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Abstract: Bombesin-like peptides, which were identified from a diversity of amphibian skin secretions,
have been demonstrated to possess several biological functions such as stimulation of smooth muscle
contraction and regulation of food intake. Here, we report two novel bombesin-like peptides,
bombesin-OS and bombesin-PE, which were isolated from Odorrana schmackeri and Pelophylax
kl. esculentus, respectively. The mature peptides were identified and structurally confirmed by
high performance Scliquid chromatography (HPLC) and tandem mass spectrometry (MS/MS).
Subsequently, the effects of these purified chemically-synthetic peptides on smooth muscle were
determined in bladder, uterus, and ileum. The synthetic replications were revealed to have
significant pharmacological effects on these tissues. The EC50 values of bombesin-OS for bladder,
uterus and ileum, were 10.8 nM, 33.64 nM, and 12.29 nM, respectively. Furthermore, compared with
bombesin-OS, bombesin-PE showed similar contractile activity on ileum smooth muscle and uterus
smooth muscle, but had a higher potency on bladder smooth muscle. The EC50 value of bombesin-OS
for bladder was around 1000-fold less than that of bombesin-PE. This suggests that bombesin-OS and
bombesin-PE have unique binding properties to their receptors. The precursor of bombesin-OS was
homologous with that of a bombesin-like peptide, odorranain-BLP-5, and bombesin-PE belongs to the
ranatensin subfamily. We identified the structure of bombesin-OS and bombesin-PE, two homologues
peptides whose actions may provide a further clue in the classification of ranid frogs, also in the
provision of new drugs for human health.

Keywords: bombesin-like peptide; frog; skin secretion; smooth muscle

1. Introduction

Bombesin, a 14-amino acid peptide (QQRLGNQWAVGHLM-NH2), was originally isolated from
the skin of the European toad, Bombina bombina [1]. Three bombesin-like peptides, gastrin-releasing
peptide (GRP), neuromedin B peptide (NMB) and neuromedin C peptide (NMC), were successively
identified from porcine non-antral gastric tissue and porcine spinal cord [2–4]. There are a large
number of bombesin peptides and their precursor cDNAs known, which has been confirmed from
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skin secretions of various species [5,6]. Normally, these peptides have a pyroglutamyl residue at the
N-terminal and an amidated residue (usually a Met) at the C-terminal, like the original bombesin
peptide. Apart from this, they are also widely-distributed in terms of both mammalian neural and
endocrine cells. Bombesin-like peptides, like many other active peptides, are synthesized as larger
protein precursors that are enzymatically converted to their mature forms.

Bombesin-like peptides, as a family of neuro-endocrine peptides, have been divided into three
groups including the bombesins, the ranatensins and the phyllolitorins [7–9]. Each subfamily is
characterized by a common amino acid near its C-terminal. They combine with G-protein coupled
receptors for regulating physiological processes. It has been demonstrated that there are five subtypes
of G-protein coupled receptors in the bombesin-like receptor family, which include the NMB receptor
(BB1-R), the GRP receptor (BB2-R), bombesin receptor subtype-3 (BB3-R), bombesin receptor subtype-4
(BB4-R) and BB3.5-R [10–12]. However, only BB1-R, BB2-R and BB3-R are found in mammalian
tissues. These mammalian receptors are mainly distributed in the central nervous system (CNS) and
gastrointestinal (GI) tract [13].

Scientists have found that bombesin-like peptides are involved in central functions which include
regulation of food intake [14], regulation of anxiety and fear–related behaviour [15], regulation of
temperature [16], and integration of stress and memory [17]. Hence, it is particularly important to
study bombesin-like peptides in fields of obesity, promoting spontaneous delivery, and reducing
postpartum haemorrhage, and also in the treatment of nervous system diseases.

Here, we report two natural bombesin-like peptides, bombesin-OS and bombesin-PE, which were
first identified from the skin secretions of Odorrana schmackeri and Pelophylax kl. esculentus, respectively.
Their pharmacological activity was tested in rat smooth muscles including bladder, uterus and ileum.
Both were demonstrated to cause significant contractile effects on these three tissues.

2. Results

2.1. Molecular Cloning of Bombesin-OS and Bombesin-PE Precursor-Encoding cDNAs

Bombesin-OS and bombesin-PE precursors were repeatedly cloned from the cDNA library
constructed from the skin secretion of Odorrana schmackeri and Pelophylax kl. esculentus, respectively.
The nucleotide sequences between open-reading frames of the cloned precursor transcripts and their
related translated amino acid sequences are shown in Figure 1. Specifically, the bombesin-OS precursor
had 72 amino acids, which include a signal peptide (29 amino acids), an N-terminal extension peptide
followed by a typical putative propeptide convertase processing site (-RR-), a mature peptide (15 amino
acids), C-terminal acidic extension peptide containing a further convertase processing site (-KK-),
and a glycyl residue amide donor. However, the bombesin-PE precursor consisted of 88 amino acids,
including a signal peptide (29 amino acids), an N-terminal extension peptide, a mature peptide
(11 amino acids), C- terminal extension peptide containing a further convertase processing site (-KR-),
and a glycyl residue amide donor. BLAST analysis of bombesin-OS and bombesin-PE using the NCBI
database, revealed that Bombesin-OS has 100% identity with a bombesin-like peptide from Odarrana
grahami (Figure 2b). Meanwhile, bombesin-PE was demonstrated to belong to a typical bombesin
subfamily, the ranatensins. The precursor sequence alignment of bombesin-OS and bombesin-PE with
homologues from other ranid frogs is shown in Figure 2b [18–22]. The nucleotide sequence of the
cDNA encoding bombesin-PE and bombesin-OS precursors have been made available in the European
Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database under the accession codes,
MF784811 and MF784812.
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Figure 1. The sequences of cDNAs encoding bombesin-OS and bombesin-PE precursors. (a) Nucleotide 
and corresponding translated open-reading frame amino acid sequence of precursor cDNA cloned 
from the Chinese piebald odorous frog cDNA encoding bombesin-OS; (b) Nucleotide and 
corresponding translated open-reading frame amino acid sequence of precursor cDNA cloned from 
the skin secretion of European edible frog cDNA encoding bombesin-PE. Putative signal peptides are 
double-underlined, mature peptides are single-underlined and stop codons are marked by asterisks. 

    M  T  A  V   P  A  I   R  I  L   P  V  G  F   L  G  I · 
  1 ATGACTGCAG TTCCTGCCAT CAGAATCCTG CCCGTTGGCT TCCTGGGTAT 
    TACTGACGTC AAGGACGGTA GTCTTAGGAC GGGCAACCGA AGGACCCATA 
    · L  L  L   F  S  V  I   S  R  S   V  C  V   E  F  A  E · 
 51 TCTGCTACTC TTCTCCGTCA TCTCCCGCTC TGTTTGCGTG GAGTTCGCAG 
    AGACGATGAG AAGAGGCAGT AGAGGGCGAG ACAAACGCAC CTCAAGCGTC 
    ·  D  A  G   K  L  D   K  I  D  A   F  R  R   E  A  Q 
101 AAGATGCTGG AAAACTTGAC AAAATCGATG CGTTTCGGAG AGAAGCACAG 
    TTCTACGACC TTTTGAACTG TTTTAGCTAC GCAAAGCCTC TCTTCGTGTC 
    N  T  Y  R   A  P  Q   W  A  V   G  H  L  M   G  K  K · 
151 AATACATATC GAGCACCTCA ATGGGCAGTT GGACACCTCA TGGGTAAGAA 
    TTATGTATAG CTCGTGGAGT TACCCGTCAA CCTGTGGAGT ACCCATTCTT 
    · S  L  Q   E  D  * 
201 GAGCCTGCAG GAAGATTAGC GTATGCTGTC ACCCAGCCGG ATGCAAGAAG 
    CTCGGACGTC CTTCTAATCG CATACGACAG TGGGTCGGCC TACGTTCTTC 
251 CACAGCGGAC ACTTTTTGGA GAAGTATTTT AACATGTCCC AGAAGAATCA 
    GTGTCGCCTG TGAAAAACCT CTTCATAAAA TTGTACAGGG TCTTCTTAGT 
301 CTAGTTATGC TCGTCAAACA AAAAAAAAAA AAAAAAAAAA AAAAA 
    GATCAATACG AGCAGTTTGT TTTTTTTTTT TTTTTTTTTT TTTTT 

    M  T  A  V   P  A  I   R  I  L   P  I  G  F   L  A  I · 
  1 ATGACTGCAG TTCCTGCCAT CAGAATCCTG CCCATTGGCT TCTTGGCTAT 
    TACTGACGTC AAGGACGGTA GTCTTAGGAC GGGTAACCGA AGAACCGATA 
    · L  L  L   F  S  F  I   S  H  S   V  C  V   E  F  A  E · 
 51 TCTGTTGCTC TTCTCCTTCA TCTCCCACTC TGTTTGTGTG GAGTTTGCAG 
    AGACAACGAG AAGAGGAAGT AGAGGGTGAG ACAAACACAC CTCAAACGTC 
    ·  D  A  G   E  L  D   K  I  D  A   F  R  R   Q  I  P 
101 AAGATGCTGG CGAACTAGAC AAAATCGATG CGTTTCGGAG ACAAATACCT 
    TTCTACGACC GCTTGATCTG TTTTAGCTAC GCAAAGCCTC TGTTTATGGA 
    Q  W  A  V   G  H  F   M  G  K   R  S  L  Q   D  D  M · 
151 CAGTGGGCAG TTGGACACTT TATGGGTAAG AGAAGCCTGC AGGATGATAT 
    GTCACCCGTC AACCTGTGAA ATACCCATTC TCTTCGGACG TCCTACTATA 
    · E  E  A   T  T  Y  T   S  R  Y   V  K  S   T  P  * 
201 GGAAGAGGCA ACCACGTATA CATCACGCTA CGTGAAGAGC ACTCCATAGT 
    CCTTCTCCGT TGGTGCATAT GTAGTGCGAT GCACTTCTCG TGAGGTATCA 
251 CGAGTATGCA TATTCACCCA GCCAGATGCA AGAAGCACAG CGGTCACTTT 
    GCTCATACGT ATAAGTGGGT CGGTCTACGT TCTTCGTGTC GCCAGTGAAA 
301 TCGGAGAAGT ATTTTAACAT GTCTCAGAAG AATCACTAGT AATGCTTTCG 
    AGCCTCTTCA TAAAATTGTA CAGAGTCTTC TTAGTGATCA TTACGAAAGC 
351 AAAAAAAAAA AAAAAAAAAA AAAAAAA 
    TTTTTTTTTT TTTTTTTTTT TTTTTTT 

Figure 1. The sequences of cDNAs encoding bombesin-OS and bombesin-PE precursors. (a) Nucleotide
and corresponding translated open-reading frame amino acid sequence of precursor cDNA cloned from
the Chinese piebald odorous frog cDNA encoding bombesin-OS; (b) Nucleotide and corresponding
translated open-reading frame amino acid sequence of precursor cDNA cloned from the skin secretion
of European edible frog cDNA encoding bombesin-PE. Putative signal peptides are double-underlined,
mature peptides are single-underlined and stop codons are marked by asterisks.
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Figure 2. Alignments of partial nucleotides and translated open-reading frame amino acids sequences 
of bombesin peptides from different species of the Ranidae family. (a) Partial nucleotides sequences 
of bombesin peptides from different species of the Ranidae family; (b) The translated open-reading 
frame amino acids sequences of bombesin peptides from different species of the Ranidae family. The 
different nucleotides in (a) are labelled in red. The sequences of mature peptides in (b) are labelled in blue. 
The sequence of signal peptide are labelled in green. Stars (*) indicate the identical amino acid residues. 
The processing sites of the precursor for releasing mature peptides are labelled by red. The second 
possible processing sites are in shadow. Gaps (dashed line) were introduced to optimise the identities. 

2.2. Identification and Structural Characterisation of Bombesin-OS and Bombesin-PE 

Both bombesin-OS and bombesin-PE were identified in the skin secretions of Odorrana schmackeri 
and Pelophylax kl. esculentus, respectively (Figure 3). A component (Figure 3a) with a mass of 1754.5 Da 
(Figure 4a) and a component (Figure 3b) with a mass of 1295.39 Da (Figure 4c) were found to possess 

                          1                                                    50 
Odarrana grahami          ATGACTGCAG TTCCTGCCAT CAGAATCCTG CCCGTTGGCT TCCTGGGTAT 
Odorrana schmackeri       ATGACTGCAG TTCCTGCCAT CAGAATCCTG CCCGTTGGCT TCCTGGGTAT 
Pelophylax kl.esculentus  ATGACTGCAG TTCCTGCCAT CAGAATCCTG CCCATTGGCT TCTTGGCTAT 
Hylaranalatouchii         ATGACTGCGG TCCCTGCCAT CAGAATCCTG CCCATTGGCT TCCTGGCTAA 
Rana shuchinae            ATGCTACTAC TAAGCGCCGT AAAAACGCTG CTTCTCGCCT GGCTGGGTAT 
Sanguirana varians        ATGAGCCTAC TACCTGCCGT AAAAGTCCTG CCCCTCGGCT ATCTGGGTAT 
                          51                                                  100 
Odarrana grahami          TCTGCTGCTC TTCTCCGTCA TCTCGCGCTC TGTTTGCGTG GAGTTCATGG 
Odorrana schmackeri       TCTGCTACTC TTCTCCGTCA TCTCCCGCTC TGTTTGCGTG GAGTTCGCAG 
Pelophylax kl.esculentus  TCTGTTGCTC TTCTCCTTCA TCTCCCACTC TGTTTGTGTG GAGTTTGCAG 
Hylaranalatouchii         CCTGCTGCTC TTCTCCTTCA TCTCGCTCTC TGTTTGCGTG GAGTTCACGG  
Rana shuchinae            TGTTCTGGTT TTCATGAGCA TCATCAAATC TGCTATGCTG GACTTCCTCC 
Sanguirana varians        TGTTCTGGTT TTCTCCCTAA TCCTTCGCTC TGCTATGGTG GACTTCATCC 
                         101                                                 150    
Odarrana grahami          AAGATGCTGG CAAACTAGAC AAAATCGATG CGTTTCGGAG AGAAGCACAG 
Odorrana schmackeri       AAGATGCTGG AAAACTTGAC AAAATCGATG CGTTTCGGAG AGAAGCACAG 
Pelophylax kl.esculentus  AAGATGCTGG CGAACTAGAC AAAATCGATG CGTTTCGGAG A------CAA 
Hylaranalatouchii         AGGATACTGG CAAACTGGGC AAAATCA--- ---------A TGTGCTTCAG  
Rana shuchinae            AGGAAGCTGG CAAACTAGAG GGGATCGAGA CGTATAAAAA AGAAGCACAG 
Sanguirana varians        AAGATGCTGG CAAACTAGAG AGGATCGATA CGTATAAAAG AGAAGCACAG 
                         151                                                 200    
Odarrana grahami          AATACATATA GAGCACCTCA ATGGGCAGTT GGACACCTCA TGGGTAAGAA 
Odorrana schmackeri       AATACATATC GAGCACCTCA ATGGGCAGTT GGACACCTCA TGGGTAAGAA 
Pelophylax kl.esculentus  ATA------- -----CCTCA GTGGGCAGTT GGACACTTTA TGGGTAAGAG  
Hylaranalatouchii         AGAGCAGGGA ATCA------ GTGGGCAATT GGACACTTTA TGGGTAAGAA  
Rana shuchinae            ACGAGCTTTA TGGCACCTTC TTGGGCATTA GGACACCTCA TGGGTAGGAA 
Sanguirana varians        ATGATATTTG GGGCACCTAT GTGGGCATTA GGACACCTCA TGGGTAGGAA 

                                   10         20         30         40         50 

Odarrana graham            MTAVPAIRIL PVGFLGILLL FSVISRSVCV EFMEDAGKLD KIDAFRREAQ 
Odorrana schmackeri        ********** ********** ********** **A******* ********** 
Pelophylax kl.esculentus   ********** *****A**** *****H**** **A******* *******--* 
Hylaranalatouchii          ********** *I***AN*** **F**L**** **T**T***G **--NVL--* 
Rana shuchinae             *LLLS*VKT* LLAW***V*V *MS*IK*AML D*LQE****E G*ETYKK*** 
Sanguirana varians         *SLL**VKV* *L*Y***V*V **L*L**AM* D*IQ*****E R**TYK****  
                                   60         70         80         90         100 

Odarrana graham            NTYRAPQWAV GHLMGKNSLQ ED-------- ---------- ---------- 
Odorrana schmackeri        ********** ******KSLQ ED-------- ---------- ---------- 
Pelophylax kl.esculentus   ----I***** **F***KSLQ DDMEEATTYT SRYVKSTP-- ---------- 
Hylaranalatouchii          RAGN--***I **F***KSLQ DTYRLREQDM EEAAIFPPRS MENMRDTLLQ   
Rana shuchinae             TSFM**S**L *****RK--- ---------- ---------- ---------- 
Sanguirana varians         MIFG**M**L *****RK--- ---------- ---------- ---------- 
                                  110        120        130 

Hylaranalatouchii          EQRRALSPSQ IQGAQRILKK ILEQYFNMSR K          

Figure 2. Alignments of partial nucleotides and translated open-reading frame amino acids sequences
of bombesin peptides from different species of the Ranidae family. (a) Partial nucleotides sequences of
bombesin peptides from different species of the Ranidae family; (b) The translated open-reading frame
amino acids sequences of bombesin peptides from different species of the Ranidae family. The different
nucleotides in (a) are labelled in red. The sequences of mature peptides in (b) are labelled in blue.
The sequence of signal peptide are labelled in green. Stars (*) indicate the identical amino acid residues.
The processing sites of the precursor for releasing mature peptides are labelled by red. The second
possible processing sites are in shadow. Gaps (dashed line) were introduced to optimise the identities.

2.2. Identification and Structural Characterisation of Bombesin-OS and Bombesin-PE

Both bombesin-OS and bombesin-PE were identified in the skin secretions of Odorrana schmackeri
and Pelophylax kl. esculentus, respectively (Figure 3). A component (Figure 3a) with a mass of 1754.5 Da
(Figure 4a) and a component (Figure 3b) with a mass of 1295.39 Da (Figure 4c) were found to possess
considerable smooth muscle contractile activity. The primary structures of these peptides were
determined by tandem mass spectrometry (MS/MS) fragmentation sequencing (Figure 4).
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Figure 3. Reverse phase HPLC chromatogram of frog skin secretions. (a) HPLC Chromatogram of 
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(Pelophylax kl. esculentus) skin secretion. 
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Figure 3. Reverse phase HPLC chromatogram of frog skin secretions. (a) HPLC Chromatogram of
Chinese piebald odorous frog (Odorrana schmackeri); (b) HPLC chromatogram of European edible frog
(Pelophylax kl. esculentus) skin secretion.
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(a)

 
(b)

(c)

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2
1 112.03931 56.52329 Q-Gln->pyro-Glu 15

2 226.08224 113.54476 N 1642.82716 821.91722 14

3 327.12992 164.06860 T 1528.78423 764.89575 13

4 490.19324 245.60026 Y 1427.73655 714.37191 12

5 646.29436 323.65082 R 1264.67323 632.84025 11

6 717.33148 359.16938 A 1108.57211 554.78969 10

7 814.38425 407.69576 P 1037.53499 519.27113 9

8 942.44283 471.72505 Q 940.48222 470.74475 8

9 1128.52215 564.76471 W 812.42364 406.71546 7

10 1199.55927 600.28327 A 626.34432 313.67580 6

11 1298.62769 649.81748 V 555.30720 278.15724 5

12 1355.64916 678.32822 G 456.23878 228.62303 4

13 1492.70807 746.85767 H 399.21731 200.11229 3

14 1605.79214 803.39971 L 262.15840 131.58284 2

15 M-Amidated 149.07433 75.04080 1

Figure 4. Cont.
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Figure 4. Liquid chromatography coupled tandem mass spectrometry (LC/MS/MS) spectra and 
predicted b- and y-ion MS/MS fragment ion series of bombesin-OS and bombesin-PE. (a) Annotated 
tandem mass spectrometry (MS/MS) fragmentation spectrum of bombesin-OS; (b) Predicted singly 
and doubly charged b- and y-ions arising from MS/MS fragmentation of bombesin-OS. The observed 
b- and y-ions are showed in red and blue, respectively; (c) Annotated MS/MS fragmentation spectrum 
of bombesin-PE; (d) Predicted singly and doubly charged b- and y-ions arising from MS/MS 
fragmentation of bombesin-PE. The observed b- and y-ions are showed in red and blue, respectively. 

2.3. Pharmacological Effects of Bombesin-OS and Bombesin-PE on Smooth Muscle 

The purified peptides were used in assessment of pharmacological activity on rat bladder, uterus, 
and ileum smooth muscles. Both bombesin-OS and bombesin-PE possessed significant contractile 
activity on rat bladder, uterus, and ileum (Figure 5). Specifically, the EC50 values of bombesin-OS on 
rat bladder, uterus, and ileum were 10.82 nM, 33.64 nM, and 12.29 nM, respectively. The EC50 values 
of bombesin-PE were 10.65 µM, 56.82 nM, and 43.1 nM on bladder, uterus, and ileum, respectively. 
Both bombesin-OS and bombesin-PE showed no contractile activity on rat artery. Furthermore, 
compared with bombesin-PE, the EC50 value of bombesin-PE (10.65 µM) on rat bladder was nearly 
1000 times greater than that of bombesin-OS (10.82 nM), and therefore bombesin-OS might be cause 
a more potent contractile effect on rat bladder. However, the contractile activity of bombesin-OS on 
ileum and uterus smooth muscles was essentially the same to bombesin-PE. The results of post hoc 
analysis of contractile activity of isolated peptides are shown in Table 1. 

Table 1. Multiple comparisons of contractile activity of peptides (1 µM) on isolated tissues. The error 
term is Mean Square (Error) = 0.002. *. The mean difference is significant at the 0.05 level. 

 
(I) Sample (J) Sample 

Mean 
Difference (I-J) 

Std. Error Sig. 
95% Confidence Interval

 Lower Bound Upper Bound

Bladder 

Bombesin-OS Bombesin-PE −1.107636 * 0.3938992 0.025 −2.088772 −0.126500 
 V 1.027333 * 0.4119152 0.050 0.001323 2.053344 

Bombesin-PE Bombesin-OS 1.107636 * 0.3938992 0.025 0.126500 2.088772 
 V 2.134970 * 0.3810193 0.003 1.185915 3.084024 

V Bombesin-OS −1.027333 * 0.4119152 0.050 −2.053344 −0.001323 
 Bombesin-PE −2.134970 * 0.3810193 0.000 −3.084024 −1.185915 

Uterus 

Bombesin-OS Bombesin-PE 0.244444 1.1355882 0.975 −2.584113 3.073002 
 V 7.333333 * 1.1650889 0.001 4.431295 10.235372 

Bombesin-PE Bombesin-OS −0.244444 1.1355882 0.975 −3.073002 2.584113 
 V 7.088889 * 1.1355882 0.000 4.260332 9.917446 

V Bombesin-OS −7.333333 * 1.1650889 0.000 −10.235372 −4.431295 
 Bombesin-PE −7.088889 * 1.1355882 0.000 −9.917446 −4.260332 

ileum 

Bombesin-OS 
Bombesin-PE −0.010141 0.0207680 0.877 −0.061748 0.041465 

V 0.182444 * 0.0217817 0.000 0.128319 0.236570 

Bombesin-PE 
Bombesin-OS 0.010141 0.0207680 0.877 −0.041465 0.061748 

V 0.192586 * 0.0207680 0.000 0.140980 0.244192 

V 
Bombesin-OS −0.182444 * 0.0217817 0.000 −0.236570 −0.128319 
Bombesin-PE −0.192586 * 0.0207680 0.000 −0.244192 −0.140980 

#1 b(1+) b(2+) Seq. y(1+) y(2+) #2
1 112.03931 56.52329 Q-Gln->pyro-Glu 11

2 225.12338 113.06533 I 1184.60341 592.80534 10

3 322.17615 161.59171 P 1071.51934 536.26331 9

4 450.23473 225.62100 Q 974.46657 487.73692 8

5 636.31405 318.66066 W 846.40799 423.70763 7

6 707.35117 354.17922 A 660.32867 330.66797 6

7 806.41959 403.71343 V 589.29155 295.14941 5

8 863.44106 432.22417 G 490.22313 245.61520 4

9 1000.49997 500.75362 H 433.20166 217.10447 3

10 1147.56839 574.28783 F 296.14275 148.57501 2

11 M-Amidated 149.07433 75.04080 1

Figure 4. Liquid chromatography coupled tandem mass spectrometry (LC/MS/MS) spectra and
predicted b- and y-ion MS/MS fragment ion series of bombesin-OS and bombesin-PE. (a) Annotated
tandem mass spectrometry (MS/MS) fragmentation spectrum of bombesin-OS; (b) Predicted singly
and doubly charged b- and y-ions arising from MS/MS fragmentation of bombesin-OS. The observed
b- and y-ions are showed in red and blue, respectively; (c) Annotated MS/MS fragmentation
spectrum of bombesin-PE; (d) Predicted singly and doubly charged b- and y-ions arising from MS/MS
fragmentation of bombesin-PE. The observed b- and y-ions are showed in red and blue, respectively.

2.3. Pharmacological Effects of Bombesin-OS and Bombesin-PE on Smooth Muscle

The purified peptides were used in assessment of pharmacological activity on rat bladder, uterus,
and ileum smooth muscles. Both bombesin-OS and bombesin-PE possessed significant contractile
activity on rat bladder, uterus, and ileum (Figure 5). Specifically, the EC50 values of bombesin-OS on
rat bladder, uterus, and ileum were 10.82 nM, 33.64 nM, and 12.29 nM, respectively. The EC50 values
of bombesin-PE were 10.65 µM, 56.82 nM, and 43.1 nM on bladder, uterus, and ileum, respectively.
Both bombesin-OS and bombesin-PE showed no contractile activity on rat artery. Furthermore,
compared with bombesin-PE, the EC50 value of bombesin-PE (10.65 µM) on rat bladder was nearly
1000 times greater than that of bombesin-OS (10.82 nM), and therefore bombesin-OS might be cause
a more potent contractile effect on rat bladder. However, the contractile activity of bombesin-OS on
ileum and uterus smooth muscles was essentially the same to bombesin-PE. The results of post hoc
analysis of contractile activity of isolated peptides are shown in Table 1.

Table 1. Multiple comparisons of contractile activity of peptides (1 µM) on isolated tissues. The error
term is Mean Square (Error) = 0.002. *. The mean difference is significant at the 0.05 level.

(I) Sample (J) Sample Mean
Difference (I-J) Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

Bladder

Bombesin-OS Bombesin-PE −1.107636 * 0.3938992 0.025 −2.088772 −0.126500
V 1.027333 * 0.4119152 0.050 0.001323 2.053344

Bombesin-PE Bombesin-OS 1.107636 * 0.3938992 0.025 0.126500 2.088772
V 2.134970 * 0.3810193 0.003 1.185915 3.084024

V Bombesin-OS −1.027333 * 0.4119152 0.050 −2.053344 −0.001323
Bombesin-PE −2.134970 * 0.3810193 0.000 −3.084024 −1.185915

Uterus

Bombesin-OS Bombesin-PE 0.244444 1.1355882 0.975 −2.584113 3.073002
V 7.333333 * 1.1650889 0.001 4.431295 10.235372

Bombesin-PE Bombesin-OS −0.244444 1.1355882 0.975 −3.073002 2.584113
V 7.088889 * 1.1355882 0.000 4.260332 9.917446

V Bombesin-OS −7.333333 * 1.1650889 0.000 −10.235372 −4.431295
Bombesin-PE −7.088889 * 1.1355882 0.000 −9.917446 −4.260332

ileum

Bombesin-OS
Bombesin-PE −0.010141 0.0207680 0.877 −0.061748 0.041465

V 0.182444 * 0.0217817 0.000 0.128319 0.236570

Bombesin-PE
Bombesin-OS 0.010141 0.0207680 0.877 −0.041465 0.061748

V 0.192586 * 0.0207680 0.000 0.140980 0.244192

V
Bombesin-OS −0.182444 * 0.0217817 0.000 −0.236570 −0.128319
Bombesin-PE −0.192586 * 0.0207680 0.000 −0.244192 −0.140980
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Figure 5. Comparison of myotropic effects of synthetic bombesin-OS and bombesin-PE on isolated rat 
urinary bladder, uterus, and ileum smooth muscles. Dose response curves of bombesin-OS and 
bombesin-PE actions on the smooth muscle preparations from (a) rat bladder (observed powerb = 0.998); 
(b) rat uterus (observed powerb = 1.000); and (c) rat ileum (observed powerb = 1.000). Pharmacological 
effects of bombesin-OS and bombesin-PE, at 1 µM, on the smooth muscle preparations from (d) rat 
bladder [F(2,24) = 3.949); observed powerb = 0.978]; (e) rat uterus [F(2,24) = 8.047; observed powerb = 
0.973]; (f) rat ileum [F(2,24) = 8.388); observed powerb = 1.000] and (g) rat artery [F(2,23) = 0.01791; 
observed powerb = 0.875]. Data represent means ± SEM of three independent experiments with nine 
replicates; NS represents no significant difference; V represents vehicle control. **** p < 0.0001, *** p < 0.001, 
** p < 0.01 and * p < 0.05 indicate significant difference. 

  

Figure 5. Comparison of myotropic effects of synthetic bombesin-OS and bombesin-PE on isolated
rat urinary bladder, uterus, and ileum smooth muscles. Dose response curves of bombesin-OS and
bombesin-PE actions on the smooth muscle preparations from (a) rat bladder (observed powerb = 0.998);
(b) rat uterus (observed powerb = 1.000); and (c) rat ileum (observed powerb = 1.000). Pharmacological
effects of bombesin-OS and bombesin-PE, at 1 µM, on the smooth muscle preparations from (d) rat
bladder [F(2,24) = 3.949); observed powerb = 0.978]; (e) rat uterus [F(2,24) = 8.047; observed powerb

= 0.973]; (f) rat ileum [F(2,24) = 8.388); observed powerb = 1.000] and (g) rat artery [F(2,23) = 0.01791;
observed powerb = 0.875]. Data represent means ± SEM of three independent experiments with
nine replicates; NS represents no significant difference; V represents vehicle control. **** p < 0.0001,
*** p < 0.001, ** p < 0.01 and * p < 0.05 indicate significant difference.



Molecules 2017, 22, 1798 9 of 14

3. Discussion

Amphibian skin secretion contains many bioactive compounds such as proteins, peptides,
alkaloids, and steroids. Recently, there has been more research focusing on the bioactive compounds in
the skin secretions of amphibians because of their broad range of pharmacological properties. However,
amphibians are suffering from threats caused by climate change and human encroachment. A large
proportion of these compounds include neuroactive peptides like bombesin. As explained previously,
bombesin mediates its functions through specific receptors. Additionally, bombesin and their receptors
are widely distributed in the periphery and CNS, and are associated with various functions like food
intake, pain, stress, and fear responses [23]. Henceforth, it will be meaningful for scientists to study the
physiological and pathological aspects of bombesin relationships with receptors in amphibians. In this
study, the initial purpose was the “shotgun cloning” to obtain novel peptides by using degenerate
primers against bombesin-like peptides. This was followed by peptide synthesis and pharmacological
assessment of the smooth muscle contractile activity of these synthetic peptides and their relationships
to cognate receptors.

Bombesins, are widely found in the skin secretions of amphibians, including in typical water frogs
such as the marsh frog, Rana ridibunda [24]. They contain an active octapeptide motif, -QWAXGXXM-,
at the C-terminal, which is helpful for binding to BB1 and BB2 receptors [25]. This study is the first
report to identify bombesin in the skin secretion of Odorrana schmackeri. Additionally, although a
bombesin-related peptide has been found in the skin secretion of Pelophylax kl. esculentus [26], our study
identified a novel bombesin propeptide from Pelophylax kl. esculentus, and confirmed the mature
peptide in the skin secretion. Moreover, the present study demonstrated that the mature peptides
were successfully identified in skin secretion after the mRNAs of bombesin-OS and bombesin-PE
were cloned from a skin secretion cDNA library, using the described “shotgun” cloning approach.
The overall structures of precursors of bombesin-like peptides from different species of the Ranidae
family are illustrated in Figure 2b. Among these, there were significant differences in the number
and in the processing patterns of these bombesin-like peptides and their precursors, which consisted
of 72 (Odorrana schmackeri and Odorrana graham), 88 (Pelophylax kl. esculentus), 131 (Hylaranalatouchii)
and 67 (Rana shuchinae and Sanguirana varians) amino acids, respectively. Moreover, the enzymatic
processing sites in the N-terminal parts as well as the catalytic sites in the C-terminal parts were
shown to be different between the bombesin-like peptides (Figure 2b). The N-terminal processing
sites are always -RR-, -KR-, -EA-, and -KK-, while the C-terminal processing sites are -KK-, -KN-,
and -RK-. Additionally, like other bombesin-like peptides from amphibians [21], there is an amidation
of the C-terminal amino acid residue in both bombesin-OS and bombesin-PE, which may improve
the stability of peptide in vivo. In all bombesin-like peptides found in Rana species, there exists a
pyroglutamyl residue in the N-terminal, comprising the N-terminal catalytic sites of bombesin-like
peptides. Some also contain processing sites (-EA-) in the precursor (Figure 2) but these are not found
in the precursor of bombesin-PE. It has been suggested that this dipeptide processing site may not
be beneficial for the formation of pyrocarbamylation. Our data is consistent with the conclusion that
an N-terminal glutamine provides the N-terminal pyroglutamyl residue and a C-terminal glycine
provides the amide for the C-terminal amide [20]. The differences of catalytic sites may be attributed to
alterations in the posttranslational modification [27]. These data suggest that the signal peptide domain
of precursor as well as the cleavage sites of amphibian bombesin-like peptides can be a measure for
the classification and evolution of animal species as suggested by Li et al. [21].

The sequences of these two novel peptides have characteristics of an N-terminal pyroglutamic
acid, an internal motif -QWAVGXM-, and a C-terminal amide, which are highly-conserved in other
bombesins from amphibians [19,20]. It is interesting to note that a degenerate primer from the Odorrana
species was used to obtain the cDNA of bombesin-OS precursor. However, unexpectedly, the cDNA
of bombesin-PE precursor, which comes from Pelophylax kl. esculentus, could also be cloned using
the same degenerate primer from the Odorrana species. Specifically, both Odorrana schmackeri and
Pelophylax kl. esculentus showed low homology compared with the precursors of Rana shuchinae and
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Sanguirana varians. It was noted that Odorrana schmackeri, Pelophylax kl. esculentus and Odorrana grahami
are mainly distributed in southern and central China, respectively, while Rana shuchinae, Pelophylax
kl. esculentus and Sanguirana varians are distributed in south-western China, Europe, and the Malay
Archipelago, and it could explain that novel peptides sequences can be obtained from different Rana
species living in the same area [28] and this could be used to investigate the evolution of amphibians
as well.

Both bombesin-PE and bombesin-OS showed similar contractile activity in uterus smooth muscle
and ileum smooth muscle. Since the bladder expresses the NMB-preferring subtype receptor while the
ileum and uterus express the GRP-preferring subtype of bombesin receptor [29,30], it was suggested
that bombesin-OS and bombesin-PE bind to the GRP receptor in the ileum and uterus but to the
NMB receptor in the bladder. However, bombesin-OS displayed more potent contractile activity in
bladder smooth muscle compared with bombesin-PE. Comparing the primary structures of these
two peptides, they share a similar sequence (-PQWAVGHXMNH2) in the C-terminal, while the
N-terminal of bombesin-PE (-pGlu-QI-), is shorter than that of bombesin-OS which has more amino
acids (-pGlu-QNTYRA-). This suggested that the longer stretch of amino acids in the N-terminal
could increase the potency of contractile effect of bombesin-like peptides [31]. Therefore, it seemed
conceivable that the functional activity sites might be exposed and the half-life of peptides would
be extended by binding the longer amino acid peptides to the receptors. These data indicated their
abilities to bind to the mammalian receptors of both bombesin-OS and bombesin-PE, thus resulting in
the activation of these receptors.

Undoubtedly, the increasing discovery of the functional peptides in the skin secretions may give
scientists a new way to improve the application of therapeutic agents and to develop drugs for human
healthcare. Since the progress of molecular techniques, the nucleotide sequences of orthologous genes
are well studied. In addition to the conventional research on the fossil record and morphological
characteristics, new phylogenetic studies of the relationship between species may be able to provide a
novel aspect, and may help in a deeper understanding amphibian evolutionary history.

4. Materials and Methods

4.1. Specimen Biodata and Secretion Harvesting

Specimens of Chinese piebald odorous frog, Odorrana schmackeri were captured during expeditions
in Fujian, People’s Republic of China and European edible frog, Pelophylax kl. esculentus, were obtained
from a local herpetological supplier. Adult frogs were settled in vivaria for 4 months prior to harvesting
the secretions. Skin secretion was obtained from the dorsal skin using mild transdermal electrical
stimulation as described previously. The stimulation-induced secretions were washed from the skin
using de-ionized water, rapid frozen in liquid nitrogen, lyophilised and followed by storage at −20 ◦C
until use. Sampling of skin secretion was performed under the UK Animal (Scientific Procedures)
Act 1986, project licence PPL 2694, issued by the Department of Health, Social Services and Public
Safety, Northern Ireland. Procedures had been vetted by the IACUC of Queen’s University Belfast,
and approved on 1 March 2011.

4.2. “Shotgun” Cloning of Odorrana schmackeri and Pelophylax kl. esculentus Skin Secretion-Derived
cDNA Library

Five milligrams of lyophilised skin secretion were dissolved in 1 mL of cell lysis/mRNA protection
buffer that was obtained from Dynal Biotec, UK. Polyadenylated mRNA was isolated from this by
magnetic oligo-dT Dynabeads according to the manufacturer’s instruction (Dynal Biotec, Merseyside,
UK). The isolated mRNA were then subjected to 5′ and 3′-rapid amplification of cDNA ends (RACE)
procedures to obtain the full-length DNA sequences of bombesin precursors using a SMART-RACE
kit (Clontech, Palo Alto, CA, USA) as per manufacturer’s instructions. Briefly, a NUP (supplied with
the kit) and a degenerate sense primer (S: 5′-CARAAYACITAYMGIGCICC-3′; R = A + G, Y = C + T,
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M = A + C) were used in the 3′-RACE reactions. PCR products were gel-purified and cloned using a
pGEM-T vector system (Promega Corporation, Southampton, UK) and sequenced using an ABI 3100
automated sequencer.

4.3. Isolation and Structure Identification of Peptides

Five milligrams of lyophilised skin secretion were dissolved in 1 mL solution buffer (trifluoroacetic
acid (TFA)/water = 0.05/99.95, v/v), and then the mixture was centrifuged. The supernatant
was aspirated and followed by injection into a reverse phase HPLC column (Phenomenex C-18,
250 mm × 10 mm). Fractions were separated and collected by using a Cecil Adept 4200 HPLC
system (Amersham Biosciences, Buckinghamshire, UK). A linear gradient elution was carried out
using the mobile phase in which the composition was changed from water/TFA (99.95/0.05, v/v)
to water/acetonitrile/TFA (19.95/80.00/0.05) over 240 min and the fractions were monitored at
214 nm. Samples (100 µL) were removed from each fraction in triplicate, lyophilised and stored at
–20 ◦C. The molecular masses of peptides in the fractions were determined using matrix-assisted laser
desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) on a linear time-of-flight
Voyage DE mass spectrometry (Thermo Fisher Scientific, San Francisco, CA, USA) in positive detection
mode using α-CHCA as the matrix.

4.4. Solid-Phase Peptide Synthesis of Bombesin-OS and Bombesin-PE Peptides

Fmoc solid phase synthesis was applied on a Tribute Peptide Synthesizer (Protein Technologies,
Tucson, AZ, USA) to produce peptide replicates. 1.2 mmol of amino acids mixed with 1.2 mmol
of HBTU were transferred to the reactor containing Fmoc-Cys (Trt)-Wang resin. The Fmoc group
was deprotected by using piperidine (20% in DMF). The peptide bond coupling was activated and
completed in 1 M 11% NMM in DMF. The peptides were cleaved from the resins using a trifluoroacetic
acid-EDT-triisopropylsilane-H2O (TFA-EDT-TIS-H2O; 94:2:2:2) cocktail, and then the final peptide was
purified by using reverse phase HPLC. The primary structure and purity of peptides were determined
by MALDI-TOF MS and LCQ MS/MS fragmentation sequencing.

4.5. The Effects of Bombesin-OS and Bombesin-PE on Rat Smooth Muscles Tension

Female Wistar rats (250–300 g) were humanely killed by carbon dioxide asphyxiation based on
institutional animal experimentation ethics and UK animal research guidelines. The smooth muscle
tissues of bladder, uterus and ileum were gently pulled out and then immediately put into ice-cold
Krebs’ solution (118 mM NaCl, 1.15 mM NaH2PO4, 2.5 mM CaCl2, 25 mMNaHCO3, 4.7 mM KCl,
1.1 mM MgCl2 and 5.6 mM glucose). The smooth muscle tension was determined by an isolated tissue
bath assays. Briefly, the small tissue strips were immersed in Kreb’s solution bubbled continuously
with 95% O2 + 5% CO2 (2 mL/min) at 37 ◦C for 10 min, and the muscle tension was recorded
using a transducer (Neurolog 61, Digitimer Ltd., Welwyn Garden, UK). The bladder, uterus, artery,
and ileum tissue were stretched, maintaining the normal physiological tension of 0.75 g, 0.5 g, and 0.5 g
respectively. Bombesin-OS and bombesin-PE solutions, ranging from 10−9 M to 10−3 M, were made
in Kreb’s solution and then added to the organ bath in a cumulative manner for at least 5 min before
reaching the equilibrium. Then, the effects of these peptides on smooth muscles were determined
using a tension sensor that is capable of detecting and recording the tension changes or changes in
spontaneous contraction frequencies, followed by the amplification of the analog signal through a
PowerLab System (AD Instruments Pty Ltd., Oxford, UK).

4.6. Statistical Anaylysis

Statistical analyses were performed using GraphPad Prism software (version 6.01, San Diego,
CA, USA) and SPSS software (version 24, Chicago, IL, USA). Comparison between two groups was
analysed using a two-tailed unpaired student t-test. Comparison between three groups was analysed
using one-way ANOVA, with post hoc Turkey’s multiple comparisons test. Observed power was
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calculated with each analysis to confirm that the sample size was sufficient to support the data.
A p-value less than 0.05 was considered significant.

5. Conclusions

In this study, two bombesin-like peptides, bombesin-OS (pGlu-NTYRAPQWAVGHLM-NH2) and
bombesin-PE (pGlu-IPQWAVGHFM-NH2) were identified in the skin secretions of Odorrana schmackeri
and Pelophylax kl. esculentus, respectively. The precursor of bombesin-OS was virtually identical to
that of a bombesin-like peptide from Odorrana grahami, and the precursor of bombesin-PE, on the
other, was highly identical to that of the bombesin-like peptide, ranatensin. Furthermore, according
to BLAST analysis of the open-reading frame, bombesin-PE was shown to belong to the ranatensin
subfamily. Both bombesin-OS and bombesin-PE were demonstrated to have the activities not only to
increase the frequency of spontaneous contraction of rat uterus but also to moderate the stimulated
contraction of rat bladder and ileum smooth muscles.
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