of applied voltage, in power systems studies. This research 

is pertinent, given the emergence of many modern load types for which conventionally 

understood behaviors, in response to imposed variations in voltage, do not readily 

apply. Conventional modelling practices ought to be reviewed so that the characteristics 

of modern loads are reproduced in simulation with greater fidelity and their aggregated 

influence upon electricity networks may become better quantified. 

Conservation Voltage Reduction (CVR) is a noteworthy energy conservation 

application, for which the accuracy of load models is intrinsic to its effectiveness. 

Utilities tend to employ CVR to lower service level voltages as a proxy for reducing 

electricity demand, especially during peak hours. Its objectives are typically achieved 

via the coordinated control of assorted distribution network assets, such as on load tap-

changing (OLTC) transformers and switched capacitor banks. The effectiveness of 

enacting CVR within a targeted electricity network may be encapsulated by its CVR 

factor [1], values which aim to quantify the responsiveness (in percentage terms) of the 

energy consumed by an electrical appliance, household, feeder or entire network, ∆E, 

to an applied percentage change in the voltage supply, ∆V. For changes in active energy, 
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this paper qualifies the corresponding CVR factor scalar with a ‘p’ subscript, as in 

CVRp. Similarly, for reactive power the notation CVRq is used. In the medium to long 

term the CVRp scalar may be used to predict the total energy savings attributable to 

CVR. In the short term steady-state, it may also be used by utilities to predict the 

demand reduction impact of CVR during the daily peak [2]-[3].   

𝐶𝑉𝑅𝑝 =  
∆𝐸(%)

∆𝑉(%)
 (1) 

CVRp ratios are in effect concise, aggregated representations of the steady-state 

parameters that individual loads present to the network upon connection. Ultimately, it 

is the aggregated combination of the many different loads within each household 

(modelled as a lumped load) and the composite CVRp quantity therein that will 

determine the extent by which customers save energy (if at all) within a CVR scheme. 

The aggregation concept may be extended further so that CVR factors determined at 

the appliance, customer and feeder levels are used to form a CVR factor for the entire 

network. Other research [4]-[5] has sought to overcome the complexity of extrapolating 

a deluge of individual load traits to the network level by introducing a linearized 

approximation to the established definition for CVRp outlined in (1). 

This paper explores new ways of interpreting load behaviors in the presence of 

voltage fluctuations, beyond that of established modelling practice, with the intention 

of assisting the analysis and predictability of network voltage optimization tools, such 

as CVR. Specifically, a small-signal load characterization methodology is proposed in 

which an accurate nonlinear model of the load behavior is first generated using a 

Multilayer Perceptron (MLP) neural network, and then voltage dependent small-signal 

load model parameters derived analytically as function of the MLP parameters. 

The remainder of the paper is organized as follows. Section 2 introduces the two 

most widely used static load models (ZIP and exponential), and discusses their 

weaknesses. The proposed small-signal neural network based methodology is then 

described in Section 3. Results demonstrating the efficacy of the methodology are 

presented in Section 4 and finally Section 5 concludes the paper. 

2 Static Load Modelling 

2.1 ZIP models 

The ZIP load modelling approach [7] seeks to approximate active or reactive power 

draw as a function of applied voltage, expressed in the form of a quadratic polynomial. 

The coefficients of the model correspond to constant impedance (Z), constant current 

(I) and constant power (P) consumption terms. An equality constraint applies to the 

model, whereby the values of the three coefficients must exactly sum to 1. The ZIP 

formulation for active power, P(V), is given by the following equation, in which P0 

corresponds to the active power observed at the nominal voltage level, V0.  

𝑃(𝑉) =  𝑃0 ∙ [𝑍𝑝 ∙ (
𝑉

𝑉0

)
2

+  𝐼𝑝 ∙ (
𝑉

𝑉0

) + 𝑃𝑝] (2) 
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Cursory application of (2) shows that for a purely resistive load, i.e. one for which 

Zp = 1, Ip = 0 and Pp = 0, the active power consumption scales with the square of the 

applied voltage level. Thus, the application of CVR to such loads is highly conducive 

in terms of reducing the power consumption of end users. The classic interpretation of 

a constant impedance load is the incandescent lamp [6], which until very recent times 

was a ubiquitous feature of distribution networks and a major component of aggregate 

demand. Conversely, for purely constant power loads, i.e. where Zp = 0, Ip = 0 and Pp 

= 1, active power consumption is wholly independent of applied voltage fluctuations.  

Load types of this nature are not expected to benefit from the application of CVR. 

Moreover, the act of reducing the voltages applied to such devices is, by definition, 

consistent with increasing the currents drawn and so the impact of CVR may be to 

increase the level of network losses incurred in delivering power to end users. 

Given some measured data sets, P and V, obtained for a load type that is subject to 

characterization, two approaches exist to estimate the resulting ZIP model:  

 

𝐏 = [𝑃1 𝑃2 ⋯ 𝑃𝑚]T,     𝐕 = [𝑉1 𝑉2 ⋯ 𝑉𝑚]T, (3) 

 

where m is the number of measurements (data points). The first step is to convert the 

data to per-unit form (i.e. 𝐏pu = 𝐏/𝑃0, 𝐕pu = 𝐕/𝑉0) and to then employ constrained 

least squares regression to estimate the ZIP parameters [9]. This method assumes that 

the nominal power (𝑃0) is known a priori. The second approach fits a quadratic model 

to the raw data. From this the nominal power (𝑃0) level corresponding to the nominal 

voltage (𝑉0) is derived and the corresponding per-unit ZIP parameters can be deduced 

analytically. The advantage of the latter approach is that the sum to unity constraint on 

ZIP parameters, outlined in [8], is inherently satisfied. Hence, parameter estimation can 

be performed via conventional unconstrained least squares regression. 

 

2.2 Exponential models 

The exponential load model approximates the load power-voltage curve as 

𝑃(𝑉) =  𝑃0 ∙ (
𝑉

𝑉0

)
𝑛𝑝

 (4) 

In contrast to the ZIP model, in (4) a load’s relationship with voltage is encapsulated 

by a single exponent term, np, rather than three individual scalars. For small variations 

in applied voltage, it is possible to show, algebraically, that np offers a reasonable 

approximation to CVRp. Synergies with the ZIP model become apparent by once again 

considering the attributes of constant impedance and constant power example load 

types. For a constant impedance load, (2) and (4) are observed to be equivalent when 

np = 2; whereas for constant power loads, np = 0. More generally, by computing a 

quadratic approximation to the exponential model at the nominal voltage, the 

relationship between the ZIP and exponential parameters can be expressed as 

𝑍𝑝 =  
1

2
𝑛𝑝(𝑛𝑝 − 1),   𝐼𝑝 =  𝑛𝑝(2 − 𝑛𝑝),   and    𝑃𝑝 =

1

2
(𝑛𝑝

2 − 3𝑛𝑝 + 2) (5) 

Therefore, each 𝑛𝑝 maps to an equivalent set of ZIP parameters.  



4 

The exponential model can also be estimated from measured data, taken in either 

raw or per unit form. A linear least squares estimate can be obtained by taking the log 

of per-unit data, giving 

𝑛𝑝 =  
[log (𝐕pu)]T

[log (𝐕pu)]T

[log (𝐏pu)]

[log (𝐕pu)]
 (6) 

When working with raw data, expressed in base units rather than per unit, both 𝑃0 and 

n𝑝 must be estimated. Again logarithms are taken, which allows the parameter 

estimates to obtained from 𝑛𝑝 = 1 and 𝑃0 = exp (2), where 𝐗 denotes the Moore-

Penrose pseudoinverse of 𝐗, and 

 = [
1

2
] =  [log (𝐕) 𝟏][log(𝐏)] (7) 

2.3 Load Modelling Challenges 

The application of both the ZIP and exponential load models is best suited to the 

characterization of those load types that exhibit simple relationships with applied 

voltage. As such, their ongoing applicability has arguably become more dubious as the 

adoption of complex, power electronic circuitry within everyday consumer appliances 

has proliferated. Many such devices exhibit strongly non-linear or piecewise voltage 

response characteristics, against which the quadratic composition of the classic ZIP 

load model (2) can often only muster a rudimentary fit.  

 

 
(a) LED light bulb 

 
(b) Incandescent light bulb 

Fig. 1: Per-unit active power consumption profile versus per-unit applied voltage, for:  

(a) a modern 9 W LED rated lamp, and (b) a traditional 60 W rated incandescent lamp 

 

An example of piecewise active power consumption behavior is presented in Fig. 1(a) 

for a modern, Light Emitting Diode (LED) based lamp. Lamp performance has been 

tested under strict laboratory conditions across a range of applied voltage levels within 

the statutory range. The ensuing active power characteristic is not readily resolved to a 

quadratic function through ZIP modelling techniques. As such, the equivalent ZIP-

fitted curve (depicted by the continuous line trace) resolves to a linearly sloping power 

against voltage relationship, across all voltage levels. Conversely, the raw measured 

data (depicted by the scattered points) portrays a piecewise, constant power trend, 

within which different constant power levels are defined across different bands of 

applied voltage. A similar characteristic, across the same range of voltages, is presented 

0.985

0.990

0.995

1.000

1.005

1.010

1.015

0.85 0.90 0.95 1.00 1.05 1.10 1.15

A
ct

iv
e

 P
o

w
e

r 
(p

u
) 

Applied Voltage (pu)

Measured Data Fitted ZIP Model

0.750

0.800

0.850

0.900

0.950

1.000

1.050

1.100

1.150

1.200

1.250

0.85 0.90 0.95 1.00 1.05 1.10 1.15

A
ct

iv
e

 P
o

w
e

r 
(p

u
) 

Applied Voltage (pu)

Measured Data Fitted ZIP Model



5 

for an incandescent bulb in Fig. 1(b). In this instance the ZIP-fitted curve offers a much 

better approximation to the measured data.  

The divergent characteristics exhibited for the LED lamps are indicative of why new 

innovations in load modelling are increasingly required, as the limitations of fitting 

modeled behaviors to simplistic quadratic or exponential functions becomes more 

glaring within network level, power systems studies. Many load flow simulation tools 

invoke ZIP load modelling techniques. Amongst the most compelling arguments for 

continuing this approach is the convention that each of the ZIP coefficients, Zp, Ip and 

Pp, pertain to a physical property (impedance, current and power) that is easy for 

electrical engineers to comprehend and thus convenient for analysis. However, aside 

from potential increases in computational effort, there are few clear justifications for 

precluding the use more complex models to represent the load characteristics in 

simulation, especially if they are able to impart greater levels of accuracy.   

3 Small-Signal Neural Network Based Load Modelling 

As discussed previously, the use of a stationary set of ZIP or exponential parameters to 

model load characteristics, when fitted across a relatively wide range of voltage 

variations, fails to render a precise characterization for many modern loads. We propose 

an alternative framework, in which model coefficients are resolved dynamically with 

respect to the prevailing voltage level, across the full range of applied voltage. This 

approach ensures that a higher level of accuracy is obtained, as the characteristic can 

be more readily fitted against localized perturbations and piecewise functionality. A 

general nonlinear modelling paradigm �̂� = 𝑓(𝑉, 𝐖) is employed, where the model 

parameters, 𝐖, are chosen so as to minimize ‖𝐏 − �̂�‖
2

2
. From a Taylor series expansion 

of 𝑓(𝑉, 𝐖), small-signal ZIP and exponential models are derived to describe load 

behaviors with respect to small changes in voltage, about a localized reference point. 

The small-signal exponential model can be obtained as  

𝑛𝑝(𝑉) = 𝑉
𝑓′(𝑉,𝐖) 

𝑓(𝑉,𝐖)
,  (8) 

and the corresponding small signal ZIP parameters are given by 

𝑍𝑝(𝑉) =
𝑉2𝑓′′(𝑉,𝐖) 

2𝑓(𝑉,𝐖)
,    𝐼𝑝(𝑉) =

𝑉𝑓′(𝑉,𝐖)−𝑉2𝑓′′(𝑉,𝐖) 

𝑓(𝑉,𝐖)
, 

𝑃𝑝(𝑉) =
𝑓(𝑉,𝐖)+0.5𝑉2𝑓′′(𝑉,𝐖)−𝑉𝑓′(𝑉,𝐖) 

𝑓(𝑉,𝐖)
, 

(9) 

where 𝑓′(𝑉, 𝐖) =
𝜕𝑓 

𝜕𝑉
  and  𝑓′′(𝑉, 𝐖) =

𝜕2𝑓 

𝜕𝑉2 .  

Various approaches exist for creating general nonlinear models of the power versus 

voltage load profile, such as high order polynomials, B-splines, SVMs and neural 

networks. In this instance, single hidden layer Multilayer Perceptron (MLP) neural 

networks are chosen as the model structure. These have universal function 

approximation capabilities and provide smooth fits to nonlinear functions. By 

employing appropriate training and cross-validation procedures the number of hidden 
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layer neurons (𝑁ℎ) and network weights (𝐖) can be optimized. This choice of model 

is also known to handle discontinuities well. The MISO MLP with one hidden layer, 

sigmoidal activation functions in the hidden layer neurons and a linear activation 

function in the output layer is defined as 

𝑦 = ∑ 𝑐𝑖sig (∑ 𝑤𝑖𝑗𝑢𝑗 + 𝑏𝑖

𝑁𝐼

𝑗=1

) + 𝑑

𝑁ℎ

𝑖=1

 (10) 

where {𝑐𝑖, 𝑤𝑖𝑗  , 𝑏𝑖 , 𝑑} are the network weights, constituting the model parameters 𝐖, 

and  sig(𝑥) =
1

1+e −x is the sigmoid function The Jacobian   
𝜕𝑦

𝜕𝒖
= [

𝜕𝑦

𝜕𝑢1
…

𝜕𝑦

𝜕𝑢𝑁𝐼
]

T

 of 

the MLP is computed as 

𝜕𝑦

𝜕𝑢𝑝

= ∑ 𝑐𝑖𝑤𝑖𝑝sig′ (∑ 𝑤𝑖𝑗𝑢𝑗 + 𝑏𝑖

𝑁𝐼

𝑗=1

)

𝑁ℎ

𝑖=1

 (11) 

and the Hessian matrix 𝐇 = [ℎ𝑝𝑞] of second derivatives   
𝜕2𝑦

𝜕𝑢𝑝𝜕𝑢𝑞
  is given by  

𝜕2𝑦

𝜕𝑢𝑝𝜕𝑢𝑞

= ∑ 𝑐𝑖𝑤𝑖𝑝𝑤𝑖𝑞sig′′ (∑ 𝑤𝑖𝑗𝑢𝑗 + 𝑏𝑖

𝑁𝐼

𝑗=1

)

𝑁ℎ

𝑖=1

 (12) 

where the first and second derivatives of sig(𝑥) are given by 

sig′(𝑥) = sig(𝑥)(1 − sig(𝑥)) 

sig′′(𝑥) = sig′(𝑥)(1 − 2sig(𝑥)) 
(13) 

For the load characterization approach considered here, the MLP model reduces to 

𝑓(𝑉, 𝐖) = ∑ 𝑐𝑖sig(𝑤𝑖𝑉 + 𝑏𝑖) + 𝑑

𝑁ℎ

i=1

 (14) 

and the corresponding Jacobian and Hessian matrix reduce to 
 

𝑓′(𝑉, 𝐖) = ∑ 𝑐𝑖𝑤𝑖sig′(𝑤𝑖𝑉 + 𝑏𝑖)

𝑁ℎ

i=1

 (15) 

𝑓′′(𝑉, 𝑾) = ∑ 𝑐𝑖𝑤𝑖
2𝑠𝑖𝑔′′(𝑤𝑖𝑉 + 𝑏𝑖)

𝑁ℎ

𝑖=1

 (16) 
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4 RESULTS 

In this section, the methodology introduced in Section 3, Equations (8) to (16) in 

particular; is applied to estimate load models for: (a) a simulated load characteristic 

corresponding to a 5 k resistance; (b) measurement data for a 60 W incandescent light 

bulb; and (c) measurement data for a modern 9 W LED light bulb. In all cases active 

power measurements are recorded for applied voltages in the range -12% to +14% of 

the nominal voltage of 230 V in increments of 2%. The MLP networks are trained using 

the BFGS training algorithm [10] with leave-one-out cross validation used to optimize 

the number of neurons, 𝑁ℎ. The results obtained for the three loads are presented in 

rows (a), (b) and (c) of Fig. 2 and Fig. 3, respectively.  

 

  
(a)(i) MLP model for 5k resistor (a)(ii) np  for 5k resistor 

  
(b)(i) MLP model for Incandescent lamp (b)(ii) np  for Incandescent lamp 

  
(c)(i) MLP model for LED lamp (c)(ii) np  for LED lamp 

Fig. 2: Plots of the P-V data and MLP model approximation and small-signal exponential model 

estimates for each of the sample loads. 
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In Fig. 2, the plots in the column denoted (i) show the MLP approximation of the P-V 

characteristic achieved, while plots of the small-signal exponential model coefficient, 

𝑛𝑝, (computed according to (8)) are displayed in column (ii). In Fig. 3, the plots in 

column (i) show the small-signal ZIP parameter estimates determined directly from the 

MLP model; using (9), with column (ii) depicting plots of the small-signal ZIP 

parameter estimates determined indirectly from the 𝑛𝑝 estimate recovered in (5). 

 

  
(a)(i) ZIP model parameters for 5k resistor  

(direct method) 
(a)(ii) ZIP model parameters for 5k resistor  

(indirect method, via np) 

  
(b)(i) ZIP model parameters for Incandescent  

lamp (direct method) 
(b)(ii) ZIP model parameters for Incandescent  

lamp (indirect method, via np) 

  

(c)(i) ZIP model parameters for LED lamp  

(direct method) 
(c)(ii) ZIP model parameters for LED lamp 

(indirect method, via np) 

Fig. 3: Plots of small-signal ZIP parameters estimates (directly from MLP model); and small-signal 

ZIP parameter estimates, indirectly derived from the exponential model estimate for each of the 

sample loads 
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As an ideal constant impedance example, the expected value of 𝑛𝑝 for the 5 k  resistor 

over all voltage levels is 2, and the corresponding ZIP model values are Zp = 1, Ip =0, 

Pp = 0. Fig. 2 confirms that the proposed methodology yields small-signal ZIP and 

exponential model parameter estimates consistent with these theoretical values. It is 

noteworthy that the indirect estimation of the ZIP parameters is more stable than direct 

estimation which is more susceptible to model approximation errors. This is a 

consequence of the extra degrees of freedom in the ZIP model and its reliance on local 

curvature information for parameter estimation. 

The limitations of the direct small-signal ZIP model parameter estimation are even 

more apparent in Fig. 3, which shows the results for the incandescent light bulb. Here 

the stationary (global) exponential load model estimate is 𝑛𝑝=1.54 and the stationary 

(global) ZIP load model of the device is Zp = 0.72, Ip =0.11, Pp = 0.17. One might expect 

for this device to have a  𝑛𝑝 value of 2. However, in practice the resistance of the bulb 

is strongly temperature dependent, and thus increases with applied voltage level, 

yielding a 𝑛𝑝 value closer to 1.5. Comparing the stationary model coefficients with the 

small-signal variants, it is clear that the small-signal exponential model provides 

consistent estimates – varying between 1.38 and 1.58 with an average of 1.53. In 

contrast, the directly estimated small-signal ZIP model parameters vary widely and do 

not correlate with the stationary ZIP model parameters. The indirectly estimated, small-

signal ZIP parameters are more stable, but it is noted that they differ substantially from 

the conventional, stationary model with mean values of 0.41, 0.71 and -0.12 for Zp, Ip, 

and Pp, respectively. This underscores the differences that exist between a single, 

stationary model covering the full device operating envelope and locally valid, small-

signal models.  

Fig. 2(c)(i) shows how the LED bulb switches between three piece-wise, constant 

power intervals over the voltage range investigated. However, the conventional 

stationary ZIP model fit of this load profile, plotted in Fig. 1(a), does not adequately 

capture this behavior. It is clear that the MLP model provides a much superior fit to the 

load profile than the downwards sloping, close to linear approximation observed within 

Fig. 1(a). In addition, the small-signal exponential and ZIP models correctly identify 

the load as being constant power over most of the voltage range, except in the vicinity 

of the discontinuities, where they break down.    
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5 CONCLUSIONS 

This paper introduces a preliminary method for producing high accuracy, load model 

parameter estimates for modern load types. An MLP-based approach has been shown 

to offer a high fidelity fit to the P-V characteristics determined for the featured load 

types, from experimental measurements. This is particularly evident in the case of the 

piecewise functionality exhibited by an LED lamp in Fig. 2(c). Direct and indirect 

methods for small-signal, ZIP parameter estimates are then applied to the MLP 

generated trends. In each case the indirect approach is observed to offer superior 

performance. Fig. 3 (b)(ii) demonstrates how the indirect method is able to accurately 

track fluctuations in the underlying impedance of an archetypal, “constant” impedance 

load (incandescent lamp), as the applied voltage changes. This behavior, reflective of 

this load type’s temperature dependency, is not reliably captured by conventional 

approaches, within which a stationary set of ZIP coefficients are typically determined 

across the entire voltage range.   
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