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New Insights into PI3K Inhibitor 
Design using X-ray Structures of 
PI3Kα Complexed with a Potent 
Lead Compound
Xiuyan Yang1,2, Xi Zhang3, Min Huang2,5, Kun Song2, Xuefen Li3, Meilang Huang4,  
Linghua Meng3 & Jian Zhang1,2

Phosphatidylinositol 3-kinase α is an attractive target to potentially treat a range of cancers. Herein, 
we described the evolution of a reported PI3K inhibitor into a moderate PI3Kα inhibitor with a low 
molecular weight. We used X-ray crystallography to describe the accurate binding mode of the 
compound YXY-4F. A comparison of the p110α–YXY-4F and apo p110α complexes showed that YXY-4F 
induced additional space by promoting a flexible conformational change in residues Ser773 and Ser774 
in the PI3Kα ATP catalytic site. Specifically, residue 773(S) in PI3Kα is quite different from that of PI3Kβ 
(D), γ (A), and δ (D), which might guide further optimization of substituents around the NH group and 
phenyl group to improve the selectivity and potency of PI3Kα.

Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that play pivotal roles in a multitude of fundamental bio-
logical processes, including proliferation, survival, differentiation, and metabolism1–5. Recent reports have shown 
that the PI3K/AKT/mTOR pathway is crucial in T cell activation and function6. PI3Ks are currently divided into 
classes IA, IB, II, and III7. The class IA family consists of three isoforms, α, β, and δ8. The class IB family consists 
of only the γ subtype. Among the different PI3K subfamily proteins, PI3Kα is the most important isoform in cell 
proliferation in response to growth factor-tyrosine kinase pathway activation9,10. PI3Kα is a heterodimer that con-
tains a p110α catalytic subunit and p85α regulatory subunit11–13. The gene encoding the p110α subunit, PIK3CA, 
is mutated at a rate of nearly 30% in human cancers, including colorectal cancer, glioblastoma, and gastric cancer. 
Importantly, hyper-activation of PI3Kα directly correlates with resistance to current therapeutic agents and poor 
prognosis in most human cancers14–16. Therefore, PI3Kα is a potential target for anti-cancer drug development.

Currently, there are a number of PI3K inhibitors in clinical development, including Buparlisib (Trial phase III), 
Pictilisib (Trial phase II), PX-866 (Trial phase II), Pilaralisib (Trial phase II), and Copanlisib (Trial phase I/II)17–26.  
In particular, the first isoform-specific PI3K inhibitor, idelalisib, a selective δ-isoform inhibitor, has been approved 
in the USA and Europe for the treatment of chronic lymphocytic leukemia, follicular B-cell non-Hodgkin lym-
phoma, and small lymphocytic lymphoma; idelalisib will provide valuable information and references on PI3Kα 
inhibitors as drug candidates27. The PI3Kα inhibitor with the most potential, Alpelisib, is in a Phase III rand-
omized trial in patients with HR+/HER2–advanced breast cancers28–31. Additionally, MLN1117, a potent selec-
tive PI3Kα inhibitor, is in a Phase II trial in patients with advanced solid tumors32,33.

The design of new potent PI3Kα inhibitors with drug-like properties is still a major challenge because of the 
highly conserved lipid kinase ATP binding sites and the similarity between their three-dimensional structures. 
Currently, X-ray crystallography is one of the most useful experimental methods employed in structure-assisted 
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drug design. Co-crystal structures of the protein of interest and ligands provide accurate structural insights into 
binding sites. Several complex structures of PI3Kα and its ligands have been reported; however, limited useful 
information can be extracted from the existing structures12,13,34,35. Here, we determined the crystal structure of 
PI3Kα in complex with the potential inhibitor YXY-4F. The description of the new crystal structure provides 
further insights into the potent and selective design of PI3Kα inhibitors.

Results
Identification of YXY-4F as a potent PI3Kα inhibitor. In our previous research36, we designed a series 
of PI-103 derivatives and confirmed that compound 9e is a potent analogue that can be used for further opti-
mization. PI3Kα-9d crystal-guided optimization led to the discovery of the thieno[3,2-d]pyrimidine derivative 
YXY-4F (Fig. 1), which is a potent PI3Kα inhibitor with moderate inhibitory activity. As measured by the PI3-
Kinase HTRF assay, the compound had an IC50 value of 1.02 ± 0.005 μM for the inhibition of p110α. To investi-
gate the cellular effects of our compound, we performed a proliferation assay in PIK3CA-driven cell lines (SKOV3, 
PC-3, and Rh30) treated with the compound. The growth of the PIK3CA-driven cell lines was inhibited by expo-
sure to YXY-4F. These data suggest that YXY-4F has a valid anti-proliferative effect in all PIK3CA-driven cancer 
cells (Table 1). YXY-4F is approximately 50 times less potent than PI-103 in the PI3-Kinase HTRF assay, while in 
cell inhibitory activity test, YXY-4F is only 10 times less potent than PI-103. Compared to PI-103, YXY-4F has a 
lower molecular weight and the potential to improve its inhibitory activity by further optimization. Considering 
these profiles, we chose YXY-4F as the starting point for our medicinal chemistry research. Therefore, the co-crys-
tal structure of PI3Kα and YXY-4F is crucial for crystal-based selective design of PI3Kα inhibitors.

Crystallization of p110α complexed with YXY-4F. To obtain the co-crystal structure of PI3Kα and 
YXY-4F, we prepared and purified the protein for X-ray crystallography studies. The fused human PI3Kα gene 
template containing p110α and p85 linked by a sequence was sub-cloned into the vector. After transposition into 

Figure 1. Structure of Thieno[3,2-d]pyrimidine Derivative YXY-4F, 9d and PI 103.

GI50(µM)b

PC-3 Rh30 SKOV3

PI-103 0.449 ± 0.295 0.549 ± 0.312 0.273 ± 0.177

YXY-4F 3.800 ± 0.291 4.570 ± 0.095 2.436 ± 0.312

Table 1. The test compound YXY-4F inhibit proliferation of cancer cella. aCell proliferation was assessed by an 
SRB assay as described in the Experimental Section. bGI50 values shown are the average ± SD of at least three 
independent experiments performed in triplicate.
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the bacmid, a selected positive clone was transfected into SF9 cells to express the protein for co-crystallization 
with YXY-4F. The harvested protein was purified for crystallization. After screening many crystallization condi-
tions, a complex co-crystal was identified in a solution containing 0.2 M lithium sulfate, 0.1 M Tris pH 8.5, 10 mM 
YXY-4F, and PEG at a 5:1 ratio at 18 °C. X-ray characterization and data collection for the co-complex were per-
formed, and the diffraction data were processed using HKL2000. The data processing and refinement statistics 
are summarized in Table 2. The final resolution was 2.97 Å, and the Rwork/Rfree value was 23.1/28.0. The structure 
maintained all five p110α domains and a long p85 SH2 domain in an overall triangular shape (Fig. 2A).

We next described the inhibitor binding mode. The crystal structure of PI3Kα–YXY-4F verified that the 
compound YXY-4F bound to the ATP-binding pocket of the p110α kinase catalytic domain (Fig. 2B). YXY-4F 
was anchored by multiple hydrogen bonds and hydrophobic interactions within the pocket formed by residues 
Ile800, Asp810, Tyr836, Glu849, and Val851 on one side and residues Met922, Ile932, and Asp933 on the other 

PDB ID code PI3K/YXY-4F, 5XGH

(A) Data Collection

Resolution (Å)* 50–3.00 
(3.11–3.00) γ (°) 90.00

Space group P212121 Total reflections 196862

Cell dimensions Unique reflections 30157

a (Å) 70.360 Completeness (%)* 100.0 (100.0)

b (Å) 136.312 Multiplicity* 6.5 (6.2)

c (Å) 149.408 Average I/σ(I)* 11.5 (2.0)

α (°) 90.00 Rmerge (%)* 14.4 (82.4)

β (°) 90.00

(B) Refinement

Rwork (%) 23.1 Average B Value (Å²) 88.752

Rfree (%) 28.0 Protein Mean B Value (Å²) 88.886

RMSD in Bond Lengths (Å) 0.007 Ligand Mean B Value (Å²) 67.189

RMSD in Bond Angles (°) 0.959 Water Mean B Value (Å²) 48.606

Number of Atoms Ramachandran Statistics

Total 10540 Most favored regions 91.4%

Protein 10480 Additional allowed regions 8.6%

Ligand 31 Generously allowed regions 0.0%

Water 18 Disallowed regions 0.0%

B factor Statistics

Table 2. Data collection and Refinement Statistic of the Crystal Structure. *Values in parentheses are for 
highest-resolution shell.

Figure 2. Overview of the p110α/niSH2 heterodimer. (A) Diagram of the p110α/niSH2 heterodimer. The 
compound YXY-4F bound in the kinase domain is shown as sticks. (B) Surface diagram of the p110α/niSH2 
heterodimer, alternate view. The compound YXY-4F bound in the kinase domain is shown as spheres.
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side (Fig. 3A). Four H-bonds were formed between YXY-4F and the p110α active site residues. The morpholino 
oxygen accepted a hydrogen bond from the amide of the hinge Val851 residue. The fluorine in the phenyl moiety 
also accepted a hydrogen bond from the Ser773 hydroxyl group. The hydroxyl group in the phenol moiety formed 
two H-bonds with the Asp810 carboxyl side chain and Tyr836 hydroxyl group (Fig. 3B). Additionally, van der 
Waals interactions from the surrounding hydrophobic residues, including Val850, Ile932, Ile848 and Pro778, 
significantly contributed to YXY-4F’s affinity. Other interactions, including a divalent sulfur and π system, were 
also observed between the thienopyrimidine moiety and residue Trp780.

Conformational Flexibility of Ser773 and Ser774 in the p110α–YXY-4F Complex Crystal Structure.  
As shown in Fig. 4, the conformation of YXY-4F with p110α was similar to that of the p110α–PI103 complex36. 
A comparison of the p110α–YXY-4F and apo p110α complexes (PDB ID: 4L1B) suggested that a pronounced 
conformational change was associated with Ser773 and Ser774. The Ser774 side chain moved away from the ATP 
catalytic site in the YXY-4F-bound-p110α complex (Fig. 4A), which produced ample space to accommodate the 
phenyl groups linked to the NH2 group in compound YXY-4F. Ser773 also moved to accommodate the distance 
between the phenyl fluorine and the Ser773 hydroxyl group to form a hydrogen bond. Collectively, these data 

Figure 3. The interactions between YXY-4F and p110α. (A) X-ray complex of YXY-4F to p110α (PDB ID: 
5XGH). The structure of YXY-4F is shown as a stick representation, and the key binding site residues are 
shown as sticks. Hydrogen bonds between YXY-4F and the protein are shown as a dashed line Diagram of the 
p110α/niSH2 heterodimer. (B) Extensive residue–residue interactions on the interface of the YXY-4F-p110α 
complex structure. The residues belonging to p110α are labeled in ball. A distance between donor and acceptor 
of less than 3.5 Å indicates a hydrogen bond, and a 4.1 Å distance between two hydrophobic atoms indicates a 
hydrophobic interaction.

Figure 4. Comparison of apo p110α and YXY-4F-p110α complexes. (A) Overlay apo p110α and YXY-4F-
p110α complexes. Apo p110α is colored in wheat and YXY-4F-p110α is colored in palegreen. (B) Interface 
between YXY-4F (orange) and p110α (palegreen). Red curve indicates potential cavity of p110α induced by the 
binding of YXY-4F.
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suggested a significant shift in the conformation of Ser773 and Ser774 when compound YXY-4F was bound to 
PI3Kα, which indicated that the p110α residues Ser773 and Ser774 in the ATP binding site induced the pocket to 
adopt a different shape after YXY-4F binding (Fig. 4B).

Comparison with our previous PI3K–9d crystal structure showed that compounds 9d and YXY-4F both 
bound to the ATP-binding pocket on the p110α kinase catalytic domain with similar backbone conformations. 
While compound 9d induced additional space in the catalytic site by changing the conformation of the p110α 
Lys802 side chain, compound YXY-4F led to a significant shift in the conformation of Ser773 and Ser774 when 
bound to p110α (Supplementary Table 1). Additionally, the new hydrogen bond formed in the PI3K–YXY-4F 
complex and flexible conformation of the fluoro-benzyl moiety might be detrimental to the binding affinity.

After comparing PI3Kα with other PI3K isoforms, we found that the 773(S) residue in PI3Kα was quite differ-
ent from those in PI3Kβ (D), γ (A), and δ (D), while the Lys802 residue was conserved (Fig. 5 and Supplementary 
Fig. 1). The inducible pocket in the PI3Kα-YXY-4F complex, which was different from that of the other PI3K 
isoforms, might provide a potential new avenue to facilitate further modification of YXY-4F to improve its selec-
tivity and efficacy.

Discussion
A number of diverse structural PI3Kα inhibitors have been reported22. However, their ADMET profiles have lim-
ited their therapeutic potential, and drug resistance is also a major obstacle. Drug resistance is mainly caused by 
hot spot mutations, which may be able to be overcome by developing high affinity inhibitors for the novel PI3Kα 
binding pocket.

We discovered a moderate PI3Kα inhibitor YXY-4F and obtained the unique crystal structure of YXY-4F 
in complex with PI3Kα. Although YXY-4F has limited efficacy compared to the successful idelalisib, the com-
pound’s lower molecular weight and previously uncharacterized induced subpocket in the PI3Kα substrate site 
provide valuable directions to improve the selectivity and potency of these PI3Kα inhibitors5,26.

Based on the crystal structure, we will focus on the further optimization of YXY-4F in the following two direc-
tions. First, it has been suggested that the hydroxyl group on the YXY-4F phenyl ring might lead to its poor phar-
macokinetic profile, including low metabolic stability or solubility. Thus, we can explore the use of an indazole 
heterocycle as a replacement for phenol to improve multiple aspects of YXY-4F, including its physicochemical 
properties, metabolic stability, and potency, based on the bioisosterism principle37–41. Second, PI3Kα–YXY-4F 
induced additional space due to a conformational change in Ser773 and Ser774 in the PI3Kα ATP catalytic site 
(Fig. 4B), which can guide further optimization of the substituents around the NH group and phenyl group to 
improve the selectivity and potency of YXY-4F for PI3Kα. Meanwhile, the corresponding biomarkers that mon-
itor the drug toxicity of our potent PI3Kα inhibitors and allow for a safety assessment as well as evaluate drug 
activity to show pharmacological effects will guide further optimization of the ADMET profiles5.

In summary, the new PI3Kα inhibitor YXY-4F and its unique complex crystal structure will provide further 
insights for PI3Kα inhibitor design. The PI3Kα–YXY-4F co-complex can be used as a starting point for subse-
quent studies to explore the efficacy of inhibitors via structure-based virtual screening and to propose or prior-
itize biological assays in our experimental design of future inhibitors.

Methods
Expression, purification and crystallization of PI3Kα. The full-length human PI3Kα gene template, 
including human p110α and p85 (Accession No. P42336 and NP_852664), was synthesized at Vivabiotech. A 
GSPGISGGGGG linker sequence joined the two genes through PCR amplification. To express the N-6*His tag-
TEV site-p85α (318–615) - GSPGISGGGGG-full length p110α fusion protein, the joined genes were sub-cloned 
into the pFastBac HtB vector (Invitrogen). Through sequencing, we verified a positive clone containing the pFast-
Bac-His–TEV-p85α (318–615) - GSPGISGGGGG -p110α vector.

Then, we transformed the FastBac-His–TEV-p85α(318–615)-GSPGISGGGGG–p110α vector into DH10Bac 
Escherichia coli for transposition into the bacmid and selected positive clones on a blue/white LB agar plate. The 
recombinant bacmid, which was isolated from positive clones, was transfected into SF9 cells to generate recom-
binant virus stocks, which were amplified for two cycles before infecting SF9 cells at a multiplicity of infection 
(MOI) of 2. Infection of SF9 cells at a density of 2 × 106 cells/mL with baculovirus stocks at an MOI of 3 was 
allowed to proceed at 27 °C for 48 hours at 24.5 rocks per minute on an orbital shaker. An approximately 75% 
average cell viability was observed at the harvest. The cell suspension was frozen and stored at −80 °C until pro-
tein purification.

Figure 5. Binding site alignment of Class I PI3K isoforms α, β, γ, δ.
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Using two passes through an Avestin pressure drop homogenizer at 12 kpsi, cells were lysed and then centri-
fuged for 1 h at 15,000 × g. The supernatant was then mixed with Ni–NTA agarose (Qiagen) for 3 hours at 4 °C. 
We collected the resin and washed it with 100 ml of buffer A (250 mM NaCl, 20 mM Tris–HCl pH 7.8, 20 mM imi-
dazole, 2 mM TCEP, and 5% glycerol) and 100 ml of buffer B (250 mM NaCl, 40 mM imidazole, 20 mM Tris–HCl 
pH 7.8, 2 mM TCEP, and 5% glycerol) before elution with buffer C (250 mM NaCl, 250 mM imidazole, 20 mM 
Tris–HCl pH 7.8, 2 mM TCEP, and 5% glycerol). Buffer A (20 mM Tris-HCl pH 8.0 and 5% glycerol) was used to 
dilute the protein to a ratio of 1:5, and the proteins were purified by ion-exchange chromatography on a Sepharose 
Q column (eluted by a linear gradient from A to B [buffer A is 20 mM Tris-HCl pH 8.0 and 5% glycerol; buffer B 
is 20 mM Tris-HCl pH 8.0, 1 M NaCl, and 5% glycerol]). The protein was then concentrated to 5 ml and purified 
by size-exclusion chromatography on a Superdex 200 column with 20 mM Tris, 2 mM TCEP pH 7.8, 0.2 M NaCl, 
and 5% glycerol. The resulting protein was almost 95% pure and identified by SDS–PAGE.

The crystallization conditions were screened using 2 μl hanging drops (1 μl protein + 1 μl reservoir) at 18 °C 
with 11 mg of the His–p85α (318–615)-linker–p110α fusion protein in buffer (200 mM NaCl, 20 mM Tris-HCl, 
2 mM TCEP pH 7.8, and 5% glycerol). After screening, a small crystal was identified in solution (0.2 M lith-
ium sulfate, 0.1 M Tris pH 8.5, and PEG 2000 MME). We used hair seeding to obtain a larger crystal in opti-
mized mother liquor (0.1 M Tris pH 8.5, 0.15 M lithium sulfate, and 30% (w/v) PEG 1000 MME). Finally, a 
diffraction-quality crystal was obtained after repeated rounds of macro-seeding. Apo crystals were soaked in 
10 mM compound YXY-4F for 2 hours and then mounted according to the above method.

In vitro PI3-Kinase Assays. Compound YXY-4F was dissolved in 100% dimethylsulfoxide (DMSO) at 
10 mM. The solution was diluted to the desired concentrations immediately before each experiment. The kinase 
activities of the purified PI3Ks were determined with the PI3K HTRF Assay (Millipore) according to the manu-
facturer’s protocol. Briefly, the EC80 concentration of each enzyme containing 10 μM PIP2 was incubated in assay 
buffer on a white 384-well plate (Perkin Elmer). After incubation for 30 min at room temperature, the reaction 
was initiated by addition of ATP and terminated by addition of the stop solution and detection mix. The final con-
centration of ATP was 5 μM for p110α. The plate was then sealed and incubated overnight at room temperature. 
The intensity of the light emission was measured by an EnVision Multilabel Reader (PerkinElmer) in TR-FRET 
mode (excitation at 320 nm and emission at 665 nm) as previously described42. The IC50 values43 were calculated 
by fitting the data to a logistic curve using the GraphPad Prism 6 software.
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