
NanoStreams: A Microserver Architecture for Real-time Analytics on
Fast Data Streams

Minhas, U. I., Russell, M., Kaloutsakis, S., Barber, P., Woods, R., Georgakoudis, G., ... Bilos, A. (2017).
NanoStreams: A Microserver Architecture for Real-time Analytics on Fast Data Streams. IEEE Transactions on
Multi-Scale Computing Systems. DOI: 10.1109/TMSCS.2017.2764087

Published in:
IEEE Transactions on Multi-Scale Computing Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:04. Jan. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/144581471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.qub.ac.uk/portal/en/publications/nanostreams-a-microserver-architecture-for-realtime-analytics-on-fast-data-streams(1523e60b-c02d-4fa6-b313-09be70d02b81).html

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

NanoStreams: A Microserver Architecture for
Real-time Analytics on Fast Data Streams

U. I. Minhas, M. Russell, S. Kaloutsakis, P. Barber, R. Woods, Senior Member, IEEE G. Georgakoudis,
C. Gillan, D. S. Nikolopoulos Senior Member, IEEE and A. Bilas

Abstract—Ever increasing power consumption has created great interest in energy-efficient microserver architectures but they lack the
computational, networking and storage power necessary to cope with real-time data analytics. We propose NanoStreams, an
integrated architecture comprising an ARM-based microserver, coupled via a novel, low latency network interface, Nanowire, to a
Analytics-on-Chip architecture implemented on Field Programmable Gate Array (FPGA) technology; the architecture comprises ARM
cores for performing low latency transactional processing, integrated with programmable, energy efficient Nanocore processors for
high-throughput streaming analytics. The paper outlines the complete system architecture, hardware level detail, compiler, network
protocol, and programming environment. We present experiments with an industrial workload from the financial services sector,
comparing a state-of-the-art server based on Intel Sandy Bridge processors, an ARM based Calxeda ECS-1000 microserver and
ODROID XU3 node, with the NanoStreams microserver architecture. For end-to-end workload, the NanoStreams microserver achieves
energy savings up to 10.7×, 5.87× and 5× compared to the Intel server, Calxeda microserver and ODROID node respectively.

Index Terms—Reconfigurable computing, transactional Analytics, microserver, FPGAs

F

1 INTRODUCTION

W ITH ever increasing data volume and computation
complexity, future energy consumption of data ware-

houses will be a key challenge. Van Heddeghem et al [1]
predicts that data centres will consume about 2% of global
electricity consumption. Although the key motivating fac-
tors of server design had been speed and availability, energy
consumption can no longer be ignored as it represents a $B
economy burden and increased threat to global climate [2].

With interest in real-time and large-scale data analytics
growing, servers are under increased pressure to deliver
higher performance and data processing throughput under
a shrinking power budget. Whilst microservers based on the
ARM architecture have been proposed as an alternative to
Intel servers to tackle this problem, they have shown high
energy-efficiency only for light weight transactional tasks
but limited computational power for analytical tasks [3] [4].

Earlier work has explored the integration of ARM cores
with wide SIMD units for higher energy efficiency [5]. How-
ever, this work focused on high performance computing
(HPC) workloads which like modern real-time analytics,
have high throughput needs but do not have transactional
components with latency constraints. In real-time analyt-
ics, servers must simultaneously execute both low-latency

• U. I. Minhas, R. Woods, G. Georgakoudis, C. Gillan and D. S. Nikolopou-
los are with the School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast, Belfast, UK
E-mail: u.minhas, r.woods, g.georgakoudis, c.gillan,
d.nikolopoulos@qub.ac.uk
M. Russell, P. Barber and R. Woods are with Analytics Engines Ltd., 1
Chlorine Gardens, Belfast, UK
E-mail: m.russell, p.barber, r.woods@analyticsengines.com
S. Kaloutsakis and A. Bilas are based in FORTH, Institute of Computer
Science, Heraklion, Crete, Greece
E-mail: kaloutsa, bilas@ics.forth.gr

Manuscript received December 1, 2016; revised ...

transactional components that decode and store data from
streaming messages arriving at a high speed and high-
throughput analytical components that query the logged
data to extract knowledge.

Field Programmable Gate Arrays (FPGAs) are seen as
an attractive proposition to address energy issues and are
used in the IvyTown Xeon + Stratix V FPGA system [6] and
Amazon’s Elastic Compute Cloud (EC2) F1 instances. Issues
include the need for specialist programming languages and
the lengthy synthesis times. Vendor optimized soft cores,
e.g. Microblaze, tackle this by synthesizing statically pro-
grammable processors for which new code can be com-
piled and linked. However, this reprogramming needs to
be carried out using the vendor tools which limits its use
in just-in-time reprogramming of a many core co-processing
accelerator which is accessible remotely to microservers.

Another challenge is the need to overcome the tradi-
tional network stack overhead resulting in increased latency
and CPU processing workload incurred when connecting
the accelerator to the microserver. We require the system
to share accelerators to allow them to be decoupled from
the host/server technology cycle, as accelerators evolve at a
different pace. Ideally, this should use Ethernet to allow use
in existing Ethernet infrastructure in data centres.

In this paper, we present a power-efficient, microserver
architecture, called Nanostreams that addresses the chal-
lenges of building computing systems that can efficiently
support heavyweight computation on hybrid transactional-
analytical workloads. It effectively exploits FPGA tech-
nology through the creation of a highly programmable
and dynamically reconfigurable Analytics-on-Chip (AoC)
architecture based on the Nanocore processor. It is highly
programmable and easily repurposed to execute different
analytical tasks in a just-in-time manner with low energy
consumption. It is programmed using a streaming data flow

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

model, and allows the cores to act as parallel computing
black boxes where the functionality for each core is com-
piled using a lightweight instruction set.

We also present the Nanowire, a novel high-speed net-
work interface which enables low latency and efficient shar-
ing of multiple AoCs between tasks for easy scalability. It
attaches the AOC to microservers via raw Ethernet, thus
enabling sharing of accelerators across microservers which
can lead to improved overall cost with mid- and high-
end accelerators. Use of Ethernet decouples the accelerator
from server technology cycle, allowing each the server and
accelerator to evolve at a different pace.

We have prototyped our AoC architecture on the Xilinx
Zynq-7000 SoC which offers an ARM processor together
with hardware logic. On-chip integration of the ARM and
Nanocores reduces the communication latency and enables
efficient on-chip parallelization of analytics kernels.

The key contributions can be summarized as:

• A novel microserver architecture for real-time ana-
lytics, based on a new highly programmable and dy-
namically reconfigurable many-core accelerator that
takes advantage of the lower power of FPGAs but
which overcomes long programming times.

• A streaming data flow model which provides a com-
plete, domain-specific programming environment
for data analytics using streaming input/output
functions at hardware level and a supportive,
lightweight instruction set for FPGAs comprising
only 26 instructions.

• A new network interface for low-latency multi-
tasking and sharing of accelerators, which provides
a simple and convenient software Application Pro-
gramming Interface (API) to virtualise and manage
accelerators, while minimizing host CPU overheads.

• A prototype of the microserver giving up to 10.7×,
5.87× and 5× better energy efficiency compared to
an Intel server, Calxeda microserver and ODROID
node respectively for a financial services workload.

The paper is organized as follows. We survey related
work on low power servers in Section 2. We specify
the Nanocore architecture in Section 3 and provide more
detailed information on the Nanocore memory system,
dataflow, frequency and power consumption in Section 4.
Section 5 gives details of the AoC server and focuses on
communication and the system interconnect. We present our
experimental setup using a financial services workload in
Section 6 and our experimental analysis in Section 7. We
conclude the paper in Section 8.

2 BACKGROUND WORK

The performance and power consumption of alternative
approaches to traditional servers in data centres and HPC
such as those based on ARM processors compare well with
Intel x86 servers in terms of energy and cost [7] [8], but
it is acknowledged that they need to evolve for HPC [5].
EuroServer [9] [10] is a scale-out architecture with support
for resource mutualization and sharing that uses integrated
interconnects and 3D silicon integration technology to ef-
ficiently share resources. We take a different approach to

improve the energy-efficiency of servers using FPGA-based
reconfigurable accelerators [11] and new methods to pro-
gram and share these accelerators.

Examples of FPGA-servers include IBM’s POWER8 Co-
herent Accelerator Processor Interface port which allows
coherent memory access for FPGA based accelerators via
the Peripheral Component Interconnect Express (PCIe). A
5× gain in energy efficiency has been demonstrated for
FPGA-based, FFT acceleration when compared to an opti-
mized parallel software FFT running on a 12-core CPU [12].
Microsoft’s FPGA-based Catapult data center infrastructure
demonstrated a 95% improvement in ranking throughput
in a production search infrastructure at comparable latency
to a software only, with only a 10% increase in power con-
sumption [13]. Their focus, however, has been on reducing
system design constraints with logic customised for each
application, needing hardware design expertise.

Reconfigurable many core architectures for data analyt-
ics have been proposed, including the use of FPGAs for
data-intensive applications via the strong coupling between
storage and FPGA [14] and switching of hardware and
software threads for a heterogeneous system involving a
CPU and reconfigurable computing units [15]. It focused
on the run-time management of tasks but did not provide
insight on the architectural challenges of processing ele-
ments. Work in [16] uses operation units placed in a n × n
layout and configured for different queries using a compiler;
it can reduce the effort to deploy analytical workloads on
FPGAs but the functionality achievable by operation units
is limited, since there is no memory hierarchy and limited
options for implementing a data flow.

Various approaches are being applied to enhance FPGA
programmability, including vendor high level synthesis
tools [17] and soft/hard core vector/scalar processors [18]
[19]. We use soft core scalar processors for their ease of
scalability and configurability for a range of applications,
although commercial offering exist including Xilinx’s Mi-
croBlaze [20], Altera’s Nios II [21] and ARM Cortex-M1 [22].
However, these are heavyweight general purpose proces-
sors which support an extensive instruction set, which is un-
necessary for domain specific purposes. Indeed, we provide
more detailed insights with Microblaze and ARM Cortex-
M1 against the proposed core here in the later sections.

A Dynamic Streaming Engine uses programmable in-
put/output buffers and computational lanes which can
be configured at run-time using micro-programming and
configuring registers [23]. Streaming elements is an FPGA
accelerator for signal and image processing [24] that focuses
on pre-synthesis configurability and a tight application spe-
cific design, thus ensuring minimum resource usage at the
cost of reduced flexibility post-synthesis. Authors in [25]
present a programmable core for relational operation of
text analytics leveraging stream processing model that uses
shared memory and virtual streams for array processing.

We aim to go from high level stream programming lan-
guages to FPGA hardware while maintaining programma-
bility and flexibility. Using intelligent workload distribution
and a simple, low-power and scalable core coupled to an
ARM processor, we achieve lower latency and higher trans-
actional throughput for streaming applications. Developers
need limited effort to migrate existing applications to our

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

platform because of the abstraction of parallelism, easy-to-
use core interfaces and run-time compilation support.

To integrate AOC with microserver, we propose
Nanowire, an Ethernet-based protocol which reduces over-
heads when communicating within the rack. Similar proto-
cols have emerged for communication between servers and
storage systems [26] as well as for general purpose com-
munication within the datacenter [27]. Tyche [26] reduces
protocol processing overheads over raw Ethernet, but unlike
Nanowire, targets in-kernel communication protocols that
do not require user/kernel communication. IX [27] is an
Ethernet-based protocol that supports TCPcommunication
and looks to improve VM to VM comms. within the datacen-
ter, whereas Nanowire is aimed at host accelerator comms.

Our experimental analysis uses a real-time option pric-
ing workload with a realistic, industrial strength setup. We
use an option pricing approach [28] that is more accurate
than other models such as Monte Carlo and Finite Differ-
ence, whilst remaining fast. Prior energy efficient, FPGA-
based implementations include: a customized hardware for
binomial option pricing which was able to achieve 250×
and 2× improvement over a Core2 Duo processor and
an nVidia Geforce 7900GTX processor, respectively [29];
an OpenCL-based software based solution which was able
to process 2000 options/s at an average of 20W [30]; a
hybrid CPU/FPGA based implementations of the Longstaff-
Schwartz algorithm [31] used dynamic reconfiguration to
achieve up to 16× and 268× improvement in run-time and
energy respectively compared to CPU only implementation.
However, these approaches employ classical FPGA design
approaches and are very time consuming for multiple use
cases.

The work makes use of commercially available general
purpose hardware rather than specialised system archi-
tectures developed by vendors for their data centres [12]
[13] and can be incorporated easily into existing small to
medium scale data centres and near the edge computing
nodes without any specific interface requirements. To verify
validity, we have provided integrated system results on
the lowest speed grade hardware using real-time data as
compared to work providing simulation or theoretically
estimated results or only logic power consumption numbers
[31] [23] [24]. Furthermore the results are compared to state-
of-the art servers and microservers and showing energy
efficiency for an industrial real-time workload. Moreover,
fine-grained and coarse-grained power profiling results are
applied to give real-time energy consumption insight at core
level (for scale-out projections) and actual power cost (for
economic impact), respectively. This has been missing in
existing work on soft core processors designs [19] [32] [18]
[25].

3 AOC ARCHITECTURE SPECIFICATION

The AoC lies at the heart of this microserver architecture
and is an amalgam of embedded general purpose RISC pro-
cessor and many core processing unit based on application-
domain specific Nanocores. Nanocores are a new class of
programmable, reconfigurable data-driven accelerators for
stream processing. The AoC architecture system specifica-
tion is given in Fig. 1. The approach overcomes the issue of

FPGA design time and look to increase analytical processing
throughput by exposing the parallel computational capabil-
ities of the underlying hardware to the software domain,
allowing rapid, run-time reconfiguration and programma-
bility.

The targeted methodology is stream processing i.e. pro-
cessing of an ordered set of data organised at run-time
without storing [33]. The input main stream is divided into
multiple streams operated by multiple cores in parallel as
the operations being performed on multiple streams is the
same i.e. Single Instruction, Multiple Data (SIMD) type of
processing. Otherwise, it may require different operations
being executed on different data constituting Multiple In-
struction, Multiple Data (MIMD) type processing.

The initial goal of the architecture design was to describe
a single core which combined with a number of other
Nanocores that may not necessarily have the same feature
set, is sufficiently flexible to allow the acceleration of a
wide range of streaming applications. The key aspect of the
approach is that we have optimized the use of underlying
FPGA hardware to allow the creation of a core which
operates substantially faster than existing FPGA-based cores
and comparable with High Level Synthesis (HLS) tools.

With the availability of a low latency ARM core on the
same chip, portions of software can be distributed such that
the complex and serial tasks are executed on RISC core
while Nanocores are used for simple yet large computations
by exploiting parallelism. The control flow lies with the
ARM core which acts as a master utilizing Nanocores as
required. However, due to heterogeneous nature of process-
ing, both the ARM and Nanocores have independent access
to resources such as memory etc., while still maintaining
required synchronisation and program flow.

To achieve maximum parallelism, cores should be
lightweight with a simple instruction set, thus allowing
large number of cores to be replicated in the reconfigurable
logic. Furthermore the streaming data flow needs cores
to act as the parallel computing black boxes oblivious to
the rest of flow. This requires description of stream in-
put/output functions at hardware level and a supportive
instruction set.

Due to the streaming nature of data, operations nor-
mally have a relatively higher data read/write requirements
to/from stream buffers, registers, local memory and off-chip
memory; hence the architecture should allow parallel reads
from various sources to reduce time for memory operations.
The requirements, such as those in financial applications,
demand a high precision of computation as well. Although
64-bit precision capabilities are increasingly being provided
in GPU and CPU architectures, it is still considered an
expensive design choice for FPGAs.

Furthermore, the Nanocore architecture should support
easy integration for multi-core design and so this work
targets SIMD and MIMD type approaches. This simplifies
abstraction of parallelism at a higher level. This is also in
line with most parallel programming paradigms and suits
the traditional decomposition of most streaming compute
intensive applications. This also allows for efficient use of
the hardware resources and optimum scaling for larger
devices or different configurations by avoiding the complex
networks for communication between cores.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

Nanocores

NC4

NCn

Nanocore
IN Stream
Buffer

OUT Stream
Buffer

Scratch
Memory

Instruction
Memory

Control
Registers

Simplified
ALU

ARM Cortex

Application on ARM
begin:

Serial/Complex Code
Serial/Complex Code
Serial/Complex Code

…
…
...

Parallel Kernel:
Initialize Local Memory

Program Nanocores
Setup DMA

Execute
{

………..
………..
………..
………..

}
Read Result

Serial/Complex Code
End;

Memory
Controller

Off Chip
Memory

St
re

a
m

in
g

In
p

u
t

C
ha

n
n

el

St
re

a
m

in
g

O
u

tp
ut

C

ha
n

n
el

Fig. 1. AoC Architecture Design

Finally, the design of core accelerator hardware should
be such that the AoC architecture fits in nicely in a high-level
streaming data flow model, leading to a complete, domain-
specific programming environment for data analytics. Al-
though reconfigurable computing has always been appreci-
ated for energy efficiency, the programming and subsequent
integration in the programming flow, is not considered
convenient compared to other platforms (CPUs, GPUs, etc).
The usual approach requires designing in specialist hard-
ware descriptive language (HDL or Verilog) which needs
time and hardware design expertise and even after that,
synthesis, place and route and verification is still required.

For our application, we target the use of the AoC as
shared accelerator among multiple microservers in a cluster.
This means the Nanocores should not only be easily pro-
grammable, but any microserver should be able to program
as per its unique requirements, at run-time over Ethernet.
This feature not only provides flexibility of use at run-time,
it also abstracts the cores for higher level programming and
helps with exploitation of parallelism. At the core level, the
hardware should support for reprogramming. At system
architecture level, supportive libraries should provide an
application interface from the microserver to the ARM core
on the AoC architecture and from the ARM to Nanocores.

4 NANOCORE ARCHITECTURE

The Nanocore architecture given in Fig. 2, supports 32-bit
and 64-bit fixed point arithmetic; this configuration was
selected to demonstrate a key precision benefit over existing
32-bit only FPGA cores, e.g. Microblaze, Nios II and utilises
the fixed point DSP capability of the current FPGAs. To this
end, the work has focused on architecture optimization irre-
spective of underlying arithmetic precision support. This is

because, whilst the arithmetic operations possible within the
core will differ depending upon its build-time configuration,
the underlying design philosophy of the core is expected to
remain consistent. Program control flow and use of registers
are to be consistent across all configurations.

4.1 Memory Architecture

There are 16 registers within each processor (R0-R15) and
as the only path to processor, all operands need to be
stored in them first. Furthermore, each core has a read-write,
addressable memory for storing intermediate calculation
results and use as a stack i.e.’scratch’ memory. This ensures
that each core is capable of relatively complex behaviour
and enables the core to support operations where data has to
be spilled out of the internal registers. Scratch memory also
helps to hide memory latency with ARM controlled data
transfers [32]. The data can also be fed via input and output
stream memories as well as constant load into registers.

4.2 Data Flow

In order to minimise latency, the input and output mem-
ories are configured as first-in, first-out buffers (FIFOs).
Nanocores are designed as data-driven processors making
use of special blocking read/write instructions which sus-
pend operation of the core when reading from an empty
FIFO or writing to a full FIFO. This is a key feature which
greatly simplifies control of data flow for streaming data.

In order to maximise the run-time configurability of
Nanocore, some additional elements are necessary. As the
cores have no visibility of system data flow, additional
elements are needed to handle the following functions:

• input of data stream from external memory or inter-
faces;

• output of data stream to external memory or inter-
faces;

• demultiplexing of single stream into multiple
streams;

• multiplexing of data from multiple sources into a
single stream;

• routing of data between Nanocores and flow units,
including stream replication.

These units are controlled by the master and config-
ured at run-time, the same time as the Nanocores are
programmed. Reconfiguration of the data flow during pro-
cessing session is not provided.

4.3 Instruction Set

The instruction set has been kept very small, 26 instructions,
in order to minimise the resource utilisation of the processor
when configuring cores for different applications, but still
provides enough functionality to be able to support stan-
dard software program flow constructs. It is summarized
in TABLE 1 with the number of execution cycles required
for each instruction. The default instruction set is Turing
complete and additional application specific instructions
can be added to improve performance. Special instructions
are included for input read and output write.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

Fig. 2. Nanocore Block Diagram.

TABLE 1
Instruction Set with delay cycles for 32 bit configuration

Instruction Delay
No Operation, Unconditional Jump, Load Constant 1

Input Write, Output Write 4, 2
Memory Write, Memory Read 6, 3
Jump (If Equal, If Not Equal) 3

Shift (Left, Right, Arithmetic Right) 5
Compare/Signed Compare (Greater Than, Less Than) 5

Bitwise Operator (Invert, OR, AND, XOR) 5
Arithmetic (ADD, SUB) 5

Multiply 8
Multiply High (64-bit for 32-bit architecture) 9

Fig. 3. Instruction word structure with support for 4 operations in one
cycle

We have defined a 32-bit instruction word as shown
in Fig. 3; whilst the Zynq block RAM allows us to have
36-bit instruction words, four bits are kept free for future
or processor internal use. The instruction word has been
designed to allow the core to execute four operations within
a single clock cycle: an input read to a register, and output
write from a register, an always jump and either a constant
load or another instruction. The ability to perform multiple
operations within a single instruction should minimize la-
tency for high density memory operations. This should help
to reduce number of instructions/delays required for a tight
loop and helps with high throughput for stream processing.

4.4 Resource Utilization and Scalability

The Nanocore code base has been built up as a result of
considerable design engineering work. Explorations primar-
ily surrounded the application and design requirements
(control and flexibility), and focused on memory utilization.
The amount of logic that can be fit into a device is limited
by the resources available on the FPGA such as DSP48s,
BRAMs, LUTs, registers and routing. The explorations were
also based around balancing the resource usage to allow
the maximum number of cores to be accommodated on any
device. Starting with DSP48s, our design requires 3 and 8
DSP48s to implement a 32-bit and 64-bit ALUs respectively.

As for the memory, each BRAM in Zynq devices can
store up to 36 kbits. Each Nanocore essentially has three
memory areas: code, input data and scratch memory. For the
purpose of reprogramming and reading/writing data from
Nanocore, access of code and scratch memory from outside
nancores respectively, is needed. The Nanocores operate
independently on a single clock, with other components
(memory controllers etc.) being on different clock domains.
This imposes a constraint on the code and scratch memory,
in that they must be true dual-port memories, with read
and write clocks. The input data memory only requires a
single clock. Both configurations are possible using the Zynq
BRAM. We have implemented the code and scratch mem-
ories as dual-port 1024 and 512 elements 36-bit memory,
utilizing 1 1

2 BRAMs respectively. Similarly a 1
2 BRAM has

been used for FIFO memory. Scratch and FIFO memory sizes
double for 64 bit version.

LUTs and registers are required for other functionalities
such as providing data paths within the core, etc. TABLE 2
summarizes the resource usage for one Nanocore and its
percentage utilization against the total number of resources
available on ZC7020 chip of Zynq SoC family (the same chip
has been used for testing the system)

With the utilization information available for resources
for a single core, we are now able to place an upper

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

TABLE 2
Resource Utilization by Single Core

Nanocore Nanocore Microblaze
32-bit 64-bit 32-bit

Resource Usage % Usage % Usage %
LUTs 1773 3.3% 3144 5.9% 1105 2.1%

Flip-flops 1426 1.3% 2725 2.6% 786 0.7%
DSPs 3 1.4% 8 3.6% 3 1.4%

BRAMs 2.5 1.8% 4 2.8% 2.5 1.8%

TABLE 3
Contribution of each resource towards limiting cores per device

Zync FF LUT BRAM DSP
Device 32-b 64-b 32-b 64-b 32-b 64-b 32-b 64-b

Z010 24 12 9 5 24 15 26 10
Z015 64 33 26 14 38 23 53 20
Z020 74 39 30 16 56 35 73 27
Z030 110 57 44 25 106 66 133 50
Z045 306 160 123 69 218 136 300 112
Z100 389 203 156 88 302 188 673 252

Fig. 4. Maximum frequency with number of cores

bound on the number of Nanocores per device. By regularly
performing scalability experiments with chains of cores, we
closely monitored and enabled the minimization of the ef-
fect of routing on the scalability of the design. Extrapolating
the resources usage of a single Nanocore and considering
the maximum resources available on each device, TABLE 3
shows the maximum number of cores that can be fit into
different Zynq devices. This directly translates to scalability
of the design which we discuss more in Section 6.3. The min-
imum bound for each device configuration is highlighted
in bold. This analysis shows that the cost of adding 64-bit
support is much smaller in terms of BRAM than DSP blocks.

4.5 Frequency

The current maximum frequencies of the core against num-
ber of cores for 32- and 64-bit versions are shown in Fig.4,
obtained using Vivado 2014.3.1’s implementation defaults
with a constraint of 312.5 MHz and a FPGA device with
lowest speed grade. Since most of these results exceed
this frequency, it is likely that optimisation stops once this
frequency is met. This would explain the drop in frequency
for the 32 bit Nanocore with 2 cores. Our synthesis resulted
in a single Microblaze core with a frequency of 160 MHz.
The reported figures for ARM Cortex-M1 is 200 MHz on
Virtex-5 for the maximum speed grade [22].

4.6 Power Consumption
Energy efficiency of a single core serves as a main metric
when investigating scalability trade-off but has not been
investigated previously [19] [25]. The real-time dynamic
power consumption for a single 32-bit and 64-bit Nanocore
is given as 41 and 126mW respectively. This was measured
using the three TI power controllers (UCD9248PFC) on the
ZC702 development board and allowed us to distinguish
between the programmable logic power from the ARM
cores and other peripherals power. The power was pro-
filed in terms of Watts/instruction by measuring average
dynamic power consumption of 8 Nanocores running the
same instructions in a loop for a significant period of time.

4.7 Initialization
The core is controlled by a master, which has the ability
to start, stop and reset the core, as well as to write to the
program memory. In the context of the Zynq board and
the development of the main framework, the ARM core
acts as master for all of the Nanocores within the FPGA
fabric. A core is initialized with a fixed program, allowing
it to start on boot, but the real feature of the core lies in its
reprogrammability at run-time.

4.8 Multi-core Infrastructure
An important step in enabling the easy integration of the
Nanocore with other IP is the adoption of the AXI protocol
for communication. For the FIFO interfaces, this only re-
quires replacing a full signal with a ready signal, which is an
inverter. The control interface is more complex because AXI
Lite supports simultaneous reads and writes to different
addresses but the Nanocore only has one control address
port. This issue has been resolved by adding control logic
which blocks traffic on one port while a transfer is occurring
on the other; write transactions are given priority in the
event of a collision.

One major challenge in design of multicore infrastruc-
ture is the efficient scatter and gather operations at the input
and output of the Nanocore array. Generally, applications
will seek to run SIMD or MIMD type applications, with
each Nanocore operating on a different burst of inputs
and returning a burst of result data. This is facilitated by
the scatter and gather modules which can be configured
to split the incoming data stream for a variable number
of Nanocores with different word sizes and then join the
outputs. They can also be configured to pad input and
output values if the data sizes are not a multiple of number
of cores.

The cores also facilitate clock crossing, so the Nanocores
can operate at a higher frequency than the input and output
data streams. This means the processing of data happens
at a faster frequency than data transfer and thus helps to
reduce computation latency against streaming data.

5 SYSTEM ARCHITECTURE

The typical application development on FPGA includes not
only the algorithm coding and data management, but also
building and integrating system architecture responsible
for host-to-FPGA communication. System integration needs

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

additional time and expertise and often exceeds the original
effort required for application development itself. This is
achieved using a step wise bottom up approach from recon-
figurable logic all the way up to C programming on host
with an aim to abstract everything from the programmer.

5.1 Intra-Analytic on Chip Communication
The ARM controller on the Zynq device has the ability to
directly address memory location for Nanocore’s instruction
RAM and scratch memory. This allows for the creation of
libraries to assist the programmer to debug hardware-based
implementation of an algorithm in a standalone mode,
allowing validation of design in hardware which is much
superior to purely software-based simulation.

The libraries run on the ARM core and stimulate a real
Nanocore on the FPGA, allowing the programmer to access
the Nanocore’s data and control interfaces through wrapper
functions. This library provides functions such as initializa-
tion, programming/reprogramming and control of transfer
of data to, and from, the Nanocore/multicore architecture.
Developer-level functions to aid debugging, such as scratch
memory access, have also been provided. A series of library
functions have been created, giving a high level of access
by abstracting hardware interface around Nanocore. The
Nanocore needs to be reset when it is being reprogrammed
or reconfigured and can also be paused to allow access to
other control operations.

5.2 Nanowire and Host OS
The interconnect between the AoC architecture and host
microserver is provided through Nanowire, a lightweight,
low-latency communication protocol. Besides efficiency,
Nanowire aims to enable shared accelerators, e.g., at the
node level or rack level for cost reasons, but also decou-
ples accelerators from the host/server technology cycle, as
accelerators evolve at a different pace compared to servers.

Nanowire is based on raw Ethernet to utilize existing
Ethernet infrastructure in data centres and transparently
coexist with other Ethernet-based protocols. The main goals
of Nanowire are to:

• provide a simple and convenient API to virtualise
and manage accelerators;

• sustain reliable, high-throughput and low-latency
transfers;

• minimize host side CPU overheads while supporting
high concurrency and;

• achieve µ s response and tight tail latency QoS.

In order to address and fulfil the aforementioned goals,
Nanowire adheres to the following design principles:

• Application-kernel communication based on shared
memory queues and helper cores; this eliminates
data copies and system calls at kernel boundary.

• Dedicated kernel threads and accelerator queues
(channels) which eliminates coherence traffic and
synchronization

• Adaptive policies in issue and completion path that
eliminates expensive sleep/wakeup operations.

• Separation of concerns, composed of two abstrac-
tions: The Host-Accelerator Transport (HAT) layer

that handles networking aspects and the Task Issue
Protocol (TIP), a task queue layer that issues task
requests from the hosts and receive task results from
the accelerators.

HAT provides the network tier of NanoStreams and of-
fers a common abstraction of the network level services and
I/O primitives to both the host and accelerator nodes. HAT
code runs on both sides of the interconnect and although
the host side makes use of the host OS services, on the
accelerator side, HAT runs on more diverse platforms. In
our prototype, the accelerator side of HAT is implemented
as custom firmware directly on top of the Cortex-A9 core in
the Processing System (PS) of the FPGA card.

HAT provides lightweight connection-less channels as
the lowest-level communication. A channel is a point-to-
point unidirectional queue of packet slots used for commu-
nication between a source host and destination accelerator
node. Resources per channel, e.g., slot size, are chosen at
creation time. Channels aim at providing a low-overhead
and low-latency communication path, while allowing the
system to tune the allocation of resources for each channel.

TIP provides the run-time system with the ability to
transparently issue tasks to the accelerators without any
knowledge of the underlying network infrastructure or the
accelerators themselves. TIP implements a simple client-
server protocol to decouple analytics kernel invocation from
execution: it utilises HAT channels to enqueue kernel service
requests to remote accelerator nodes and retrieve comple-
tions/replies. It supports both blocking and non-blocking
interfaces. Further details about the network protocol and
preliminary latency results are available in [34].

5.3 Compiler and Higher Level Language Support

The Nanostreams tool chain support is highlighted in Fig. 5.
The Nanocore compiler and the higher level language run at
the host. At the core level, a beta version of a C99-compliant
compiler for Nanocore has been developed by ACE using
the CoSy compiler development system. Along with com-
piling C using the default 26 instruction set supported by
Nanocore, the compiler provides support for the Nanocore
special instructions for high speed input read and output
write. An assembler has also been developed for generation
of machine code from manually optimized assembly code.

Furthermore, the aforementioned libraries for intra-AOC
communication, have been abstracted via the Nanowire
at the microserver to provide direct access to the high
level programming tool chain. This abstracts the underlying
FPGA hardware from the programmer and allows the AoC
to be accessed in a software domain. For an efficient appli-
cation development, the user can then tune the computation
as per the underlying number of cores per AoC, the number
of AoCs and the infrastructure in place. At the high level
programming, data flow graphs within an application are
defined in terms of annotated C functions, called kernels.
The defined specification, NANOCOREDF, allows the focus
to be laid on known characteristics of the inter Nanocore
communication, so the communication can be derived with
minimal additional specifications. A data flow graph is
identified in NANOCOREDF by the following properties:

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

Micro-server

C Streaming Extensions

ARM GCC Nanocore Compiler

Zynq

Nanowire

ARM Cortex

Nanocores

Ini�alize/
Configure/ Program

Nanocores

Read/ Write
Scratch

Memory

Process
Data

Fig. 5. Nanostreams tool chain support

• One or more calls annotated as NANOCOREDF
PRODUCE(N). They represent the communication
into the Nanocore data flow graph from outside. The
initial N arguments are data flow communication
arguments: the compiler requires that the values
in these are fully written by this kernel, and will
not be modified by any other kernel in the graph.
These arguments are considered to be outputs of this
kernel.

• One or more calls annotated as NANOCOREDF
CONSUME(N). They represent the communication
from the Nanocore data flow graph to outside the
graph. The initial N arguments are data flow com-
munication arguments that are used by the kernel.

• Other calls that accept some arguments that were
outputs of earlier kernels in the control flow (e.g. a
NANOCOREDF PRODUCE kernel) are considered
part of the graph, and such arguments are considered
input arguments. Any other arguments are consid-
ered to be output by this kernel.

With this definition, the data flow graph and the sizes of
the inter-kernel communication within the graph can be
determined by the compiler, the basic information needed
to explore how the graph should be mapped to the allowed
configurations of Nanocores and inter-core communication.

6 EXPERIMENTAL SETUP

6.1 Application Use Case : Option Pricing
In finance, the option to buy or sell a stock at a given
price can be traded. Valuation of these options can be
complicated and numerous models exist for the accurate
pricing of options with reduced complexity to allow trading
or occur in real-time. To evaluate the AoC processor, we
implemented an option pricing algorithm for European
style options using the Binomial Tree model. This offers
a generalized numerical method for valuations of options
and can be applied for more exotic options which require
handling of complex features not easily applied using other
models. The algorithm holds a lot of significance in financial
computing and was chosen for unbiased evaluation of the
platforms.

Fig. 6. Binomial tree algorithm

The Binomial Options Pricer (BOP) models the price of
an asset as a discrete lattice of prices where the stock can
take either an upwards jump u or a downwards jump d at
each instant in time (Fig. 6). There are two main stages to
the BOP model, the first of which requires calculation of the
value of the option at each one of the final nodes. This can
be calculated using equation (1), where nu is the number of
upwards jumps and nd is the number of downwards jumps
taken to get to the node.

SN = S0 ∗ unu ∗ dnd = S0 ∗ unu−nd (1)

The second stage involves walking backwards up the tree
calculating the price at each node until the first node is
reached as mathematical given by Equation (2) being run
(n+1)2/2 times, where pu and pd are the probabilities of an
upwards and downwards movement respectively.

Si−1,j = e−R∆T (pdSi,j + puSi,j+1) (2)

This second stage is more computationally expensive,
suits a SIMD style architecture and does not involve com-
plex function such as power functions. It makes for an ideal
case for acceleration using FPGA logic.

6.2 Definition of Metrics
We use the following application-specific and platform-
independent metrics for a fair performance analysis:

• Time/option: From users point of view, the atime per
option is the most critical entity that defines the end-
to-end latency to price all contracts for a given stock.

• Joules/option: The energy consumed per execution
of a pricing kernel is a fundamental metric that
translates to most significant portion of total energy
consumed at datacenters when considering high fre-
quency trading. Any change to the T/option metric,
by introducing high performance options, has to be
balanced against a change in the J/option metric.

6.3 Evaluation Platforms
Our experimental setup consists of three classes of plat-
forms (Intel, ARM, Nanostreams) on which we executed the
OptionPricer under various workloads, measuring energy
consumption and performance in each case. The technology
characteristics of devices in all platforms have been summa-
rized in TABLE 4.

We used the 4.7.3 version of the GCC compiler for
ARM based systems and the Intel Compiler ICC version
14.0.020130728 for code generation on Intel platform. Both

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

TABLE 4
Device characteristics summary

Platform Device Technology (nm) Transistors (Billions) Clock (GHz) Parallelism (Threads)

Server 2 x Intel Xeon CPU E5-2650 32 4.40 2.80 16

Microserver Viridis 40 1.6 1.40 64

ODROID Samsung Exynos 5422 40 0.15 2.0 8

AoC-8 XC7Z020 28 0.31 0.25 8

AoC-32 XC7Z100 28 1.5 0.25 32

platforms offer the possibility of scaling their frequency
and voltage through a DVFS interface. We conducted ex-
periments only with the highest voltage-frequency settings
on each platform, to which we refer as performance mode
which previous work has shown to be more energy efficient
[35]. Other details of the platforms are given below.

6.3.1 Intel

The first platform is an Intel Sandy Bridge processors based
HPC server architecture (referred simply as Intel in rest of
paper). This is an x86-64 server with Sandy Bridge architec-
ture, with 2 Intel Xeon CPU E5-2650 processors operating
at a maximum frequency of 2.8 GHz and equipped with
8 cores each. The machine has 32 GB of DRAM (4 × 8 GB
DDR3 @ 1600 MHz). The evaluation of the server for the use
case has been accomplished using both the processors and
all 8 cores of each processor with 32 threads parallel threads
running on the system.

6.3.2 ARM based Microserver

The second class is of ARM based computing nodes. Among
that we analyse a Calxeda ECS-1000 microserver using ARM
Cortex-A9 processors, packaged in a Boston Viridis rack-
mounted unit (referred to as Viridis) and ODROID-XU3
based on Samsung Exynos-5422 (referred to as ODROID).
Viridis server is a 2U rack mounted server containing
sixteen microserver nodes connected internally by a high-
speed 10 Gb Ethernet network. This means that the plat-
form appears logically as sixteen servers within one box.
Each node is a Calxeda EnergyCore ECX-1000 comprising 4
ARM Cortex-A9 cores and 4 GB of DRAM running Ubuntu
12.04 LTS. The performance mode frequency is 1.4 GHz. To
evaluate the performance, all 16 nodes are run in parallel
with 4 threads per node and 64 threads in total.

ODROID node is based on Samsung Exynos-5422 having
quad core Cortex-A7 and quad core Cortex-A15 running at
2.0 GHz. The node has 2 GB of DDR3 RAM at 933 MHz. We
only use 4 Cortex-A15 for our evaluation purposes to avoid
load imbalance between big and little cores.

6.3.3 Nanostreams

The final class is our proposed microserver architecture,
Nanostreams, which uses Viridis supported by AoC. We
analyse two AoC accelerators; the first one, AoC-8, com-
prises of 8 64-bit Nanocores implemented on Avnet Zed-
Board and the second one, AoC-32, has 32 64-bit Nanocores
implemented on Avnet Mini-ITX. The second platform has

been included to analyse the scaled-up performance com-
pared to the base architecture. Along with Nanocores, ARM
Cortex-A9 serves as the master for both platforms.

ZedBoard supports Zynq-7000 All Programmable SoC
XC7Z020 along with 512 MB of DDR3 RAM. There are
two single/double floating point supported ARM Cortex-
A9 CPUs on SoC acting as PS. They support a frequency up
to 866 MHz with 32 KB level 1 cache, 512 KB level 2 cache
and 256 KB on-chip memory. The PL is an equivalent of
Artix-7 FPGA with about 85K logic cells, 220 programmable
DSP slices and 4.9 Mb of block RAM. Mini-ITX is based
on XC7Z100 SoC of Zynq-7000 family with 1 GB SDRAM
each for PS and PL. The PS on SoC is the same as XC7Z020
while PL is an equivalent of Kintex-7 FPGA with 444K logic
cells, 2020 programmable DSP slices and 26.5 Mb of block
RAM. Both the designs have cores running at 250 MHz. The
frequency has been kept limited as the performance was
limited by the lower frequency of memory access and a
higher frequency for cores only resulted in higher power
consumption.

For the best possible implementation of BOP algorithm
on the AoC SoC, we distribute the processing among ARM
and Nanocores. To test our AoC processors, we integrated it
with a Viridis microserver through a fast and lightweight
network stack. The ARM calculates and send the initial
values (pu, pd, e−R∆T) to the Nanocores since they are
calculated only once. The control logic is a state machine
with four states; initialization of instruction memory, idle
and waiting for go signal from ARM, sending of data
to Nanocores and them performing the binomial walk.
We also compared it to available solutions for the non-
programmable solutions on FPGA both from performance
and programming effort point of view.

6.4 Real-time fast stream processing

A significant effort has been put in to mimic a real-time en-
vironment for stream processing of option contracts. Stock
price data at the real update rate was recorded for a full
session of normal trading in July 2014 i.e. no significant
initial public offerings (IPOs) or other skewed trading pat-
terns took place on the market that day, and subsequently
used to perform all of the experiments. The same session
was replayed from a central server via UDP multicast and
streamed to all the nodes in the system including Intel, ARM
and Nanostreams based nodes. Each node is running an
instance of OptionPricer which is triggered when it receives
a new price update. The pricing of contracts needs to be
accomplished in time before the new price update and

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

Fig. 7. Binomial tree option pricing experimental setup

projects a deadline based computation. For Intel and ARM,
all the option contracts were evaluated on the host while
for Nanostreams they were streamed into the AoC which
evaluates the contracts and relays them back to the host.
We evaluated performance on Facebook stock at the time
which had 617 option contracts. The total time taken to
evaluate 617 contracts as well as average power during
that evaluation was measured and processed to evaluate
seconds/option and joules/option metrics.

7 RESULTS

The different blocks, AoC Architecture and Nanowire are
evaluated followed by system performance results and com-
parison with other platforms.

7.1 Nanocore and AoC Architecture Evaluation

The performance of programmable Nanocores with other
high level synthesis options available from FPGA vendors
has been compared using three approaches. Firstly, we eval-
uated a single Nanocore against a single Microblaze config-
ured as close as possible to the Nanocore, involving a shifter,
32-bit integer multiplier and extended stream instructions.
In our Zedboard-based study, we found the performance
mode as compared to the area or frequency modes, gave
the best possible trade-off between resource utilization and
frequency. In this setting, a single soft-core resulted in a
frequency of 160 MHz against a Nanocore frequency of 325
MHz (Fig. 4) for default implementation settings on Vivado
2016.4 for lowest speed grade ZedBoard chip, the same
used for Nanocores frequency analysis. Details are given in
TABLE 2 and shows that Microblaze takes about 2/3 of the
resources while running at half the frequency, meaning that
Nanocores is about 33% better than Microblaze considering
the for area-delay product in terms of used LUT resource.

The frequency and resource usage alone cannot provide
an accurate estimate of performance. Hence we compiled
the base kernel of BOP for Microblaze. The assembly code
generated by the compiler of Microblaze takes 23 cycles
compared to 22 cycles of Nanocore. This defines the best
case performance of Microblaze as about half of Nanocore.
Furthermore, the better scalability that can be expected from
less resource usage of Microblaze may not directly translate

to better performance due to I/O and memory bottlenecks
on a scale-up design.

The second evaluation is for 8 of 64-bit Nanocores
against hardware generated by Xilinx HLS tools. To quantify
performance, we implemented the same second stage of
BOP kernel via HLS using 64-bit fixed precision. Basic loop
unrolling and pipelining directives from HLS were applied
to enhance performance, although the limiting factor was
the nature of the algorithm, that requires data dependency
and unsymmetrical compute architecture in each iteration
of loop.

The third is a system level comparison for a complete
end-to-end solution, accomplished using OpenCL support
on Altera FPGAs provided through SDK for OpenCL by
Altera and implemented on Altera Stratix V GX A7 SoC
built on Nallatech P385-A7. The kernel had 8 threads with
3 parallel instances of option pricers running in parallel.
This bigger FPGA device is compared with AoC-32 system
implementation for complete kernel execution.

7.1.1 Performance
The DSPs were the limiting factor in both designs, 87% in the
Xilinx HLS design and 77% in the Altera FPGA, showing the
compute intensiveness of the algorithm. The performance
comparison is given in Figure 8. For Nanocores, both hard-
ware simulation (for Nanocores only) and complete system
(for AoC) results are shown for comparison with HLS based
hardware design and AOCL based system design respec-
tively. Xilinx HLS based design was found to be about 25%
slower than the programmable Nanocores. AOCL based
design is about 4x slower while it consumed 1.5x more
power than AoC-32.

7.1.2 Productivity and Programmability
In terms of productivity and programmability, typically
synthesis times using Xilinx High Level Synthesis tools
and Altera Stratix V synthesis using OpenCL will range
from 15 minutes to 24 hours. The Microblaze avoids the
lengthy synthesis process by providing a programmable
single general purpose processor. The program code is com-
piled and linked and Microblaze application file is gener-
ated via Xilinx tools. This, along with hardware description
is used to generate a bitstream that needs to be loaded
onto FPGA. Once a hardware description file is available for

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

Fig. 8. Binomial tree kernel execution time (seconds/option) comparison
for varying number of steps for various reconfigurable solutions

programmable core, a new code can be compiled and linked
to soft core using associated tool chain. This makes the cores
more suitable for general purpose processing rather than as
a co-processing accelerator that can be abstracted to high
level parallel programming model and accessible remotely
to microservers.

Our solution is able to retest the underlying hardware
for design iterations in less than a second, thus allowing
for rapid prototyping of multiple applications. If a statically
optimized and compiled code is already available, the run-
time can reprogram the underlying FPGA based accelerator
in a few milliseconds. This is faster than any of the vendor
provided solutions including partial reconfiguration and to-
gether with remote reprogramming via microserver allows
for easy sharing and scalability of accelerators.

7.2 Nanowire Evaluation
We evaluated the performance of Nanowire with three
scheduling policies for the Nanowire protocol threads in the
kernel:

• spin: Each thread spins on a queue waiting for re-
quests and completions. The spin policy results in
the best latency, whilst consuming more CPU.

• sleep: Threads sleep and are woken up by interrupts
(completion path) or conditional variables (request
path) when there is work to do. The sleep policy,
results in the lowest CPU utilization, however, at the
cost of increased latency.

• adaptive:Threads adaptively spin for a while and
if there is no work, they go to sleep. The adaptive
policy balances latency and CPU utilization.

Figure 9 shows a comparison between the roundtrip
overhead of our baseline user-space only implementation of
Nanowire for a 512 bytes task, against our kernel-based one
for each scheduler policy. The user-space implementation
utilized the existing user-space packet socket API and pro-
vided a blocking (synchronous) interface. The improvement
achieved over this baseline approaches 50% on the host
side clearly demonstrating the higher efficiency of our latest
design. For the evaluated policies, the spin policy achieves a
host latency of 15.2 µs/task, whereas the sleep policy is 20%
worse at 19.1 µs/task. The adaptive policy is within 2.5% of
the spin policy.

Fig. 9. Nanowire task latency for the three scheduling policies.

Fig. 10. Nanowire task rate for the three scheduling policies.

Figure 10 shows task rate achieved by each policy. We
examine the case with 1 outstanding task, so each task is
issued after the previous one has finished. All tasks have
a size of 512 bytes (task descriptor and required input
data). We see that the spin policy achieves a throughput
of 26.3K tasks/s, about 19% higher than the sleep policy
(21.2K tasks/s). The adaptive policies manages to achieve
about 24.4K tasks/s and is within 8% of the spin policy.

7.3 System Evaluation Across Different Technologies
Before evaluating the platforms, we performed an analysis
to determine the problem size. Ideally, the BOP is an iter-
ative model that converges as the number of steps tend to
infinity and is limited by time and resource constraints. We
performed some experiments to identify the right number of
steps that provides required convergence. Simulation results
are provided in Fig.11 for one set of parameters while vary-
ing the number of steps. Each set of bar graphs represent
the price calculated for 3 consecutive number of steps (+1,
main value, -1). For 1000 steps, the variations occur up to
2 decimal places while for 4000 and 7000 steps the solution
converges to 2 and 3 decimal places, respectively.

TABLE 5 give performance number for Intel, ARM and
Nanostreams in terms of seconds/option for various num-
ber of steps which can directly be related to the prob-
lem/computation size. The best case for both Intel and
Viridis is for the lower number of steps, 4000. In that case,
Viridis is about 2.22x faster than Intel and about 21x faster
than Nanostreams (AoC-32). Nanostreams (AoC-32) was
found to be about 9.45x slower than Intel while 1.4 times
faster than ODROID. The overall performance gap can be
related to difference in scale of devices. The performance

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 12

Fig. 11. BOP convergence with number of steps

for a higher step size is interesting. Although performances
for Intel and Viridis are better than Nanostreams, they scale
worse in terms of time taken per node in the binomial tree.
The number of nodes in tree scale as n(n+ 1)/2 where n is
the number of steps. For example, for 7000 steps, the time
per node for Intel is 3.4ns compared to 2.4ns for 4000 steps,
respectively whereas for Nanostreams (AoC-32) it is 20.9ns
and 23.6ns, respectively.

TABLE 5
BOP execution time (s/option) for various number of steps

No. of Steps Viridis Intel ODROID AoC-8 AoC-32
(Sopt) (Sopt) (Sopt) (Sopt) (Sopt)

4000 0.0009 0.002 .005 0.073 0.0189

5000 0.00136 0.0037 .008 0.11 0.028

7000 0.0026 0.0084 0.018 0.201 0.0514

For a better understanding of architecture and more
accurate power consumption estimate for Nanostreams, a
breakdown of time spent by each of Viridis server and
Zedboard (ARM+Nanocores) during execution of a single
option pricing for their respective functionalities was under-
taken. This supports the concept of Nanocores as a shared
accelerator. Viridis server is only responsible for commu-
nication and the light communication protocol makes sure
that Viridis is kept busy for a minimum time. Thus, in a
scaled out system with large number of accelerators, Viridis
node will only contribute a small portion of time and power
while being engaged with single accelerator. TABLE 6 shows
the distribution of time while executing a single option.

TABLE 6
BOP processing time (ms) distribution to price one option

No. System BOPM ARM (ms) Nanowire
of Time Kernel % of Kernel / Network

Steps (ms) (ms) time Stack (ms)

4000 72.9 72.8 4.6 (6.3%) 0.10

5000 108.7 108.6 5.7 (5.2%) 0.12

7000 201.2 201.1 0.1 (4.0%) 0.11

Two analyses are important. Firstly, the Network stack
which includes the processing time on Viridis, is a very
small portion of the overall execution time, in the range of

Fig. 12. BOP kernel energy efficiency for various number of steps

100 µs. This has significant implications when measuring
the system power consumption. For subsequent results, we
will only add power for Viridis for when it is active. The
second analysis is that ARM on the Zedboard is not fully
utilized at the moment and it is only used for about 5%
of total kernel execution time. Mini-ITX implementation
essentially follows the same computation model and has
similar limitations/implications. This offers an opportunity
for improvement in future versions or other applications.

Comparison of power consumption across technologies
with multiple scale factors, memory hierarchy and periph-
erals is challenging. Measuring the total power from the
wall socket fails to distinguish between actual computing
cost and peripherals power, etc. Reporting socket / node /
chip power using on-board power sensors such as Running
Average Power Limit (RAPL) counters, Intelligent Platform
Management Interface (IPMI), etc, can give fine-grained
measurements of computing nodes but due to diverse sys-
tem hierarchy and run-time resource utilization of various
technologies, it can be still be inaccurate to measure the
exact cost of computing.

For these reasons, we focus on the run-time dynamic
power consumption, Pdyn. It is calculated at system level
that is the total power from the wall but is a difference
of compute power and idle power. Compute power in this
case is the average system power when the processing is
taking place and idle power is the system power when no
computation is taking place. This takes into account all the
system components that are active during processing. This
is more suited to our profiling metric of Joules/option as
it gives a micro-benchmark evaluation of particular task
on the whole power consumption. For a heterogeneous
data center environment with multiple systems working
on a range of tasks, this provides a better base for power
and energy based run-time decision making. Watts-UP Pro
meter [36] was used for all power measurements and has a
sampling rate of 1 sec and accuracy within 1.5%.

The results are given in Fig. 12. Generally the energy
efficiency gap between Nanostreams and other platforms
increase with problem size. Intel and Viridis consume up to
about 10.7x and 5.87x more energy to execute the same task
than AoC-32 system (mini-ITX). ODROID performs slightly
better than Viridis in terms of energy efficiency by avoiding
the overhead of distributed computing.

Furthermore for Nanocores, the scaled up system shows

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 13

3x better energy efficiency compared to the basic version.
The improvement can be related to tight integration and bet-
ter utilization of memory, input/output and control circuits
while the computation resources are increased. The FPGA
systems used for experiments are at a much smaller scale
factor compared to the other platforms.

Another important analysis comes if relative energy con-
sumption is considered on the same platform for different
workload sizes. Joules/option for Intel, for example, for
7000 steps is 11.3x that of 4000 steps while for AoC-32 it is
2.9x. The scaling is significantly higher than execution time
scaling presented in TABLE 5. This is because the power
increased significantly for long operations owing to cooling
requirements of much larger chips on Intel platform while
remained almost constant for FPGA based system. This is
in line with major concerns laid by scientific community
about the end of Dennard scaling; transistors count keep
increasing while keeping the voltage constant resulting in
higher power density in newer technology nodes [37].

In addition to the energy efficiency improvements, the
Zynq-based demonstrator system has a much smaller tran-
sistor footprint than the Xeon E5 based on Sandy Bridge-E.
The Dual Xeon E5 system has about 4.4 Billion transistors,
compared to 1.5 Billion transistors on the Zynq FPGA on
Mini-ITX and runs at 2.8 GHz, compared to 250 MHz. Whilst
the Viridis platform has comparable number of transistors,
the clock speed is still lower. With doubts being cast about
future technology scaling, the ability to make these savings
at a much lower clock frequency provides a vital protection
in the implementations of increasingly complex algorithms.

7.4 Discussion on wider System Applicability

We discuss the overall system model with an aim to relate
architecture to various application computing models. The
discussion may help designers chose the approach depend-
ing on the application.

The proposed approach makes use of heterogeneous
computing utilizing tightly coupled computing units. As
with the BOP, the exponential functions benefited from
ARM cores, which also acts as mater controller, and back-
ward walk benefited from SIMD style computation enabled
by parallel Nanocores. Furthermore, the parallel Nanocores
can offer better energy efficiency for in-order streaming
kernels such as moving average filter, convolution, etc. The
Nanocore ISA allowing 4 memory operations per cycle
is also suited well for applications requiring higher data
operations per computation.

Such types of low latency, high throughput systems
are also being pushed into edge analytics, where FPGA
is located at the edge of the network for localised pro-
cessing [38]. Programmable FPGAs here can be used for
pre-processing, filtering or transformation of information
in a streaming fashion before transferring to subsequent
units. Other real-time processing domains using low power
programmalbe soft cores include image processing, network
control, text analytics, etc. For example, a soft-cores based
system with lower precision cores has been applied to
traffic sign recognition in [39] and was able to achieve
up to 33× speed up over software based implementation.
Also, authors in [24] have proposed software programmable

soft-cores for communication and video standards (motion
estimation, fast Fourier transform) and sobel edge detection
in real-time.

7.5 System Limitations
Here we discuss some of the limitations of the system
and planned future work. Although, the system proposes
to utilize the heterogeneous capabilities of compute units,
currently the decomposition and scaling of algorithms on
heterogeneous architecture consisting of ARM cores and
independently programmable multi-cores is performed by
the user. Future work will involve its integration into the
tool set via use of automated intelligent code compilation
and mapping techniques. Also, currently work has utilized
in-order data streaming for a fixed SIMD architecture which
limits suitability for algorithms with complex memory ar-
chitectures. Further work will look to explore more flexibil-
ity for inter-core and memory to cores communication.

For example, sparse matrix vector using compressed
data storage mechanism such as compressed sparse row, re-
quires access of vector elements based on indexes provided
as input. In addition, the order of input data is dependent
on the sequence of non-zero elements of the sparse matrix.
This requires a complex memory controller which is not
supported by Nanocores and if implemented and routed
through ARM core, will make the computation extremely
memory bound.

8 CONCLUSION

To cater for the challenging computing and energy effi-
ciency demands of transactional anlytical workload, an in-
tegrated microserver architecture, Nanostreams is proposed;
it utilizes the AoC architecture which comprises embedded
RISC cores for transactional processing and programmable
Nanocores for maximum overall energy efficiency. The
Nanocores architecture is custom designed for stream pro-
cessing and at a higher level, provides a complete tool
chain and programming directives for the same allowing
abstraction of parallelisation through standard C language.
The AoC is tightly integrated with microserver using low la-
tency and lightweight network protocol, Nanowire. Nanos-
treams has been shown to be more energy efficient than a
traditional Intel server and ARM based Viridis microserver
and ODROID node for application specific and platform
independent metrics for BOP, an industry driven use case
and has shown performance improvement with scalability.

ACKNOWLEDGMENT

The work was supported by the European Commission
under its Seventh Framework Programme, grant number
610509 (NanoStreams).

REFERENCES

[1] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet,
and P. Demeester, “Trends in worldwide ict electricity consump-
tion from 2007 to 2012,” Computer Communications, vol. 50, pp.
64–76, 2014.

[2] I. Mitrani, “Managing performance and power consumption in
a server farm,” Annals of Operations Research, vol. 202, no. 1, pp.
121–134, 2013.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 14

[3] P. Stanley-Marbell and V. C. Cabezas, “Performance, power, and
thermal analysis of low-power processors for scale-out systems,”
in IEEE International Symposium on Parallel and Distributed Process-
ing, 2011, pp. 863–870.

[4] E. L. Padoin, D. A. de Oliveira, P. Velho, and P. O. Navaux, “Time-
to-solution and energy-to-solution: a comparison between arm
and xeon,” in Workshop on Applications for Multi-Core Architectures,
2012, pp. 48–53.

[5] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,
“Tibidabo: Making the case for an arm-based hpc system,” Future
Generation Computer Systems, vol. 36, pp. 322–334, 2014.

[6] Y. k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei,
“A quantitative analysis on microarchitectures of modern cpu-
fpga platforms,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[7] B. M. Tudor and Y. M. Teo, “On understanding the energy
consumption of arm-based multicore servers,” in Proceedings of
International Conference on Measurement and Modeling of Computer
Systems, 2013, pp. 267–278.

[8] Z. Ou, B. Pang, Y. Deng, J. K. Nurminen, A. Yla-Jaaski, and P. Hui,
“Energy- and cost-efficiency analysis of arm-based clusters,” in
Proceedings of the IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 115–123.

[9] Y. Durand, P. M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Marazakis et al.,
“Euroserver: Energy efficient node for european micro-servers,”
in Euromicro Conference on Digital System Design, 2014, pp. 206–213.

[10] M. Marazakis, J. Goodacre, D. Fuin, P. Carpenter, J. Thomson,
E. Matus, A. Bruno, P. Stenstrom, J. Martin, Y. Durand et al.,
“Euroserver: Share-anything scale-out micro-server design,” in
Design, Automation & Test in Europe Conference, 2016, pp. 678–683.

[11] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line
accelerator for memcached,” Computer Architecture Letters, vol. 13,
no. 2, pp. 57–60, 2014.

[12] H. Giefers, R. Polig, and C. Hagleitner, “Accelerating arithmetic
kernels with coherent attached fpga coprocessors,” in Design,
Automation & Test in Europe Conference, 2015, pp. 1072–1077.

[13] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal,
J. Gray et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” in ACM/IEEE 41st International Symposium on
Computer Architecture, 2014, pp. 13–24.

[14] M. Yoshimi, R. Kudo, Y. Oge, Y. Terada, H. Irie, and T. Yoshinaga,
“An fpga-based tightly coupled accelerator for data-intensive
applications,” in IEEE International Symposium on Embedded Mul-
ticore/Manycore SoCs, 2014, pp. 289–296.

[15] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong,
“Spread: A streaming-based partially reconfigurable architecture
and programming model,” IEEE Transactions on VLSI Systems,
vol. 21, no. 12, pp. 2179–2192, 2013.

[16] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga, “A coarse
grain reconfigurable processor architecture for stream processing
engine,” in IEEE International Conference on Field Programmable
Logic and Applications, 2011, pp. 490–495.

[17] T. Feist, “Vivado design suite,” White Paper, vol. 5,
2012. [Online]. Available: http://www.xilinx.com/support/
documentation/white papers/wp416-Vivado-Design-Suite.pdf

[18] J. G. Tong, I. D. Anderson, and M. A. Khalid, “Soft-core processors
for embedded systems,” in International Conference on Microelec-
tronics, 2006, pp. 170–173.

[19] P. Yiannacouras, J. G. Steffan, and J. Rose, “Vespa: portable,
scalable, and flexible fpga-based vector processors,” in Proceedings
of the ACM International Conference on Compilers, architectures and
synthesis for embedded systems, 2008, pp. 61–70.

[20] Xilinx, “Microblaze processor reference guide,” Xilinx, Tech. Rep.,
2006, uG081 (v9.0).

[21] Altera, “Nios ii processor reference handbook,” Altera, Tech. Rep.,
2009, nII5V1.

[22] ARM, “Cortex-m1 processor.” [Online]. Available: http://www.
arm.com/products/processors/cortex-m/cortex-m1.php

[23] C. Brugger, D. Hillenbrand, and M. Balzer, “River: Reconfigurable
flow and fabric for real-time signal processing on fpgas,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 7, no. 3,
p. 24, 2014.

[24] P. Wang and J. McAllister, “Streaming elements for fpga signal and
image processing accelerators,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2262–2274, 2016.

[25] R. Polig, H. Giefers, and W. Stechele, “A soft-core processor
array for relational operators,” in IEEE International Conference on
Application-specific Systems, Architectures and Processors, 2015, pp.
17–24.

[26] P. González-Férez and A. Bilas, “Reducing CPU and network
overhead for small I/O requests in network storage protocols over
raw ethernet,” in IEEE 31st Symposium on Mass Storage Systems and
Technologies, 2015, pp. 1–12.

[27] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th Conference
on Operating Systems Design and Implementation, 2014, pp. 49–65.

[28] Q. Jin, W. Luk, and D. B. Thomas, “On comparing financial option
price solvers on fpga,” in IEEE International Symposium on Field-
Programmable Custom Computing Machines, 2011, pp. 89–92.

[29] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring reconfig-
urable architectures for binomial-tree pricing models,” in Inter-
national Workshop on Applied Reconfigurable Computing, 2008, pp.
245–255.

[30] V. M. Morales, P.-H. Horrein, A. Baghdadi, E. Hochapfel, and
S. Vaton, “Energy-efficient fpga implementation for binomial op-
tion pricing using opencl,” in Proceedings of Conference on Design,
Automation & Test in Europe, 2014, p. 208.

[31] C. Brugger, J. A. Varela, N. Wehn, S. Tang, and R. Korn, “Reverse
longstaff-schwartz american option pricing on hybrid cpu/fpga
systems,” in Proceedings of Design, Automation & Test in Europe
Conference, 2015, pp. 1599–1602.

[32] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G.
Lemieux, “Vegas: Soft vector processor with scratchpad memory,”
in Proceedings of International Symposium on Field Programmable Gate
Arrays, 2011, pp. 15–24.

[33] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements
of real-time stream processing,” ACM SIGMOD Record, vol. 34,
no. 4, pp. 42–47, 2005.

[34] S. Kaloutsakis, “D3.1 base os and user-space network access (ver-
sion 1),” D3.1 Base OS and User Space Network Access.pdf,
Aug. 2014. [Online]. Available: http://www.nanostreams.eu/
wp-content/uploads/2014/09/D3.1 Base OS and User Space
Network Access.pdf

[35] C. Gillan, D. Nikolopoulos, G. Georgakoudis, R. Faloon,
G. Tzenakis, and I. Spence, “On the viability of microservers for
financial analytics,” in Proceedings of WHPCF14: 7th Workshop on
High Performance Computational Finance, 11 2014, pp. 29–36.

[36] E. E. Devices, “Watts up pro,” 2009.
[37] C. Kachris and D. Soudris, “A survey on reconfigurable accelera-

tors for cloud computing,” in 26th International Conference onField
Programmable Logic and Applications. IEEE, 2016, pp. 1–10.

[38] R. Hill, J. Devitt, A. Anjum, and M. Ali, “Towards in-transit
analytics for industry 4.0,” 2017.

[39] F. M. Siddiqui, M. Russell, B. Bardak, R. Woods, and K. Rafferty,
“Ippro: Fpga based image processing processor,” in Signal Process-
ing Systems (SiPS), 2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

PLACE
PHOTO
HERE

Umar Ibrahim Minhas received the B.S. degree
in Communication Systems Engineering from
the Institute of Space Technology, Islamabad,
Pakistan, in 2010 and the M.Sc. in Analog and
Digital IC design from Imperial College London,
U.K. in 2013. He is currently a Research Assis-
tant at Queens University Belfast. His research
interests include use of heterogeneous systems,
particularly FPGA based SoCs, for energy effi-
cient computing.

PLACE
PHOTO
HERE

Matthew Russell (M13) received the
M.Eng.(Hons.) degree in Electrical and
Electronic Engineering from Queens University
Belfast, Belfast, U.K., in 2014. Since graduating
he has worked as an Engineer with Analytics
Engines Ltd. in Belfast, where he has lead
development of the FPGA based processor for
the Nanostreams project. His research interests
include design of heterogeneous systems and
big data analytics.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 15

PLACE
PHOTO
HERE

S. Kaloutsakis received the B.Sc from Brunel
University in 1998. From 2006 until 2014, he
worked at the Software Group of ISD S.A. as a
principal Embedded Systems HW/SW Engineer.
Since 2014, he as been a Software Research
Engineer at the Institute of Computer Science
of the Foundation of Research and Technology
Hellas.

PLACE
PHOTO
HERE

Paul Barber Paul Barber is an Engineering Man-
ager at Analytics Engines, Belfast, U.K. He has
over 15 years experience in software and pro-
grammable logic design and implementation in
the telecommunications, broadcast and data an-
alytics industries.

PLACE
PHOTO
HERE

Roger Woods (M95SM01) received the B.Sc
and Ph.D. degree from Queens University
Belfast, U.K., in 1985 and 1990, respectively and
is a Full Professor at the university, where he has
created and leads the Programmable Systems
Laboratory. He has authored over 200 papers
and is the holder of four patents. His research
interests are in heterogeneous programmable
systems and design tools for data, signal and
image processing, and telecommunications.

PLACE
PHOTO
HERE

G. Georgakoudis received his Ph.D. from the
University of Thessaly, Greece in 2016 and is a
Research Fellow in Queen’s University Belfast,
UK. He has extensive experience of EU and na-
tionally funded projects, in affiliation or collabora-
tion with leading research institutions, including
CERTH and FORTH, Greece and LLNL, USA.
His research interests are in hardware/software
co-design, system software for parallelization
and acceleration, and HPC architectures.

PLACE
PHOTO
HERE

Charles Gillan obtained his PhD at QUB in 1988
working on HPC for electron molecule collisions
and then worked in the Theoretical Chemistry
group at the IBM Research Division in San Jose,
USA. He worked for Nortel Networks (U.K.) Ltd
until 2004 and since then, Dr Gillan has been
a Principal Engineer for Software in ECIT at
Queens University Belfast, U.K.

PLACE
PHOTO
HERE

Dimitrios S. Nikolopoulos FBCS FIET (M’97-
SM’11) earned the B.Sc.(Hons.), MSc and Ph.D.
degrees from University of Patras in 1996, 1997
and 2000. He is currently a Professor with
Queens University Belfast, Head of School, Act-
ing Director of the Centre for Data Science and
Scalable Computing, and a Royal Society Wolf-
son Research Fellow. His research explores the
boundaries of performance, power and reliability
of large-scale computing systems.

PLACE
PHOTO
HERE

Angelos Bilos earned a Diploma from Univer-
sity of Patras in 1993, and MSc (1995) and
Ph.D. (1998) from Princeton University. Between
1998-2002, he held an Assistant Professor post
in ECE at the Univ. of Toronto. He is now a
Professor of Computer Science at FORTH-ICS
and the Univ. of Crete, Greece. Current interests
include architectures and systems software sup-
port for efficient storage systems, low-latency
high-bandwidth comms. protocols, and runtime-
system support for multicore processors.

