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Abstract

In any diabetic retinopathy screening program, about two-thirds of patients have no retinopathy. However, on average, it
takes a human expert about one and a half times longer to decide an image is normal than to recognize an abnormal case
with obvious features. In this work, we present an automated system for filtering out normal cases to facilitate a more
effective use of grading time. The key aim with any such tool is to achieve high sensitivity and specificity to ensure patients’
safety and service efficiency. There are many challenges to overcome, given the variation of images and characteristics to
identify. The system combines computed evidence obtained from various processing stages, including segmentation of
candidate regions, classification and contextual analysis through Hidden Markov Models. Furthermore, evolutionary
algorithms are employed to optimize the Hidden Markov Models, feature selection and heterogeneous ensemble classifiers.
In order to evaluate its capability of identifying normal images across diverse populations, a population-oriented study was
undertaken comparing the software’s output to grading by humans. In addition, population based studies collect large
numbers of images on subjects expected to have no abnormality. These studies expect timely and cost-effective grading.
Altogether 9954 previously unseen images taken from various populations were tested. All test images were masked so the
automated system had not been exposed to them before. This system was trained using image subregions taken from
about 400 sample images. Sensitivities of 92.2% and specificities of 90.4% were achieved varying between populations and
population clusters. Of all images the automated system decided to be normal, 98.2% were true normal when compared to
the manual grading results. These results demonstrate scalability and strong potential of such an integrated computational
intelligence system as an effective tool to assist a grading service.
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Introduction

An estimated 346 million people worldwide have diabetes

mellitus (DM) with more than 80% of those affected living in low-

and middle-income countries [1]. Diabetic retinopathy (DR) and

diabetic maculopathy (DMac) are the most common microvascu-

lar complications of diabetes mellitus and remain the leading cause

of legal blindness in the working-age population in western

societies [2]. Despite all efforts to diagnose DM early and treat

aggressively in order to prevent complications later, almost every

patient with type 1 and over 60% of patients with type 2 DM will

develop some degree of DR/DMac within 20 years of diagnosis

[3]. Unfortunately, around 40% of patients already have

established DR at the time of diagnosis [4]. DR is a progressive

disease; diagnosing it early provides the best chance to treat

effectively and to maintain good vision. In the UK, this is achieved

through a national screening programme which has been in place

for over 10 years. In many other countries, there is no such

programme, largely due to its complex requirements and cost

implications from set up through quality control to treatment costs.

This paper describes an automated system that filters out

normal retinal images from abnormal. In the UK alone, there are

an estimated 2.8 million people with DM. Nearly 80% of those

eligible have been screened in the last year [5]. Typically, each

patient requires a minimum of four screening retinal images

resulting in about 11 million images each year needed to be graded
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by human graders. In any DR screening programme, about 2/3rd

of patients have no DR/DMac. However, on average, a human

grader takes about 1.5 times longer to decide if an image is normal

than to recognise obvious changes that are abnormal. In the UK

Screening programme, all abnormal and 10% of normal images

are double graded, then any discrepancy is adjudicated by an

independent person. Separating normal from abnormal images

automatically therefore can potentially save an estimated 80% of

the overall image reading time. Reading images is a highly skilled

process and trained readers are in short supply both in developed

and developing countries. Therefore, if an automated system could

detect DR accurately and efficiently, it could be employed as a

routine tool for separating normal from abnormal at a substan-

tially reduced cost. The human graders would then carry out

quality control and final grading on those images the system was

unable to deal with, let it be due to DR/DMac or abnormalities

the system had not been trained to identify.

Diabetic retinopathy image analysis and its challenge
Research in automated eye fundus image analysis has spanned

almost 30 years. However, the necessary requirement of accurate

detection and its scalability is still not sufficiently met. The

accuracy is usually measured by sensitivity and specificity. High

sensitivity is to ensure patients’ safety, whilst high specificity is for

screening efficiency. Given the large volume of patients’ images to

be screened each year, high performance by both measures is

critical for an automated tool to be useful. The main obstacles are

the large within-class variance and between-class similarities as

shown in Figure 1. (1) Fundus images vary in their appearance due

to factors such as degree of pigmentation in the retinal pigment

epithelium and choroid in the eye, size of the pupil, uneven

illumination, conditions of the ocular media such as corneal

disease or cataract, camera type and imaging settings amongst

others. A retinal image may contain both pathological signs of DR

such as microaneurysms (MAs), haemorrhages, exudates and

vascular signs such as loops, beading and new vessels, while it

definitely shows all anatomical features such as blood vessels,

macula and optic disc. The key clinical signs of DR vary in

quantities, colour, shape and sizes. Some are often too subtle to

recognise easily, but they are clinically significant signs. (2) There

are some similarities between DR signs and anatomical features.

For example, MAs can be very similar to the fine ends of the blood

vessels, and fundus background pigment of certain ethnic groups

can appear like haemorrhages. The following discussion provides a

review of previous computational approaches and issues for

recognizing these DR components.

Locating the optic disc (OD) is a challenging task due to the

possible presence of bright lesions with similar characteristics.

Additional difficulty is introduced by the irregularity in shape and

size of the OD both in normal and in pathological cases as well as

the appearance of blood vessels within its boundaries. Techniques

include edge detection, thresholding followed by Hough transform

[6][7], template matching [8], principal component analysis (PCA)

[9], or through tracking blood vessels inside the OD [10]. In these

reported works, good accuracies were achieved, but testing was

carried out on a small number of images ranging from 20 to 89.

Once the OD is located, finding the macula relies on its position as

it is normally two OD diameters away and appears as a dark

shaded circular area. Techniques such as template matching can

be deployed.

Blood vessels are one of the main components of the retina.

Changes in blood vessel diameter and/or tortuosity can indicate

the change in severity of the retinopathy. Locating blood vessels

can also aid the detection of other anatomical structures such as

OD and macula. The blood vessels appear darker than the

background and they gradually decrease in width with the distance

from the OD. Based on these characteristics, methods for

detecting blood vessels include: filter-based [11][12][13][14],

quadtree decomposition [15], Morlet wavelets [16], adaptive

thresholding [17], tracking such as Gaussian and Kalman Filters

[18], 2D model [19] or incorporating classification based on

relevant features, such as Morlet wavelet responses [20], or PCA

[21]. In the reported literature, these methods were tested on a

small number of images ranging from 9 to 112. The variance in

images leads to questions regarding the accuracy, especially when

detecting finer blood vessels are essential.

Microaneurysms (MAs) are swollen capillaries caused by

weakening of the vessel walls secondary to DM. This can

eventually lead to the fluid leakage. MAs are the first visible sign

of DR and their quantity indicates the progression of the disease.

MAs appear as small reddish dots with a circular shape and have

similar intensity values as haemorrhages and blood vessels.

Uneven illumination and varied pigmentation in the retina add

further challenges to the MA detection. Techniques usually

involve feature extraction of candidate regions, followed by either

a rule base criterion elimination or a classification process

[22][23][24][25][26]. The complexity of MAs detection lies in

the fact that they are very subtle and can appear virtually

anywhere in the retina: in clusters, isolated, among exudates,

within dark macula, or near blood vessels. Some of these

techniques used a blood vessel removal procedure where true

MAs in the vicinity of the blood vessels may have been eliminated

as well.

The colour characteristics of the haemorrhages are similar to

MAs but they are larger in size and can be of any shape. They

become increasingly visible with progression of the disease.

Detecting haemorrhages are similar to those for MAs, as both

are treated as dark lesions. There are a few publications that focus

solely on detecting haemorrhages [27][28].

Exudates are lipids that leak from damaged vessels and are one

of the commonest clinical signs occurring in early DR/DMac.

Exudates appear as small yellowish objects that vary in shape and

size. They are well contrasted against the background. One

difficulty is that they are not the only bright features in retina

images. Other content, such as the optic disc, cotton wool spots

and drusen, may also have very similar visual characteristics. Most

methods only separate bright lesions from dark ones without

attempting to discriminate between these bright lesions. Typically

either pure image processing or its combination with classification

techniques are involved in detecting exudates

[28][29][30][31][32][33][34][35][36][37][38][39].

Over the last two decades, research in DR image analysis has

been attracting constant interest. Promising results have been

reported in the literature, however, most techniques were tested on

small datasets. When larger datasets were used, the specificity was

much compromised ranging 43.6%–47.7% at sensitivity 90% [40].

Similar results were achieved by Philip et al [41] with 67.4%

specificity and 90.5% sensitivity when measuring the presence of

MAs or dot haemorrhages as signs of abnormality. In addition, the

sensitivity and specificity were measured based on patient

episodes, and image view fields were well specified, in order to

be in line with particular grading scheme [42]. With increasing

need of DR screening worldwide, and the growing number of

epidemiological studies, it is fundamentally necessary for an

automated system to understand the abnormality/normality of

any individual image. Such capability will also be essential when

grading for digital fundus images taken by mobile cameras

becomes more available. Furthermore, so far most of the studies
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were based on data collected from a single population. Large scale

validation studies on more diverse populations of patients with

DM are urgently needed [40] and this forms one of the prime aims

of this work.

This paper presents an evolutionary approach that aims to

maximize the accuracy for separating normal and abnormal

images in order to first filter out normal cases, regardless of image

resolution, quality, cameras types, and view fields. Images

collected from different populations were evaluated.

Methods

Ethics Statement
In this work, all images were anonomysed once before they were

submitted to the Reading Centre at Moorfields Eye Hospital and

then anonomysed again by the Reading Centre before submitting

it for the purpose of image analysis. Therefore under no

circumstances would it be possible to trace the patients. We have

also received a written waiver from The Research Governance

Committee at Moorfields Eye Hospital that exempts us from

needing approval and patient consent to use the data.

The system framework
The analysis of retinal images for the absence of DR

characteristics is a complex problem. All anatomical components

and clinical signs (we term them DR components in this paper) are

interrelated and cannot be fully comprehended in isolation.

Reliable image analysis must cope with the variations in images.

When classification is involved, it is almost impossible to find

‘‘ideal features’’ in an ‘‘ideal classifier’’ for any particular DR

component due to its variations. In this work we integrated several

techniques into a combined system: multiple classifier combina-

tion, context modeling, and evolutionary optimization.

Multiple classifier combination approach is motivated by the

idea that different classifiers may complement each other in their

performance and the combination of various classifiers for the

same task may offer a much better result than a traditional single

classifier. The key issue of using a coordinated group of simple

solvers to tackle a complex problem is how to find the best way to

divide a complex problem into simpler ones [43]. Different

methods have been proposed to generate multiple classifiers. For

example, multi-objective evolutionary computation techniques

have been adopted to maximise both classifier diversity and

classification performance [44].

Context is a powerful constraint to clarify ambiguous situations.

Humans are able to quickly identify objects in an image largely

due to our ability to use context to reason through information,

especially when some information is only partially available. In

vision, such context can also be seen as a kind of perceptual

constancy, i.e., identifying the same object regardless of changes in

size, intensity, or shape. In DR images, clinical signs such as MAs,

can appear anywhere in a fundus image, spatial relationships with

other DR features do not necessarily provide extra cues for its

detection. In this work, we investigate the perceptual constancy of

MAs against the background through Hidden Markov Models.

Hidden Markov Models (HMM) have been gaining popularity

not only in the speech recognition domain [45] but also in

handwriting recognition [46], face recognition [47], DNA

sequencing [48] and even sports genre classification [35]. Hidden

Markov Models involve a stochastic modeling process and are

highly capable of providing flexibility for modeling the structure of

an observation sequence. More importantly, they are able to

encapsulate context dependent entities by allowing fine details to

be learnt through the data by adjusting the transition probabilities

and emission probabilities.Our previous work on the detection of

microaneurysms (MAs) in DR images [49][50] demonstrated that

Hidden Markov Models are able to capture the context where

MAs may be present.

Evolutionary algorithms (EAs) have shown to be very powerful

in solving highly complex problems, including machine learning

such as feature selection and classifier generation. In this work, we

developed a set of ensembles for various DR components. We then

use EAs to optimise these ensembles so that a much smaller set of

classifiers were selected as a more optimal and effective ensembles

for classification. A context model for MAs was also established

but optimized in order to obtain optimal topology and parameters.

Figure 1. Fundus images. a. Haemorrhage; b. MA; c. Drusen; d. Exudates; e. Optic disc; f. Fovea; g. Blood vessel; h. Background; Three images on
the top contains DR signs while bottom three have no DR signs, however, the bottom right contains large scale of drusen.
doi:10.1371/journal.pone.0066730.g001
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The system framework is comprised of a set of global detectors

as well as a set of local detectors. This is a similar process to

human’s recognition, which, typically first would acquire a global

impression and then pay attention to particular fine details. A

‘global’ analysis looks into the information in whole images, whilst

‘local’ analysis focuses on sub-regions in the images. Global

detectors are listed as below. When ensembles are used, their

initial number of base classifiers in each type of detector are given

in brackets.

a Optic disc and macula detectors

b Background estimation

c Initial blood vessel structure detection

d Haemorrhages detector (180)

e Microaneurysms detector (180)

f Blood vessel detector (180)

Local analysis, as listed below, when performing respective

tasks, has the benefit of avoiding the problem of uneven

illumination by breaking down the image into smaller sub-images.

g Background detectors (270)

h Blood vessel detectors (270)

i Dark lesion detectors (180)

j Bright lesion detectors (180)

Optic disc detection is implemented firstly through Gaussian

filtering then transforming the image using a colour map so that

the optic region will fall into certain colour range. Such candidate

is then confirmed by an active deformable model [51]. Initial

background colour and blood vessel structure are estimated

through a median filter and dynamic thresholding. Image

processing and analysis including adaptive thresholding, principal

component analysis, Hough transform, edge detection, watershed

segmentation, Fourier transform etc, are performed first in order

to extract relevant features. Details of various features extracted

for respective detectors are given in Table 1.

With extracted features, heterogeneous ensembles of neural

networks are constructed using 3 different training algorithms, 10

different numbers of hidden units and 3 different weights

initializations [52]. Based on one set of features for one set of

training samples, a total number of 90 classifiers are generated for

each ensemble. If another set of features or different set of training

samples is used, this will give another 90 base classifiers in the

second ensemble. Depending on the complexity of each of the DR

components (such as MA, haemorrhages, exudates, blood vessels

etc), the number of ensembles generated for each of them varied.

Typically, there are at least two ensembles totaling 180 individual

classifiers for each DR component, while some have three

ensembles totaling 270 base classifiers such as blood vessels and

local background classifiers, as shown in above list d–j.

This procedure generates very large numbers of base classifiers.

The members of an ensemble are further refined through an

optimization process using a genetic algorithm, from which a

smaller set of base classifiers as an optimal combination is obtained

for each detector. The final number of selected base classifiers

through evolution for each detector is illustrated in Table 2. A

context model is initialised but its structure and parameters are

optimized through evolutionary algorithms. Specifically in this

work, a context model using Hidden Markov Models is created for

MA, which perhaps is the most important and also most

challenging DR sign to detect, as they are small, subtle and easily

mistaken for other DR components. The context models for other

DR signs have not been yet integrated in the system due to the

computational cost discussed later.

Once the system is trained and evolved, it is then used for

making decisions on new image instances. Image segmentation is

applied first to find all candidate objects in an image with features

extracted prior to any form of post-processing for removing false

positives. This is especially important for detecting MA. For each

DR component candidate, the detection results from respective

selected optimal base classifiers are combined using the averaging

rule. Information obtained from global and local processing is

integrated through a reasoning mechanism for a final interpreta-

tion of the image. For MA, the final result is an agreed outcome

between the context model and its optimised classifier ensembles.

Optimisation of ensembles and context model
One of the investigations in this research is whether information

from the context model can guide the classifier combination

strategy in ensembles through an optimisation process. Evolution-

ary algorithms have been developed to optimise classifier

combination and Hidden Markov Models as illustrated in

Figure 2. The optimisation of ensembles is shown in the block

on the left. The middle and right blocks are the evolutionary

process for Hidden Markov Models. In this work, we conducted

experiments to compare a) the performance of ensembles that are

evolved by just a genetic algorithm (GA) without any influence

from HMM optimisation; b) the performance of HMM that are

evolved by just a GA and by a memetic algorithm; and c) the

performance of the system when a synchronised optimisation takes

place to find an optimal ensemble and HMM at the same time. In

Figure 2, the connections between ensemble block and HMM

blocks are represented in grey colour to indicate such synchroni-

sation is optional.

Ensemble optimisation through genetic algorithm (GA-
classifier)

For each detector listed in the system framework, after obtaining

the initial base classifiers in ensembles, a genetic algorithm (GA) is

performed to find an optimal subset of base classifiers for

combination. GA is a population based stochastic search method.

At each generation of the genetic algorithm, a new set of solutions

is created by selecting individuals according to their fitness

strengths and genetically modifying them to produce offspring,

forming a new population of individuals that are better than the

individuals they are created from, eventually reaching an optimal

solution.

During this process, each solution is represented by a subset of

base classifiers from the ensembles forming chromosomes. This

can be also seen as a kind of multiple classifier combination

strategy. The initial number of base classifiers and the selection of

base classifiers in each solution are randomly generated. A

population of solutions is evolved using a set of ground truths

previously unseen by the trained ensembles. Fitness of a solution is

measured based on the accuracy for each combination strategy.

Here, equation (1) measures the overall accuracy obtained by

combining the selected base classifiers using the average rule.

EnsembleFitness(solution)

~
NumOfCorrectPrediction(solution)

Z

ð1Þ

where Z is the total number of test samples, and

NumOfCorrectPrediction is the number of correct prediction

on the test samples by this solution, which is calculated using the

Filtering Normal Diabetic Retinopathy Fundus Image
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average rule, that is, for a given test sample, count the number of

base classifiers in the solution that make the right decision. And if

more than half of the classifiers gives the right decision, the overall

collection of the classifiers (the solution) is deemed to have made

the correct decision.

Selection in genetic algorithm is the phase used to determine

which parents to choose for reproduction. In this work, the

Roulette Wheel Selection (RWS) is chosen as the selection

algorithm. Each solution in the population will be assigned a

probability of selection based on its fitness value.

probability(k)~
EnsembleFitness(k)
Pn

j~1

EnsembleFitness(j)

ð2Þ

where k is kth solution and n is the total number of the solutions in

a population. The whole population forms a Roulette Wheel with

each section in the size of the selection probability (proportional to

its fitness) of individual solution. While the wheel is spun, based on

a fixed selection point, the solutions will be randomly selected. The

larger its size on the wheel, the higher the chance for a solution to

be selected. The advantage of this technique is that it does not

Table 1. Matrix of detectors and extracted features for classification.

Features GBV GH GMA LBV LB LDL LBL

Average intensity of region in green component – – – –

Average intensity of outside clinical sign candidate region in green
component

– – –

Average hue, saturation, intensity levels of clinical sign candidate
region in HSI colour model

– – –

Ratio of HSI intensity levels between clinical sign candidate region
and non-clinical sign candidate region

– – –

Ratio of green component average intensity between clinical sign
candidate region and non-clinical sign candidate regions

– – –

Area of clinical sign candidate region – – – –

Perimeter – – –

Statistics generated from the smallest bounding box of clinical sign
candidate region

–

Dimension ratio of an object: calculated using major axis over
minor axis

–

Circularity – –

Colour histogram – – –

Fourier spectra –

Principal component analysis (PCA) of colour – –

Phase symmetry with PCA – –

Texture Analysis –

Mean shade corrected clinical sign candidate region [23] –

Length of clinical sign candidate region –

Global blood vessel detector (GBV), global haemorrhages detector (GH), global microaneurysms classifier (GMA), local blood vessel classifier (LBV), local background
classifier (LB), local dark lesion classifier (LDL), local bright lesion classifier (LBL).
doi:10.1371/journal.pone.0066730.t001

Table 2. Number of classifiers in ensembles before and after evolution.

Detector Number of original base classifiers Number of base classifiers after evolution

Blood vessel (G) 180 15

Haemorrhages (G) 180 27

Microaneurysms (G) 180 62

Background (G) 270 56

Blood vessesl (G) 270 21

Dark lesion (G) 180 45

Bright lesion (G) 180 32

G means it is a global classifier and L indicates a local classifier.
doi:10.1371/journal.pone.0066730.t002
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totally rule out the possibility of selecting weaker solutions. 80%

solutions will be chosen through this process for crossover.

Crossover operation is also performed by varying the chromo-

somes from one generation to the next. 1-point crossover is used in

this work because the length of the chromosomes differs from

solutions to solutions. These new solutions obtained through

crossover and those parents which still outperform their children

will form the new generation.

Context models and its evolution
Hidden Markov Models are nondeterministic models and have

proved to be capable of modeling sequential data structures. In

computer vision, this can be deployed to capture the contextual

relationship between neighboured sub-regions in an image where

the object in question locates. This is especially useful when the

visual properties of the object are largely varied, such as MAs,

whereas its context relations to surrounding regions may provide

effective constraints for recognising the object.

Given a set of training images consisting of various categories of

sub images, the corresponding Hidden Markov Models can be

trained though a re-estimation procedure know as the Baum

Welch Algorithm [53]. Once a model for each category is trained,

an unknown sub-image is passed through the models and the

likelihood of each model is calculated using the Viterbi algorithm

[54] as follows.

Let the initial probability at the state k be pk, the transition

probability from the state y to the state k be ay,k, the observation

output at time t be yt, the most likely state sequence at time t be

xt, the probability of the most probable state sequence responsible

for the first tz1 observations that has k as its final state be Vt,k,

the function that returns the value of x used to compute Vt,k if

tw0 or k if t~0 be Ptr(k,t). Then, we have

V0,k~P(y0Dk)pk ð3Þ

The Viterbi path can be retrieved by saving back pointers that

remember which state y was used by the following equation:

Vt,k~P(ytDk) max
x[Y

(ax,kVt{1,x) ð4Þ

Figure 2. Evolution for ensemble and context model.
doi:10.1371/journal.pone.0066730.g002

Filtering Normal Diabetic Retinopathy Fundus Image

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e66730



Here, the likelihood of the model is calculated based on the

product of the transition probability and emission probability.

Hence, we have

xT~ max
x[Y

(VT ,x) ð5Þ

and

xt{1~Ptr(xt,t) ð6Þ

The Hidden Markov Models with the highest likelihood will

identify the sub-image. While learning from training samples, we

can determine the parameters for the HMM. From above, we can

see that the ideal topology and the initial transition probability

matrix are the major contributions to an effective HMM.

In our previous work, we have explored the use of an

evolutionary approach to find suitable Hidden Markov Models

[49][50]. Sub-regions of particular DR features are represented

using HMM evolved through a hybrid class of evolutionary

algorithms called memetic algorithms, which is used to optimise

both the topology and parameters of the Hidden Markov Models.

Such memetic algorithms aim to achieve a balance between the

exploration and the exploitation of the search space in order to

maximise the search performance. This evidently not only

automates the discovery of HMM structures along with the initial

model parameters, the resulting model can also attain a better

accuracy while avoiding over-fitting. Most details on the memetic

algorithm for finding an optimal Hidden Markov Models have

been given in [49][50]. Here, we summarise the method for the

coherence of this paper by highlighting some key points.

To especially detect MA, we prepare sub-images as the training

data that comprises of microaneurysms (MAs), background (BG)

and blood vessels (BV). Each sub-image is further divided into nine

smaller sub-images. A set of features for each sub-image is

extracted as observation sequences for Hidden Markov Models.

Each solution (each HMM) is encoded as a chromosome for

evolution. A population is composed of a set of HMM. The fitness

evaluation function is the accuracy of the solution over an unseen

image test set.

The global search is performed using genetic algorithm for

establishing optimal structure of the HMM as well as the set of

features. Baum Welch (BW) algorithm is used for training by

assigning the transition probabilities matrix as the parameters of

the HMM. As the training procedure converges, it will adjust the

parameters of the HMM accordingly so as to increase the

probability of the model assigned to the training set. Roulette

Wheel Selection algorithm as well as 1-point crossover are also

adopted. When new offspring are generated, they inherit states

from their parents and sometimes adopt new states. During this

process, the transition probabilities will be changed and would not

be coherent among the whole chromosome. Here, the mutation is

performed by generating new transition probabilities for the

inherited and adopted states. This will ensure the diversity in

offspring among new generations and help the model escape from

initial model parameters.

To converge to the optimal solution quickly, the particle swarm

optimization (PSO)[49] is applied to the top 20% individuals

obtained after selection, in order to search for an optimal

parameter for the transition probability matrix. At the end of

the operation, the new transition matrix found by the particle

swarm optimization is returned to the chromosome in the genetic

algorithm operation. This hybrid procedure will ensure that for

every structure of the HMM evolved by the genetic algorithm,

there is an optimised transition probability matrix.

The three components in Figure 2 could be synchronised

together in order to find optimised ensembles that consistent with

inherent context within the data. The fitness function is measured

by a joint decision based on the agreement between a correct

classifier ensemble decision and HMM decision on a set of test

data. Experiments have shown that the overall accuracy is better

in this case, however, the evolution process takes too much longer

time for it to be realistically integrated into the system if many

more training data are used.

The following section provides details of a few experiments that

aim to justify the key methods developed in this work. This

includes:

N a Multiple classifier combination through evolutionary algo-

rithms

N b The comparison of different Hidden Markov Models

developed for capturing microaneurysms context

N c A final decision making process on the normality of an image

when all the relevant information is available through global

and local processing

Experiments and Results

Evaluation of ensemble optimisation
The initial very large number of base classifiers in an ensemble

for each DR component detection ranging between 180–270 are

not only inefficient, but also likely redundant. Choosing a much

smaller set of classifiers through optimisation minimises the

redundancy and ensures that the ensembles consisted only of

those classifiers that sufficiently represented a similar spectrum of

data and problem space as the original ensemble meant to cover.

The training data were collected from various sources either

through collaboration with hospitals or on-line open source.

Depending on the type of clinical signs employed, the number of

images used for extracting training samples varies due to the

distribution of these signs varies in the image collection. Table 3

gives the numbers of original training images and their sub-region

samples used for each set of classifiers. Some original training

images are shared by different classifiers that use different regions

of the images as samples accordingly. The total number of training

images was around 400. In all tables, EA means evolutionary

algorithms. The ground truth was based on the manual grading by

human experts.

In order to compare the effectiveness of the optimised

combination strategy, various traditional classifier combinations

were also implemented on the original ensembles. The contrasted

performances are illustrated in Table 4. It is evident that in

general, the combined ensembles through average, sum or

majority vote rules outperformed the best individual classifiers.

However, the selected subset of base classifiers obtained through

optimization gave the highest accuracy. Furthermore, the dimen-

sions of all ensembles after optimization were significantly reduced

as illustrated in Table 2. All ensembles had a reduction in base

classifier numbers by at least 50%.

Experiments also showed that during the optimisation process,

the algorithm did not just remove poor performers and retained

the good ones, as strong and weak performers may complement

each other and perform best when combined together. This was

demonstrated in the optimised blood vessel ensemble as illustrated

in Table 5, where the weakest performer was included as one of

the base classifiers. Interestingly, the best performer was not

Filtering Normal Diabetic Retinopathy Fundus Image
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included in the evolved combination strategy. The final optimised

ensemble consisted of a mixture of classifiers with various

performances.

Hidden Markov Models optimisation
In this experiment, three different Hidden Markov Models were

developed representing microaneurysms (MAs), blood vessels (BV)

and the background (BG). To demonstrate the effectiveness of the

proposed approach, three types of Hidden Markov Models were

developed, pure genetic algorithm based (GA-HMM), memetic

algorithm based (M-HMM) and finally the evolved Hidden

Markov Models synchronised with ensemble optimization (C-

HMM). In this experiment, all the Hidden Markov Models were

trained using 100 retina images with microaneurysms in them.

From these 100 images, 700 sub-images, for each category, e.g.,

background, microaneurysms and blood vessel, were extracted to

train the various models. The evaluation was performed with 1500

sub-images containing these three categories.

As shown in Table 4, the correct classification rate by EA-based

ensemble for microaneurysms was only 83.05%. The results of the

GA-HMM and M-HMM were compared in Table 6. The

difference between the GA-HMM and M-HMM was that in GA-

HMM the mutation generated new transition probabilities for the

new inherited states, whereas in M-HMM, this was done through

the particle swarm optimisation. M-HMM achieved slightly higher

accuracy, however, comparing the number of generations for the

population based search, using memetic algorithms to evolve

HMM resulted in a faster convergence to an optimal solution.

Table 7 provides a comparative results for detecting MAs

between using ensembles that were evolved by just a GA, and the

combined results between C-HMM and the ensembles, based on

different population sizes and numbers of generations. The

experiments shows that, firstly, the final number of base classifiers

generated through the synchronised evolutionary algorithm was

less (between 43 to 56) than that generated using a GA-classifiers

on MA detection, which was 62 base classifiers; secondly, the

majority of the ensemble accuracy was also higher than those

evolved using just a GA which was 83.05%; thirdly, overall

accuracy of the microaneurysms detection has also improved

compared with using GA-HMM or M-HMM algorithms as

discussed above. However, the process of synchronised optimisa-

tion is extremely slow.

During decision making process on a new image instance, the

system first classifies the candidate regions obtained from

segmentation using evolved ensembles. When it considers a region

as a possible MA, the contextual analysis model is triggered. The

sub-image is put through a module with three HMM for MA, BG,

or BV respectively. If MA is recognized, it will label the region

with a white box; and if it considers it as a BG or BV, the region is

labeled with a black box as shown in Figure 3. Examples in

Figure 3 show that this HMM-based method is very capable of

detecting microaneurysms, even very subtle ones as illustrated in

Figure 3 (a)–(c). Note a dot haemorrhage, which is larger than MA,

is not marked in MA detector, but will be identified by the

haemorrhage detector.

Separating normal and abnormal fundus images
Finally the integrated system was evaluated on its ability of

separating normal and abnormal images. Through the various

detectors implemented, the system first detected the basic clinical

signs such as bright lesions, microaneurysms, haemorrhages, and

anatomic structures such as the optic disc, macula and the blood

vessels. The reasoning process then integrated all the information

for a final decision.

The system was evaluated on 9954 digital fundus images

obtained from various sources that exhibit diversity from different

ethnic groups including African, Asian, and Caucasian. Some of

the images are from the diabetes patients through DR screening,

while some are from pure population based studies where most

Table 3. Breakdown of training samples used.

Classifier Images used Sub-region used Training sample type Testing images for EA

Blood vessel (G) 300 2789 Image regions 1000

Microaneurysms (G) 100 2100 15615 sub-images 1500

Haemorrhage (G) 278 1785 Image regions 1000

Background (L) 300 1750 32632 sub-images 1000

Dark lesion (L) 278 2100 32632 sub-images 1000

Blood vessel (L) 300 4210 32632 sub-images 1000

Bright lesion(L) 250 1889 32632 sub-images 1000

G and L indicate the corresponding classifier is either global or local classifier.
doi:10.1371/journal.pone.0066730.t003

Table 4. Performances (in %) of various classifier combination
strategy.

Combination strategy

Classifier Best Average Sum
Majority
vote EA

Blood vessel (G) 92.63 93.68 92.77 93.03 98.97

Haemorrhage (G) 81.54 83.54 68.01 83.59 92.30

Microaneurysms (G) 79.63 81.79 81.08 81.54 83.05

Background (1) (L) 89.12 93.26 94.20 93.10

Background (2) (L) 91.08 91.73 89.18 90.56 94.57

Background (3) (L) 88.12 89.92 87.58 88.67

Blood vessels (1) (L) 93.03 96.68 96.13 5.54

Blood vessels (2) (L) 93.04 93.84 92.03 94.12 7.12

Dark lesion (1) (L) 83.04 84.91 78.23 83.16

Dark lesion (2) (L) 79.97 82.52 81.21 82.89 6.23

Bright lesion (1) (L) 92.95 94.04 91.89 95.02

Bright lesion (2) (L) 94.92 95.43 93.91 94.98 96.23

G means it is a global classifier and L indicates a local classifier.
doi:10.1371/journal.pone.0066730.t004
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subjects are expected to be normal. The collected images are also

of different quality and resolutions, taken from different cameras.

The images were graded by certified trained graders.

This evaluation set out to identify normal (healthy) images and

abnormal (unhealthy) images. The sensitivity was defined as the

proportion of actual positives that are correctly identified and

specificity referred to the proportion of actual negatives that are

correctly identified as defined in (7) and (8).

Sensitivity

~
number of true positives

number of true positivesznumber of false negatives

ð7Þ

Specificity

~
number of true negatives

number of true positivesznumber of false negatives

ð8Þ

The average sensitivity was 92.2% varying among different

subsets of data especially those from population based studies

collected from different regions. The specificity was 90.4%. 98.2%

were true normal among all images the system considered as

normal. All test images were masked so the system had not been

exposed to them before. The images ranged between 463 KB and

7.1 MB and were stored in JPEG or TIFF formats. The accuracy

was measured on an image-basis rather than patient-basis.

Mistakes occurred on those images from the patients who had

some form of treatment or when artifacts were present in the

image. There were still some cases when blood vessels were

mistaken as haemorrhages. The false negative results were largely

due to subtle clinical signs that were much less visible against either

a very bright background or a very dark one. Further evaluation

highlighted two reasons for this. Firstly the contrast between the

clinical sign and the background was extremely low and we yet to

improve the algorithm to enhance such contrast. Secondly, many

new patterns were only seen when testing the system on a much

larger scale of data. In the work reported in this paper, we used

limited instances in the training data as shown in Table 3, with

total number about 400. These were mainly taken from our image

collections from hospitals, some from the Optimal Detection and

Table 5. Selected individual blood vessel classifiers with their accuracies.

Blood vessel classifiers (represented in their
index numbers) Feature set (1/2) Accuracy of individual classifier

69 1 91.67%

64 1 90.46%

8 2 89.31%

82 1 86.68%

63 2 91.24%

27 1 90.78%

42 2 92.11%

68 2 91.98%

78 1 73.16%

1 1 90.02%

46 2 90.65%

4 2 89.97%

33 2 92.24%

72 1 91.59%

73 1 90.68%

doi:10.1371/journal.pone.0066730.t005

Table 6. Comparison between different evolutionary algorithms.

Accuracy

Population Generation

M-
HMM

GA-
HMM

MA BV BG MA BV BG

30 30 96.41% 93.25% 91.04% 96.19% 92.64% 90.49%

30 60 96.86% 93.36% 91.04% 96.19% 92.33% 91.22%

50 30 97.04% 94.79% 91.41% 93.95% 93.25% 91.22%

50 60 97.09% 92.64% 91.77% 96.86% 94.17% 91.60%

doi:10.1371/journal.pone.0066730.t006
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Decision-Support Diagnosis of Diabetic Retinopathy [55] data-

base. Compared with nearly 10,000 unseen test images, this

demonstrates the scalability of the system, however, there are

many more patterns that have not been considered when the

current system was implemented.

Discussion

The problem of scalable image recognition has long been a

research issue in computer vision. In this research, this is addressed

by providing a solution in which ensembles of very large numbers

of classifiers for various image content are developed in order to

capture as many perspectives of the problem space as possible.

These collections of classifiers are then optimised using evolution-

ary algorithms in order to discover the optimal features and

classifiers. For MA, its visual context is represented using Hidden

Markov Models that are established through evolutionary

computation. This can be done in concert with the search for

optimal features and classifiers. In other words, finding the most

suitable contextual models will concurrently guide the selection of

features and classifiers. Finally, information from optimised

classifiers and context models are fused together to reason and

determine the overall image content. This proposed approach has

been tested on a large collection of fundus images from different

populations, which exhibits great variability and diversity. Based

on the proposed solution, the system is able to recognise the key

DR signs and ultimately, to separate normal and abnormal images

with a promising accuracy. Evaluation has shown that the

evolutionary approach of incorporating context analysis and

classification has significantly improved the recognition accuracy

compared with traditional approaches.

The sensitivity and specificity obtained through the framework

is promising. Most importantly, among all the images that the

system decided as normal, around 98.2% of those were true

Table 7. C-HMM performance.

Population Generation Final no. of Classifiers Ensemble accuracy C-HMM accuracy

30 30 48 81.8% 94.9%

30 60 56 84.1% 95.4%

50 30 52 85.9% 96.1%

50 60 50 85.1% 97.8%

70 30 45 83.8% 95.1%

70 60 43 84.1% 93.9%

doi:10.1371/journal.pone.0066730.t007

Figure 3. Processed image for microaneurysms detection. Black boxes (Not MA), white Boxes (MA).
doi:10.1371/journal.pone.0066730.g003
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normal. This is especially meaningful if the system is to be

developed for a screening tool either in recognizing DR or pre-

evaluating population based image sets. For the data collected

from Kenya, the specificity is lower compared with other datasets.

It was mainly because most of the data from Kenya are normal

images due to the fact that those data were collected from general

population rather from diabetes population. The measure of the

accuracy is image-based, rather than patient based. The sensitivity

is expected to be higher if it is patient-based, when the joint of all

the images from one patient are considered.

The system, however, is extremely inefficient both during

training and decision making process. The current version of the

software is written in Matlab and C++. The decision making

process takes about 10–25 minutes on Macbook Pro with Intel

Core i7-2720QM at 2.2GHz and 8GB RAM, depending on how

many candidate microanueryms are obtained during segmentation

process. The multiple classifiers and HMM take most of the

processing time. Some preliminary performance analysis shows

that the current software can be at least improved by optimizing

the program code. Although applying HMM as a context model

proved to be effective for detecting MA and naturally similar

method should be extended for other DR signs, given the

expensive computation cost of the current system, this is not

implemented yet. Furthermore, current testing on the data

collected from Kenya shows that the system fails consistently to

recognize very subtle and numerous drusen present in images like

the one shown in Figure 4. The drusen found in this population

are extremely subtle blending into the retinal background. The

current system often fails to identify them during the segmentation

stage. Although the presence of drusen is not categorized as DR, it

is an early sign of macular degeneration thus it is important to

detect it. As the system is testing on data from diverse populations,

we expect there will be more new patterns that the system needs to

continue to learn about. For example, when examining data

collected from Botswana there are also many cases of Retinitis

Pigmentosa, which confuses the haemorrhage detector in the

current system. Re-training the system using further samples

containing new patterns proves to be difficult due to extremely

lengthy training process. Alternative but more efficient methods

are currently being investigated.

Diabetic retinopathy detection algorithms seem to be maturing

[40], the scalability of such system is still unknown until it is tested

on very large scale data across diverse populations.
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