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Abstract  

Aims/Hypothesis 

The incidence of pre-eclampsia, a multisystem disorder of pregnancy, is fourfold 

higher in type 1 diabetic than non-diabetic women; it is also increased in women with 

features of the metabolic syndrome and insulin resistance. In a prospective study of 

pregnant women with type 1 diabetes, we measured plasma levels of adipokines 

known to be associated with insulin resistance: leptin, fatty acid binding protein 4 

(FABP4), adiponectin (total and high molecular weight [HMW]), retinol binding 

protein 4 (RBP4), and resistin and evaluated associations with the subsequent 

development of pre-eclampsia.  

Methods 

From an established prospective cohort of pregnant type 1 diabetic women, we 

studied 23 who developed pre-eclampsia and 24 who remained normotensive; for 

reference values we included 19 healthy non-diabetic normotensive pregnant 

women.  Plasma adipokines were measured (by ELISA) in stored samples from 

three study visits (Visit 1 ‒ Visit 3) at different gestational ages (mean ± SD): Visit 1, 

12.4 ± 1.8 weeks; Visit 2, 21.7 ± 1.4 weeks; and Visit 3, 31.4 ± 1.5 weeks.  All the 

women were free of microalbuminuria and hypertension at enrolment.  All study visits 

preceded clinical onset of pre-eclampsia.  

Results 

In all groups, leptin, the ratio of leptin to total or HMW adiponectin, FABP4 

concentration, ratio of FABP4 to total or HMW adiponectin and resistin level 

increased, while total and HMW adiponectin decreased, with gestational age. At Visit 



1: (1) in diabetic women with vs without subsequent pre-eclampsia, leptin, ratio of 

leptin to total or HMW adiponectin, and ratio of FABP4 to total or HMW adiponectin,  

were increased (p<0.05), while total adiponectin was decreased (p<0.05); and (2) in 

normotensive diabetic vs non-diabetic women, total adiponectin was elevated 

(p<0.05).   At Visits 2 and 3: (1) the primary findings in the two diabetic groups 

persisted, and FABP4 also increased in women with subsequent pre-eclampsia 

(p<0.05); (2) there were no differences between the two normotensive groups.  By 

logistic regression analyses after covariate adjustment (HbA1c, insulin kg-1 day-1, 

gestational age), the best predictive models for pre-eclampsia were as follows: Visit 

1, doubling of leptin, OR 9.0 (p<0.01); Visit 2, doubling of the leptin:total adiponectin 

ratio, OR 3.7 (p<0.05); and Visit 3, doubling of FABP4, OR 25.1 (p<0.01).  The 

associations were independent of BMI. 

Conclusions/interpretation 

As early as the first trimester in type 1 diabetic women, adipokine profiles that 

suggest insulin resistance are associated with subsequent pre-eclampsia, possibly 

reflecting maternal characteristics that precede pregnancy.  These associations 

persist in the second and third trimesters, and are independent of BMI.  Insulin 

resistance may predispose women with type 1 diabetes to pre-eclampsia. 
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Introduction 

Pre-eclampsia is a leading cause of maternal and neonatal morbidity and mortality 

worldwide. It is a multisystem disorder characterised by new onset, in the second half 

of pregnancy (≥20 weeks’ gestation), of hypertension accompanied by proteinuria 

and/or end-organ dysfunction [1-3].  In women with pregestational diabetes mellitus 

(either type 1 or type 2), the risk is increased about fourfold compared with non-

diabetic women (around 20% vs around 5%) [4], and women with metabolic syndrome 

are also at increased risk [5].  Insulin resistance is a hallmark of metabolic syndrome 

and type 2 diabetes [6, 7] but also affects some individuals with type 1 diabetes [8-12].  

Pregnancy itself induces insulin resistance, especially after 20 weeks’ gestation [13, 

14].   Hypertension, obesity, dyslipidaemia, systematic inflammation and long-term risk 

for cardiovascular and renal disease are associated with both insulin resistance and 

prior pre-eclampsia [2, 15-18].  It follows that, early in pregnancy, and even in women 

with pregestational type 1 diabetes, maternal insulin resistance might be associated 

with the development of pre-eclampsia. 

The measurement of insulin resistance is challenging.  Convenient estimates 

(e.g. HOMA or QUICKI [14, 17, 19]) depend upon fasting insulin and glucose levels 

and cannot be used in individuals with type 1 diabetes who take exogenous insulin 

and in whom plasma glucose levels are highly variable. More precise estimates from 

‘insulin clamp’ studies can be obtained in those with type 1 diabetes [8, 9], including 

during pregnancy [20], but this approach is too cumbersome for routine clinical use.  

Circulating adipokines may serve as indirect measures of insulin resistance in both 

pregnant and non-pregnant states [5, 13, 21, 22] and therefore merit investigation as 

candidate biomarkers for pre-eclampsia. 



Adipokines have effects on insulin secretion, insulin action, energy expenditure, 

inflammation, regulation of adipogenesis and reproduction [23].  Adipose tissue is 

considered their main source, but in pregnancy they may also be produced by the 

placenta.  Leptin modulates satiety, stimulates energy expenditure, and inhibits insulin 

secretion [24, 25]. It is pro-inflammatory, decreasing production of anti-inflammatory 

adiponectin. Adiponectin (total and high molecular weight [HMW; also known as high 

molecular mass] forms) stimulates fatty acid oxidation, decreases plasma 

triacylglycerols and increases insulin sensitivity [26-29]. Fatty acid binding protein 4 

(FABP4) integrates metabolic and inflammatory pathways, is implicated in insulin 

resistance and atherosclerosis [30, 31] and is expressed in macrophages and placenta 

in addition to adipose tissue [32].  Resistin is secreted by macrophages, monocytes 

and white adipose tissue; it impairs glucose uptake by adipocytes, raises plasma 

glucose and promotes inflammation and insulin resistance [33].  Retinol binding 

protein 4 (RPB4) is involved in vitamin A (retinol) transport; it is secreted by the liver 

and adipose tissue and increases systemic insulin resistance [7, 34, 35].  

Using samples from a prospective study of pregnancy in women with type 1 

diabetes [36, 37], we measured these adipokines (and ratios of those mediating insulin 

resistance vs sensitivity) in the first, second and early third trimesters, comparing 

women who did with those who did not develop pre-eclampsia (primary analysis).  We 

also included a group of normotensive, non-diabetic women to provide reference 

values, and compared normotensive women with and without type 1 diabetes 

(secondary analysis).  No previous study has evaluated this group of adipokines 

throughout gestation as potential predictors of pre-eclampsia in women with type 1 

diabetes.   

Materials and Methods 



Study design and participants  

Study subjects were selected from a previously described prospective cohort of 151 

women with type 1 diabetes and 24 non-diabetic women studied longitudinally 

throughout pregnancy [36]. The study was approved by the Institutional Review 

Boards of all participating institutions and by the Ethics Committee of the School of 

Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast; it was 

conducted according to the principles of the Declaration of Helsinki.  

Clinical data and specimens were collected at three study visits (mean ± S.D): 

Visit 1, 12.4 ± 1.8 weeks; Visit 2, 21.7 ± 1.4 weeks; Visit 3, 31.4 ± 1.5 weeks of 

gestation (no overlap); and in those with pre-eclampsia, Visit 3 preceded its clinical 

onset. Blood and urine samples were obtained after an overnight fast and in 

participants with type 1 diabetes, prior to insulin administration. Women with renal 

impairment (including microalbuminuria), cardiovascular disease, hypertension or 

other significant medical problems, either before pregnancy or at Visit 1, were 

excluded. Pre-eclampsia was defined as new-onset hypertension (>140/90 mmHg) 

after 20 weeks’ gestation accompanied by proteinuria (>300 mg/24 h) in a previously 

normotensive woman. Groups were defined as follows: DM+PE+, type 1 diabetic 

women who developed pre-eclampsia; DM+PE-, type 1 diabetic women who remained 

normotensive and normo-albuminuric; and DM-, non-diabetic women who remained 

normotensive.   

From the larger cohort, we previously selected (for our primary comparison and 

as per original study design) a subset comprising of all 26 DM+PE+ women and a 

matched group of 26 DM+PE‒ individuals (matched by age, duration of diabetes, 

HbA1c and parity).  For a secondary analysis, we compared the 26 normotensive 



diabetic women with all available who did not have diabetes or pre-eclampsia (DM-, 

n=21).    For the present study, sample attrition reduced these numbers, but we 

included all from these groups for whom samples were available, i.e. 23 DM+PE+, 24 

DM+PE‒ and 19 DM‒ women.  

Laboratory measures  

Plasma leptin, HMW adiponectin, FABP4, resistin and RBP4 were measured by 

Quantikine ELISA kits (R&D Systems, Minneapolis, MN, USA), as per the 

manufacturer’s instructions. Plasma total adiponectin was measured using a DuoSet 

ELISA kit (R&D Systems), as per manufacturer’s instructions. From the time of 

collection, all samples were stored at -80oC until analysis. In assay validation, each 

variable was stable through multiple freeze/thaw cycles. Average intra‒ and inter-

assay CV for internal controls for all assays were 6% and 7%, respectively. All assays 

were performed in duplicate using kits with the same batch number, by operators 

blinded to sample identity.  

Statistical analysis 

Normally distributed continuous variables were summarised as means (SD or 95% 

CI). Non-normally distributed variables were log-transformed and expressed as 

geometric means (95% CI of geometric mean); these were for leptin, leptin:adiponectin 

(total and HMW) ratio, FABP4, FABP4:adiponectin (total and HMW) ratio, HMW 

adiponectin, resistin. Primary analyses compared the DM+PE+ and DM+PE‒ groups; 

secondary analyses compared the DM+PE‒ and DM‒ groups. 

Group comparisons were analysed using unpaired Student’s t tests or Mann-

Whitney tests (for continuous variables) or χ2 tests (for categorical variables).  



Analyses of repeated measures used Friedman’s test. Logistic regression was used 

to assess associations of selected adipokines with risk of pre-eclampsia in women 

with type 1 diabetes (DM‒ groups were excluded from regression models), with and 

without adjustment for contemporaneous HbA1c, insulin dose (total and per kg per 

day), gestational age, and BMI (factors selected according to baseline differences, 

known associations with pre-eclampsia, or both) at blood sampling. Including all 

variables selected for matching had no effect on conclusions, so only selected 

covariates were included. As leptin, leptin:adiponectin ratio, FABP4, and 

FABP4:adiponectin ratio were not normally distributed but showed positive skew, 

values were logarithmically transformed (base 2) before inclusion in any regression 

model. The predictive ability of logistic regression was assessed from the sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) for the 

predicted probability of pre-eclampsia. Due to the oversampling of the participants with 

pre-eclampsia in this subset, the PPV and NPV were reported after adjusting the 

constant in the logistic regression. To assess the performance of candidate 

biomarkers at each trimester, a receiver operating characteristic (ROC) curve analysis 

was performed using the predicted probabilities from logistic regression analyses, with 

and without covariates, and the increase in area under the ROC curve on addition of 

each individual biomarker was tested  [38]. 

The category-free Net Reclassification Improvement (NRI) index and the 

Integrated Discrimination Improvement (IDI) index were calculated to quantify the 

additional clinical value of a biomarker over established clinical risk factors alone [39, 

40]. The NRI and IDI compare the predicted probabilities of pre-eclampsia obtained 

from the logistic model of clinical risk factors before and after the addition of each 

biomarker. The NRI index is the net proportion of probabilities increased for women 



who developed pre-eclampsia, and decreased for women without pre-eclampsia, 

resulting from the addition of a biomarker to the logistic regression model [40]. The IDI 

index is defined as the average increase in predicted risk in women with pre-

eclampsia, added to the average decrease in predicted risk in women without pre-

eclampsia, due to the addition of a biomarker to the logistic model [39].  Statistical 

significance was defined as a p < 0.05 (2-sided). Statistical analyses were performed 

using SPSS software, version 22 (IBM Corp, Armonk, NY, USA), Stata Release 13 

(StataCorp, College Station, TX, USA) and statistical software package R (R -3.4.1; 

Foundation for Statistical Computing, Vienna, Austria).   

 

Results 

Clinical Characteristics 

Maternal characteristics at baseline (Visit 1) are shown in Table 1.  Between the 

DM+PE+ and DM+PE‒ groups, there were no significant differences in the age, 

gestational age, gravida, parity, number of miscarriages, age at onset of diabetes, 

diabetes duration, BP, mean arterial blood pressure (MAP), total cholesterol, LDL-

cholesterol, triacylglycerol level, C-reactive protein (CRP), or microalbumin:creatinine 

ratio. Women in the DM+PE+ group had significantly higher BMI, HbA1c, total daily 

insulin requirements, insulin dose per kilogram and eGFR, and lower HDL-cholesterol, 

than those in the DM+PE‒ group (all p<0.05).  Women in the DM+PE+ group were 

delivered earlier than those in the DM+PE‒ group (p<0.05).  



Most maternal characteristics did not differ between the DM+PE‒ and DM‒ 

groups, but diabetic women had, as expected, higher HbA1c levels (p<0.0001) and 

earlier delivery (p<0.05). 

Leptin 

In the DM+PE+ vs the DM+PE‒ group, leptin was increased throughout gestation: 

Visit 1, p<0.01; Visit 2, p<0.01; Visit 3, p<0.05 (Table 2).  There were no significant 

differences in leptin at any time point between the DM+PE‒ and DM‒ groups. Leptin 

increased throughout pregnancy in both normotensive groups (both p<0.01), but not 

significantly in the DM+PE+ group. 

Leptin:Adiponectin Ratio 

These adipokines have opposite effects on insulin resistance, and their ratio is 

therefore of interest.  In the DM+PE+ vs DM+PE‒ group, the leptin:total adiponectin 

ratio and the leptin:HMW adiponectin ratio were both elevated at Visit 1 and Visit 2 

(p<0.01). The ratios did not differ between the two normotensive groups. Leptin:total 

adiponectin ratio and leptin:HMW adiponectin ratio increased progressively 

throughout pregnancy (p<0.01, p<0.001 respectively) in all three groups. Since 

findings for these two ratios were similar, only the leptin:total adiponectin ratio was 

used in further analyses.  

FABP4 

In the DM+PE+ vs DM+PE‒ group, FABP4 was increased at Visit 2 (p<0.01) and 

Visit 3 (p<0.001) (Table 2). FABP4 did not differ at any time point between the two 

normotensive groups. FABP4 increased progressively throughout pregnancy in all 

three groups (p≤0.001). 



FABP4:Adiponectin Ratio 

In the DM+PE+ vs DM+PE‒ group, FABP4:total adiponectin and FABP4:HMW 

adiponectin ratios were elevated at all study visits (Visit 1, p<0.05; Visit 2, p<0.01; and 

Visit 3, p<0.05). They did not differ at any time point between the DM+PE‒ and DM‒ 

groups. Both ratios increased progressively throughout pregnancy in all three groups 

(p<0.001). The results were similar for the two ratios; therefore only FABP4:total 

adiponectin was used for the further analyses.  

Total Adiponectin 

In the DM+PE+ vs the DM+PE‒ group, total adiponectin was lower at Visit 1 (p<0.05) 

(Table 2). In addition, total adiponectin was higher at Visit 1 in the DM+PE‒ than the 

DM‒ group (p=0.01). Total adiponectin decreased progressively throughout 

pregnancy in all groups (DM+PE+, p<0. 01; DM+PE-, p<0.001; DM-, p<0.05). 

High Molecular Weight Adiponectin 

In the DM+PE+ vs DM+PE‒ group, HMW adiponectin was lower at Visit 1 (p=0.05) 

and Visit 2 (p<0.05) (Table 2). HMW adiponectin did not differ significantly between 

the normotensive groups at any visit.  HMW adiponectin decreased progressively 

throughout pregnancy in all three groups (DM+PE+, p<0.01; DM+PE-, p<0.001; DM-, 

p<0.001). 

Resistin 

Levels of resistin did not differ between any of the groups at any time point (Table 2) 

but increased progressively throughout pregnancy in all three groups (DM+PE+, 

p<0.01; DM+PE-, p<0.05; DM-, p<0.001). 



RBP4 

Levels of RBP4 did not differ between any of the groups at any time point (Table 2).  

In addition, they increased in all groups between Visit 1 and Visit 2 (p<0.05). There 

were no significant changes between Visit 2 and 3.  

Analyses controlling for relevant covariates 

To assess the effectiveness of adipokines as biomarkers for pre-eclampsia early in 

pregnancy, data were analysed by logistic regression with and without covariates 

(HbA1c, insulin dose kg-1 day-1 and gestational age) (Table 3).  The adipokines 

identified above in our primary analyses (leptin, leptin:total adiponectin ratio, FABP4, 

FABP4:total adiponectin ratio and total adiponectin) were included, individually and in 

combination.  

Using all available data, and after adjustment for HbA1c, insulin kg-1 day-1 and 

gestational age, the best model indicated that at Visit 1, a doubling of leptin was 

associated with an approximately ninefold higher odds of pre-eclampsia (OR 9.0 [2.0‒

40.3], p=0.004; AUC 0.902, p=0.10 vs established risk factors alone). The NRI and IDI 

indices showed that the addition of leptin to maternal factors (HbA1c, insulin kg-1 day-1 

and gestational age) significantly increased the correct classification of diabetic 

women with and with-out pre‒eclampsia, and increased discrimination between pre-

eclampsia and non-pre-eclampsia patients at Visit 1 (NRI, p=0.004; IDI, p<0.001). The 

final model resulted in sensitivity of 81% (17/21) and a specificity of 80% (16/20). 

Adjustment to account for the 21% prevalence of pre-eclampsia in the overall cohort 

yielded a PPV of 100% and a NPV of 69%.   



At Visit 2, the best model indicated that a doubling of leptin:total adiponectin 

ratio was associated with an approximately fourfold higher odds of pre-eclampsia (OR 

3.7 [1.3, 10.7], p=0.014; AUC 0.787, p=0.088 vs established risk factors alone). The 

NRI and IDI indices showed that the addition of leptin:total adiponectin ratio improved 

the classification and discrimination of women with and without pre-eclampsia at Visit 

2 (NRI, p=0.03; IDI, p=0.01). The final model resulted in a sensitivity of 84% (16/19) 

and a specificity of 68% (13/19). Adjusting for pre-eclampsia prevalence yielded a PPV 

of 100% and a NPV of 56%.   

At Visit 3, the best model indicated that a doubling of FABP4 was associated 

with an approximately 25-fold greater risk of pre-eclampsia (OR 25.1 [2.3, 273.8], 

p=0.008; AUC 0.847, p=0.1 vs established risk factors alone). The NRI and IDI indices 

showed that addition of FABP4 improved classification and discrimination of women 

with and without pre-eclampsia at Visit 3 (NRI, p<0.001; IDI, p=0.002). The final model 

resulted in a sensitivity of 71% (12/17) and a specificity of 75% (15/20). Adjusting for 

the prevalence of pre-eclampsia yielded a PPV of 100% and a NPV of 65%.   

The strength of associations with pre-eclampsia were not further improved by 

the inclusion of any two (or more) individual biomarkers at any time point. 

Although the covariates shown in Table 3 take body weight into account, 

adipokines are known to be associated with BMI, and therefore we also analysed their 

associations with pre-eclampsia controlling for BMI alone, and for BMI combined with 

HbA1c, insulin dose, and gestational age.  At each study visit, BMI was significantly 

higher (by t test) in diabetic women with vs without pre-eclampsia (p<0.05 at Visit 1 & 

Visit 2; p<0.01 at Visit 3), and at Visit 1, a one unit increase in BMI raised the risk of 

pre-eclampsia by 15% (data not shown).  However, when HbA1c, insulin dose (either 



daily total or per kilogram) and gestational age were taken into account, the significant 

associations between BMI and pre-eclampsia were lost (in contrast to the findings with 

adipokines, reported above).   Furthermore, addition of BMI to individual adipokines 

did not improve the prediction of pre-eclampsia by IDI or NRI analyses at any study 

visit.  We also tested the strength of the associations of leptin, leptin:adiponectin ratio, 

and FABP4 with subsequent pre-eclampsia when BMI was considered as a sole 

covariate, and when it was combined in a covariate model with HbA1c, insulin dose 

(either daily dose or per kilogram per day), and gestational age.   These analyses 

confirmed that leptin at Visit 1 (p<0.01), leptin:adiponectin ratio at Visit 2 (p<0.05) and 

FABP4 at Visit 3 (p<0.05) were independently associated with the development of pre-

eclampsia.    

Discussion 

This is the first prospective cohort study to assess the potential, individually and 

combined, of a group of adipokines as predictors of pre-eclampsia in women with type 

1 diabetes.  Women with type 1 diabetes have often been excluded from previous 

studies seeking biomarkers and mechanisms for pre-eclampsia, despite being at 

unusually high risk.  We found that, compared with those who remained normotensive, 

type 1 diabetic women with subsequent pre-eclampsia exhibited elevated plasma 

leptin at all time points studied; importantly therefore, leptin exhibited significant 

elevation as early as the first trimester (Visit 1).  Also at Visit 1, the addition of leptin 

to a panel of established risk factors significantly improved prediction of pre-eclampsia.  

At Visit 1 and Visit 2, leptin:adiponectin ratios were elevated in women with type 1 

diabetes who later developed pre-eclampsia.  FABP4 was an effective predictor 

slightly later than leptin, being significantly elevated in type 1 diabetic women with 

subsequent pre-eclampsia at Visits 2 and 3, while the FABP4:adiponectin ratio 



became predictive at Visit 3.  The ratios of leptin and FABP4 to adiponectin are of 

interest because they may reflect the balance between pro- and anti-inflammatory 

adipokines.  The associations were independent of relevant covariates, including BMI.  

In other studies of cardiovascular disease, these ratios have predicted events better 

than the individual measures [41, 42]. In the present study, they did not improve upon 

individual measures until later in pregnancy.   

Although our data need confirmation, they suggest new biomarkers for pre-

eclampsia that may be useful very early in pregnancy for women with type 1 diabetes, 

long before currently recognised biomarkers are effective.  Improved prediction would 

have immediate benefit for the planning of antenatal care; it would also be key for the 

future conduct of studies that require risk stratification, selecting women at the highest 

risk to receive new interventions and minimising the number receiving unnecessary 

treatment.  

To assess the potential ‘real-world’ clinical utility of the candidate biomarkers 

for pre-eclampsia, we analysed our findings at each trimester separately using logistic 

regression and the NRI, and IDI indices.  We showed that the addition of adipokine 

data (optimally leptin at Visit 1, leptin:total adiponectin ratio at Visit 2, and FABP4 at 

Visit 3) to established maternal risk factors significantly improved the prediction of pre-

eclampsia in women with type 1 diabetes. A model including two or more adipokines 

individually did not provide any further improvement. In previous studies of this cohort, 

we reported that imbalance of angiogenic factors (increased soluble fms-like tyrosine 

kinase-1 [sFlt-1], reduced placental growth factor [PlGF], elevated sFlt-1:PlGF ratio) 

can predict pre-eclampsia in women with type 1 diabetes at Visit 3 [36].  The present 

findings are important because they suggest that adipokines may enable assessment 

of pre-eclampsia risk in women with type 1 diabetes earlier in pregnancy. 



Measures of leptin have not previously been reported in pregnancies 

complicated by both type 1 diabetes and pre-eclampsia.  However, previous studies 

of non-diabetic women, mostly employing a single time point, have demonstrated 

associations between elevated maternal leptin, as early as 13 weeks gestation, and 

the later clinical onset of pre-eclampsia or gestational diabetes mellitus [GDM] [5, 25, 

29, 42, 43]. Our data are consistent with these, showing that in women with type 1 

diabetes who later develop pre-eclampsia, circulating leptin, leptin:total adiponectin 

ratio and leptin:HMW adiponectin ratio were elevated early in pregnancy and remained 

so throughout.  Maternal leptin levels are known to increase during normal pregnancy, 

peaking at 20-30 weeks of gestation and decreasing after birth [5, 25, 29, 42, 44]. 

Lekva et al. [42] have suggested that a high leptin:adiponectin ratio in pregnancy 

complicated with GDM might be used to predict unfavourable cardiovascular risk in a 

5-year follow up, being superior to either leptin or adiponectin alone. This suggests 

that higher levels of leptin and/or leptin:adiponectin ratio at the beginning of pregnancy 

may have a role in the development of pre-eclampsia and/or future cardiovascular risk.    

FABP4 has previously been studied as a predictor of pre-eclampsia both in type 

1 diabetic women [45] and in non-diabetic women [30]. Our results are consistent with, 

but add to, the findings of those studies.  As previously shown [45], FABP4 was 

elevated early in pregnancy in women with type 1 diabetes who later developed pre-

eclampsia.  In addition to this, the current study suggests that FABP4 predicts pre-

eclampsia at Visit 3 and, at this time point does so more effectively than any other 

individual adipokine.  It is established that the second half of pregnancy is a state of 

physiological insulin resistance [13, 14, 46, 47], but these findings suggest that more 

marked insulin resistance is associated with pre-eclampsia.  Finally, the ratio of FABP4 

to adiponectin was predictive of pre-eclampsia at all three time-points.   



In contrast to the other adipokines, plasma adiponectin is inversely correlated 

with insulin resistance, and normally decreases as pregnancy advances and insulin 

resistance increases [5, 27-29, 42]. Studies assessing adiponectin in the prediction of 

pre-eclampsia have shown conflicting results [5, 27-29, 48]. Nien et al [27] and  

Fasshauer et al [28] reported, in separate case-control studies in non-diabetic 

populations, that increased total adiponectin and/or HMW adiponectin late in 

pregnancy (around 30 weeks’ gestation) is associated with poor pre-eclampsia 

outcome.  However, consistent with generally accepted beneficial associations of high 

adiponectin levels, and in agreement with our data, other studies have observed 

significantly lower concentrations at the beginning of pregnancy in non-diabetic 

women who subsequently developed pre-eclampsia [29, 48]. Also in several studies, 

plasma adiponectin was significantly lower in women with GDM than in women without 

[5, 29, 42].  Randeva et al [26] reported that adiponectin levels were higher throughout 

pregnancy, and 9 months post-partum, in type 1 diabetic vs non-diabetic women (none 

of the subjects had any evidence of renal disease or hypertension).  

We found no differences in the levels of maternal RBP4 or resistin between 

uncomplicated non-diabetic pregnancies, pregnancies of women with type 1 diabetes 

and in pregnancies in those with type 1 diabetes and pre-eclampsia. Plasma levels of 

both adipokines increased in all groups between first and second trimesters; resistin 

continued to increase between the second and third trimesters, while RBP4 decreased 

slightly in the second half of pregnancy. RBP4 and resistin are both implicated in 

insulin resistance and glucose metabolism [33-35]: the lack of any signal associated 

with pre-eclampsia was therefore somewhat surprising. However, the literature is also 

conflicting, with reports showing increase, decrease and no change in RBP4 and 

resistin concentrations in associations with complications of pregnancy [5, 22, 29, 47-



49]. Thus although RBP4 and resistin may show associations of obesity, insulin 

resistance/sensitivity and type 2 diabetes with cardiovascular disease [7, 33-35], the 

mixed data from pregnancy studies, and our current results, suggest that neither RBP4 

nor resistin is an effective early predictors of pre-eclampsia.   

The concept that relative insulin resistance early in type 1 diabetic pregnancy 

is associated with subsequent pre-eclampsia is consistent with a recent paper showing 

that impaired vasodilatory capacity, endothelial dysfunction, and vasoactive markers 

are also associated with pre-eclampsia [50], and with a recent review of clinical factors 

associated with the condition [51]. 

Currently, although there are multiple models for early prediction of pre-

eclampsia, most use a wide range of maternal factors and biochemical markers; 

consequently, they are often complex and not easily translated into clinical practice 

[52].  At present, the best model is derived from an algorithm combining PlGF, 

measured at 10-13 weeks gestation, with maternal MAP, uterine Doppler findings and 

an extensive suite of maternal data (age, weight, height, racial origin, interpregnancy 

interval, gestational age at delivery and presence/absence of pre-eclampsia in 

previous pregnancies, method of conception and presence/absence of chronic 

hypertension, diabetes mellitus, systemic lupus erythematosus, or antiphospholipid 

syndrome) [53, 54].   Using this model, the predictive power of the maternal factors 

alone (as defined by Wright et al [53]) is significantly improved by addition of PlGF, 

MAP and uterine Doppler data; likewise, that of PlGF alone is improved by the other 

variables [54]. A simpler model to predict pre-eclampsia, as described in the current 

study (using three simple maternal characteristics and a single plasma biomarker), 

may be more convenient and widely applicable.  



The strengths of our study include its longitudinal design, well-defined time 

points, initial collection of samples early in pregnancy (long before onset of pre-

eclampsia) and inclusion of a control group of non-diabetic women  without pre-

eclampsia for reference. New biomarkers for pre-eclampsia that operate early in 

pregnancy are proposed, and are urgently needed: they may elucidate pathogenic 

mechanisms for pre-eclampsia and its long-term sequelae. The main limitation is the 

small sample size in relation to the number of candidate biomarkers. It is both a 

strength and weakness that all participants were free of hypertension and 

microalbuminuria at the first trimester: this avoids the interference of prior 

complications in the search for biomarkers of pre-eclampsia, but has the disadvantage 

that the women may not be truly representative of the overall type 1 diabetic 

population. For the future, the data must be confirmed in a larger cohort.  Future 

research should also determine whether the adipokine biomarkers might be useful in 

predicting pre-eclampsia even before a woman with type 1 diabetes becomes 

pregnant, since it is likely that first trimester data reflect inherent maternal 

characteristics that are present before conception.   

In conclusion, we suggest that circulating adipokines, leptin in particular, are 

associated with future pre-eclampsia as early as the first trimester in women with type 

1 diabetes.  The data are consistent with the hypothesis that in women with type 1 

diabetes, relatively high maternal insulin resistance in the first trimester (which could 

also be present prior to conception) is associated with the subsequent development 

of pre-eclampsia.   
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Table 1 – Clinical characteristics at study entry of women with type 1 diabetes 
with and without preeclampsia, and of normotensive non-diabetic control 
participants 

 

  Clinical characteristics DM+PE+ (n=23) p valuea DM+PE‒ (n=24) p valueb DM‒ (n=19) 

Age of woman (years) 28.5 ± 5.6 0.31 29.9 ± 3.8 0.25 31.4 ± 4.5 

BMI (kg/m2) 27.9 ± 5.9 0.03 24.6 ± 4.1 0.50 23.8 ± 3.8 

≤25 kg/m2 (normal) 9 (39.1) 0.02 16 (66.7) 0.92 13 (68.4) 

25 – 30 kg/m2(overweight) 4 (17.4)  6 (25.0)  5 (26.3) 

≥ 30 kg/m2(obese) 10 (43.5)  2 (8.3)  1 (5.3) 

Gravida   1.3 ± 0.7 1.00 1.3 ± 0.7 0.19 1.7 ± 1.0 

Para  0.2 ± 0.5 0.91 0.2 ± 0.5 0.13 0.5 ± 1.0 

Miscarriages   0.1 ± 0.4 0.91 0.1 ± 0.3 0.81 0.2 ± 0.4 

Age at onset of T1DM (years)  11.5 ± 5.5 0.07 15.2 ± 7.5 - - 

Duration of T1DM (years)  16.8 ± 6.8 0.32 14.8 ± 7.0 - - 

HbA1c (%)  7.4 ± 1.2 0.05 6.7 ± 1.0 <0.0001 5.3 ± 0.3 

HbA1c (mmol/mol)  57 ± 14 0.05 50 ± 11 <0.0001 35 ± 3 

Blood pressure (mmHg)      

Systolic BP  113.1 ± 12.4 0.26 109.4 ± 9.6 0.23 113.3 ± 8.7 

Diastolic BP  66.6 ± 9.0 0.27 63.8 ± 8.1 0.24 66.9 ± 7.6 

MAP  82.1 ± 9.0 0.21 79.0 ± 7.7 0.14 82.7 ± 6.2 

Total daily insulin (units/day)  62.2 ± 19.7 0.01 47.9 ± 14.2 - - 

Insulin (units/kg/day)  0.81 ± 0.14 0.02 0.69 ± 0.17 - - 

Total cholesterol (mmol/L)  4.7 ± 0.7 0.53 4.5 ± 0.9 0.18 4.9 ± 0.7 

HDL-cholesterol (mmol/L)  1.9 ± 0.4 0.03 2.2 ± 0.5 0.71 2.1 ± 0.6 

LDL-cholesterol (mmol/L) 2.4 ± 0.7 0.08 2.0 ± 0.7 0.18 2.3 ± 0.8 

Triacylglycerols (mmol/L) 1.0 ± 0.3 0.27 0.8 ± 0.3 0.09 1.1 ± 0.4 

Urine microalbumin (mg/L) 10.3 ± 17.8 0.12 4.3 ± 2.0 0.69 4.6 ± 1.7 

Urine creatinine (μmol/L) 6.5 ± 3.8 0.99 6.5 ± 2.7 0.73 6.2 ± 3.0 

Microalbumin/creatinine ratio 0.7 (0.5, 1.2) 0.62 0.7 (0.4, 1.0) 0.40 0.8 (0.6, 1.0) 

eGFR (ml min-1 1.73m-2) 125.0 ± 7.7 0.02 119.4 ± 7.0 0.92 119.7 ± 8.3 

CRP (nmol/L) 68.5 ± 67.0 0.26 45.9 ± 68.3 0.55 62.1 ± 100.8 

Gestational age (weeks)      

 Visit 1 12.3 ± 2.1 0.94 12.3 ± 1.7 0.49 12.6 ± 1.7 

Visit 2 22.1 ± 1.6 0.18 21.5 ± 1.3 0.95 21.5 ± 1.3 

Visit 3 31.7 ± 1.7 0.39 31.3 ± 1.5 0.82 31.2 ± 1.1 

Delivery 37.0 ± 1.3 0.01 38.0 ± 1.4 0.01 39.2 ± 1.6 



Data are presented as means ± SD, n (%) or median (interquartile range). 
Measurements refer to Visit 1 unless otherwise indicated. Independent samples t 
tests, Mann-Whitney tests and χ2 tests were used as appropriate.  
eGFR was defined using Chronic Kidney Disease Epidemiology Collaboration 
equation [CKD-EPI] 
p values <0.05 (statistically significant) 
a p value, DM+PE+ vs. DM+PE‒ 
b p value, DM+PE‒ vs. DM‒ 
T1DM, type 1 diabetes mellitus 
   



 Table 2 – Levels of circulating adipokine profile prior to onset of pre-
eclampsia  

p values are reported from parametric or log-transformed analyses as appropriate. 
p<0.05 (statistically significant) 
a p value, DM+PE+ vs. DM+PE‒ 

 Study 

Visit 
DM+PE+ (n=23) p value a DM+PE‒ (n=24) p value b DM‒ (n=19) 

Leptinc (ug/L)  1 27.7 (21.8, 35.1) 0.003 16.3 (12.7, 20.9) 0.74 17.3 (12.5, 24.2) 

2 34.9 (29.2, 41.7) 0.004 23.3 (18.8, 28.8) 0.71 21.6 (14.8, 31.5) 

3 36.6 (28.0, 47.8) 0.03 24.6 (19.4, 31.1) 0.71 26.4 (18.7, 37.3) 

Leptin:Total 

Adiponectin 

Ratioc 

1 3.8 (2.8, 5.2) 0.003 1.9 (1.4, 2.7) 0.19 2.6 (1.8, 3.8) 

2 5.5 (4.5, 6.7) 0.004 3.1 (2.2, 4.3) 0.99 3.1 (2.1, 4.7) 

3 5.7 (4.2, 7.8) 0.09 3.8 (2.7, 5.5) 0.64 4.4 (2.9, 6.7) 

Leptin:HMW 

Adiponectin 

Ratioc 

1 3.5 (2.4, 5.2) 0.004 1.5 (1.0, 2.3) 0.38 2.0 (1.3, 3.1) 

2 5.4 (3.9, 7.5) 0.005 2.6 (1.8, 3.9) 0.96 2.7 (1.6, 4.3) 

3 5.8 (3.9, 8.8) 0.06 3.5 (2.4, 5.1) 0.80 4.4 (2.8, 6.9) 

FABP4c 

(ng/ml)  

1 9.4 (7.9, 11.1) 0.07 7.6 (6.5, 9.0) 0.24 6.6 (5.3, 8.1) 

2 11.1 (9.4, 13.1) 0.005 8.0 (6.8, 9.3) 0.41 7.3 (6.1, 8.7) 

3 15.6 (13.4, 18.1) <0.001 10.2 (8.8, 11.7) 0.36 9.1 (7.4, 11.2) 

FABP4:Total 

Adiponectin 

Ratioc 

1 1.3 (1.0, 1.7) 0.03 0.9 (0.7, 1.1) 0.54 1.0 (0.8, 1.2) 

2 1.7 (1.4, 2.2) 0.004 1.1 (0.9, 1.3) 0.91 1.1 (0.9, 1.3) 

3 2.4 (2.0, 3.0) 0.01 1.6 (1.2, 2.1) 0.77 1.5 (1.1, 2.1) 

FABP4:HMW 

Adiponectin 

Ratioc 

1 1.2 (0.8, 1.8) 0.02 0.7 (0.5, 1.0) 0.99 0.7 (0.6, 0.9) 

2 1.7 (1.2, 2.4) 0.005 0.9 (0.7, 1.2) 0.97 0.9 (0.7, 1.1) 

3 2.5 (1.9, 3.3) 0.01 1.4 (1.1, 2.0) 0.84 1.5 (1.1, 2.1) 

Total 

Adiponectin  

(µg/ml)  

1 7.5 (6.7, 8.3) 0.04 8.8 (7.8, 9.8) 0.01 6.9 (5.9, 8.0) 

2 6.6 (5.7, 7.6) 0.09 7.9 (6.7, 9.0) 0.21 7.0 (6.3, 7.7) 

3 6.5 (5.8, 7.2) 0.65 6.8 (5.8, 7.9) 0.44 6.3 (5.4, 7.2) 

HMW 

Adiponectinc 

(µg/ml)  

1 7.9 (6.3, 9.9) 0.05 10.5 (8.6, 12.9) 0.28 9.2 (7.7, 11.1) 

2 6.4 (5.1, 8.0) 0.04 8.8 (7.0, 11.1) 0.43 8.1 (6.6, 9.9) 

3 6.3. (5.0, 7.9) 0.44 7.0 (5.7, 8.7) 0.45 6.0 (5.0, 7.3) 

HMW:Total 

Adiponectin 

1 1.2 (1.0, 1.4) 0.33 1.3 (1.1, 1.4) 0.52 1.3 (1.2, 1.5) 

2 1.1 (0.9, 1.3) 0.29 1.2 (1.1, 1.4) 0.99 1.2 (1.0, 1.4) 

3 1.1 (0.9, 1.3) 0.36 1.2 (0.9, 1.5) 0.52 1.1 (0.9, 1.2) 

Resistinc 

(ng/ml)  

1 9.5 (8.1, 11.1) 0.93 9.4 (8.1, 10.9) 0.47 8.7 (7.9, 9.7) 

2 10.8 (9.4, 12.3) 0.39 9.9 (8.6, 11.5) 0.66 9.5 (8.5, 10.7) 

3 11.2 (9.6, 13.0) 0.61 10.7 (9.4, 12.0) 0.40 9.9 (8.8, 11.2) 

RBP4 

(µg/ml)  

1 21.2 (19.7, 22.6) 0.89 21.4 (18.1, 24.7) 0.36 23.3 (21.4, 25.1) 

2 23.6 (21.3, 25.8) 0.77 23.1 (20.4, 25.7) 0.07 26.0 (24.1, 28.0) 

3 22.0 (19.3, 24.7) 0.91 22.2 (19.7, 24.7) 0.12 24.9 (22.5, 27.2) 



b p value, DM+PE‒ vs. DM‒ 
c Geometric mean (95% CI of geometric mean); otherwise mean (95% CI of mean).   
 

   



Table 3 – Odds ratio (OR) for the development of PE, area under the ROC curve and IDI and NRI indices for selected 

adipokines in a predictive model per study visit (with and without adjustment of covariates) 

Leptin, Leptin:Total Adiponectin ratio, FABP4, and FABP4:Total Adiponectin ratio were all logarithmically transformed to base 2. 
Therefore the OR corresponds to a doubling of the level. 
p values <0.05 (statistically significant). 
a Adjusted for HbA1c, insulin per kilogram per day and gestational Age per visit 
b Relative to AUC of 0.5, for a logistic model containing only selected biomarker at current visit 
c Relative to AUC of 0.786, 0.640 and 0.715 for a logistic model containing covariates only per visit, respectively 

Variable Unadjusted OR 
(95% CI) 

Adjusted OR (95% 
CI)a 

Area under the 
ROC curve without 
covariates  
(p valueb) 

Area under the 
ROC curve with 
covariatesa (p 
valuec) 

IDI (p value) NRI (p value) 

Leptin (μg/l) 

Visit 1 3.2 (1.4, 7.5) 9.0 (2.0, 40.3) 0.747 (0.004) 0.902 (0.10) 0.250 (<0.001) 0.824 (0.004) 

Visit 2 4.4 (1.5, 13.4) 4.9 (1.4, 18.0) 0.766 (0.003) 0.776 (0.15) 0.161 (0.01) 0.553 (0.07) 

Visit 3 2.2 (1.1, 4.7) 4.0 (1.2, 13.6) 0.697 (0.02) 0.803 (0.26) 0.139 (0.03) 0.947 (<0.001) 

Leptin:Ttotal 
Adiponectin 

Visit 1 2.4 (1.3, 4.7) 3.5 (1.4, 8.8) 0.747 (0.004) 0.871 (0.20) 0.177 (0.008) 0.819 (0.003) 

Visit 2 2.9 (1.3, 6.7) 3.7 (1.3, 10.7) 0.766 (0.003) 0.787 (0.09) 0.171 (0.01) 0.632 (0.03) 

Visit 3 1.6 (0.9, 2.7) 3.0 (1.1, 8.2) 0.667 (0.05) 0.797 (0.22) 0.119 (0.04) 1.029 (<0.001) 

FABP4 
(ng/ml)  

Visit 1 2.7 (0.9, 8.3) 5.5 (1.0, 29.8) 0.654 (0.07) 0.810 (0.64) 0.077 (0.11) 0.733 (0.01) 

Visit 2 5.4 (1.5, 19.5) 6.6 (1.4, 30.7) 0.737 (0.007) 0.766 (0.17) 0.144 (0.02) 0.663 (0.03) 

Visit 3 10.7 (2.6, 44.4) 25.1 (2.3, 273.8) 0.806 (<0.001) 0.847 (0.10) 0.236 (0.002) 1.247 (<0.001) 

FABP4:Total 
Adiponectin 

Visit 1 2.4 (1.1, 5.5) 2.9 (1.0, 8.5) 0.684 (0.03) 0.819 (0.52) 0.07 (0.13) 0.729 (0.01) 

Visit 2 3.7 (1.4, 10.0) 4.9 (1.4, 17.9) 0.751 (0.005) 0.790 (0.07) 0.165 (0.01) 0.737 (0.01) 

Visit 3 2.6 (1.2, 5.9) 6.9 (1.2, 39.4) 0.707 (0.02) 0.809 (0.20) 0.153 (0.02) 0.794 (0.009) 


