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The J-value is an objective method for determining when life extending measures are sen-

sible, applicable to both manufacturing and service industries, including public health and

healthcare. A model of human decision making based on the J-value is able to explain the

shape of the Preston curve that relates life expectancy at birth and gross domestic product

(GDP) per head for all the nations in the world. Making a number of reasonable assumptions,

a  J-value model produces a population-average life expectancy, which may be translated

easily  into a corresponding life expectancy at birth when life expectancy is not modified

by  discounting (net discount rate equals zero). The resultant values may be tested against

pan-national data, showing a very good match. Thus the shape of the Preston curve has

been  explained and, at the same time, validation has been provided for the J-value model.

A  perturbation analysis shows that the J-value explanation for the Preston curve starts to

break  down as the net discount rate is increased above zero. Thus the Preston curve may

be  seen to validate the J-value model at a net discount rate of zero, but not at higher net

discount rates. The result allows a closed-form expression to be derived for the first time

for the pure time discount rate, namely the product of the rate of economic growth and

the  complement of risk-aversion. A further conclusion from the work is that no discernable

limit  is apparent before the age of 100 to the process by which people live longer as they get

richer; such an intrinsic limit might be overcome by future improved medical technology.
©  2018 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical

Engineers. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

ing nuclear safety, including assessing mitigation strategies following

large accidents like Chernobyl and Fukushima Daiichi.
.  Introduction

he J-value (Thomas et al., 2006a,b; 2010a) is an objective method for

etermining when life extending measures are sensible, applicable to

oth manufacturing and service industries. Based on the life-quality

ndex (Nathwani and Lind, 1997; Nathwani et al., 2009), the method

ssumes that a rational trade-off is made between an increase in life

xpectancy and the cost of the measure that brings about that increase,

ith the ultimate objective of maintaining or improving life quality.

The J-value has the considerable advantage over conventional cost

enefit analysis that no explicit assumptions have to be made about
he difficult issue of the monetary value to be attached to saving a
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human life. Instead of using subjective stated preferences of a small

sample of the population exposed to a hazard, it is instead grounded in

objective actuarial and economic statistics characterising the lives and

behaviours of millions of citizens. It is thus suitable for assessing health

and safety measures across all industries, from oil and gas, chemical

and nuclear through transport to the National Health Service in the UK.

Also, unlike other approaches, the J-value allows immediate fatalities

and loss of life in the longer term (e.g. after exposure to a carcinogen) to

be measured on the same scale. It is thus particularly suitable for judg-
ail.com (P.J. Thomas).
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Fig. 1 – The Preston curve—life-expectancy at birth (years)
as a function of GDP per capita (international dollars) for
the 180 countries for which both datasets are available for

2009 (OECD, 2011; World Bank, 2012a,b).

An ethical principle of J-value analysis is that the next day of life

should be valued the same for everyone in the nation, old or young,

rich or poor. This principle is reflected in the use of the gross domes-

tic product (GDP) per head as the baseline annual income used in the

definition of life quality.

The Preston curve (Preston, 1975) highlights the fact that there is

a clear, positive correlation between the GDP per head in different

countries in the world and the average length of time people in those

countries can expect to live. See Fig. 1, which shows results from 180

out of the 193 nations affiliated to the United Nations. To the authors’

knowledge, no successful, theoretical explanation has been put for-

ward for the shape of the Preston curve up to this point.

The paper will suggest how the actions of the peoples in dif-

ferent nations in the world can be characterised by a life-extension

assessment procedure based on J-value principles, and the resultant

mathematical model will be used to explain the form of the Preston

curve. The process of explanation can also be seen as a test of the J-

value model, and, indeed a severe test, since the model is required to

match data derived from the decisions of almost everyone in the world

when grouped together into nations. Hence passing this test will pro-

vide a substantial degree of validation (Popper, 1934; Butterfield and

Thomas, 1986a,b; Thomas, 1999) for the J-value method. This valida-

tion exercise is additional to and complementary to the corroboration

reported in Thomas (2017a,b), where the J-value model was tested

against UK data on life expectancy at birth.

2.  The  J-value

The J-value is derived from the life quality index (LQI), Q,
(Nathwani and Lind, 1997; Pandey et al., 2006; Nathwani et al.,
2009; Thomas et al. 2006a, 2010a):

Q = G1−εXd (1)

where G is the income per person, taken for ethical reasons to
be the GDP per head (£/year) and thus the same for everyone
in the same national jurisdiction, while ε is the risk-aversion
associated with measures that will extend life expectancy,
estimated previously at between 0.82 and 0.85 for the UK
(Thomas et al., 2010a,b). See also Blundell et al. (1994) who
suggest a figure of 0.83 using a diverse method and Pearce
and Ulph (1995), who suggest a range 0.8–0.9. Meanwhile Xd

is the discounted life expectancy of the population as a whole
(years).
It may be seen from Eq. (45) of Thomas et al. (2010a), that
discounting is actually applied to the utility of income in
future years, but the fact that the necessary integrand con-
sists of the product of discount factor, utility and survival
probability means that it is convenient to define the integral
of {survival probability × discount factor} as the “discounted
life expectancy”. The choice of title reflects the fact that the
discounted life expectancy, Xd, will degenerate to the life
expectancy, X, when the net discount rate is zero. The net
discount rate, r, is given generally by

r = � + gε − g = � − g (1 − ε) (2)

where � is the pure time preference rate and g is the growth
rate of the economy, both of which might differ between dif-
ferent nations (Thomas, 2012).

A condition for a life-extending measure to be rationally
justified is that the life quality index should not fall as a result
of a person spending an annual amount, ıG, from his income
on the health and safety measure for the rest of his expected
life, causing a decrement, −ıG in his annual income. In line
with the Kaldor–Hicks compensation principle (Kaldor, 1939;
Hicks, 1939), while the individual would be prepared to spend
such an amount, the annual payment might actually be made
(and in many  cases will be made) by some other person or
body. Assuming a constant value of net discount rate, r, the
change in LQI due to small changes in income and discounted
life expectancy, ıXd, is

ıQ = − ∂Q

∂G
ıG + ∂Q

∂Xd
ıXd

= − (1 − ε) G−εXdıG + G1−εıXd

(3)

Dividing by Eq. (1), we find

ıQ

Q
= − (1 − ε)

ıG

G
+ ıXd

Xd
(4)

The maximum rational annual expenditure on life exten-
sion will occur when ıQ = 0 and, for non-zero Q, this will occur
when

ıXd

Xd
= (1 − ε)

ıG

G
(5)

which thus defines ıG. If the actual annual expenditure is ıĜ,
then the J-value is given by:

J = ıĜ

ıG
(6)

Thus J = 1 defines the locus of a curve in the plane of G versus
Xd where life quality, Q, is maintained constant. See Fig. 2.

3.  Life  expectancy  and  discounted  life
expectancy

The life expectancy at age a is given by the integral of the
conditional survival probabilities:

X (a) =
∞∫

t=a

S (t|a) dt ==
∞∫

t=a

S (t)
S (a)

dt (7)

where S (t) is the cumulative probability of survival to age, t,

from age, 0. It may be helpful, by way of example, to observe
that the life expectancy at birth, X (0),  averaged across the two
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Fig. 2 – J = 1 defines the locus of the line in the plane of G vs.
X that maintains the life quality index constant.
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enders is currently about 81 years in the UK, while the gender-
veraged life expectancy of a 60 year old, X (60), is about 24
ears.

A further useful expression (e.g. Thomas et al., 2006c) for
 steady-state population relates the probability density for
ge, t, p (t),  to the survival probability to age, t, S (t),  and the life
xpectancy at birth, X (0):

(t) = S (t)
X (0)

(8)

eanwhile, the discounted life expectancy at age, a, is found
y inserting the discounting term, e−r(t−a), into the integral of
q. (7):

Xd (a) =
∞∫

t=a

S (t|a) e−r(t−a)dt =
∞∫

t=a

S (t)
S (a)

e−r(t−a)dt

=
∞∫

t=a

p (t)
p (a)

e−r(t−a)dt

(9)

he discounted life expectancy for the population as a whole
ollows from integrating over all possible ages:

d =
∞∫

a=0

p (a) Xd (a) da =
∞∫

a=0

∞∫
t=a

p (t) e−rteradtda (10)

hanging the order of integration:

Xd =
∞∫

t=0

t∫
a=0

p (t) e−rteradadt

=
∞∫

t=0

p (t) e−rt

t∫
a=0

eradadt

(11)

ow

t∫
erada =

⎧⎨ 1
r

[era]a=t
a=0 = 1

r

(
ert − 1

)
forr > 0

(12)
=0
⎩

t forr = 0
Thus,

Xd =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
r

∞∫
t=0

p (t) e−rt
(

ert − 1
)

dt = 1
r

∞∫
t=0

p (t)
(

1 − e−rt
)

dt for r > 0

∞∫
t=0

p (t) tdt = E (T) =  X for r = 0

(13)

The second line gives the result that if a person is drawn at
random from a steady-state population and if the net discount
rate is zero, the discounted life expectancy is the expected
value E(T) of this individual’s random age, T. Moreover, since
Xd|r=0 = X by definition, this will be equal to the average life
expectancy, X, in the population.

Meanwhile the discounted life expectancy at birth is found
by putting a = 0 into Eq. (9) and noting that S (0) = 1 for live
births:

Xd (0) =
∞∫

t=0

S (t) e−rtdt = X (0)

∞∫
t=0

p (t) e−rtdt (14)

Hence

∞∫
t=0

p (t) e−rtdt = Xd (0)
X (0)

(15)

Substituting into Equ. (13) relates the population average dis-
counted life expectancy, Xd, to both the net discount rate,
r, and the ratio of discounted, Xd (0), to undiscounted life
expectancy, X (0),  at birth:

Xd =
∞∫

t=0

p (t)
1  − e−rt

r
dt = 1

r

⎛
⎝ ∞∫

t=0

p (t) dt −
∞∫

t=0

p (t) e−rtdt

⎞
⎠

= 1
r

(
1 − Xd (0)

X (0)

) for r > 0

(16)

A problem with using Eq. (16) to calculate discounted life
expectancy, Xd, is that it requires a knowledge of discounted
life expectancy at birth, Xd (0). An alternative formulation
takes Eq. (13) as its starting point, as is explained in the next
section.

4.  Relating  age-averaged  discounted  life
expectancy,  Xd,  to  life  expectancy  at  birth,  X(0)

The series expansion for a negative exponential is:

e−x = 1 − x + x2

2!
− x3

3!
+ ... = 1 −

n∑
i=1

(−1)n−1

n!
xn asn → ∞ for all finite x

(17
This may be applied to Eq. (13) for the case where r > 0:
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Fig. 3 – Ratio of the nth root of the expected value of the nth
Xd = 1
r

∞∫
t=0

p (t)

(
1 −

(
1 −

n∑
i=1

(−1)n−1

n!
rntn

))
dt

= 1
r

⎛
⎝r

∞∫
t=0

p (t) tdt − r2

2!

∞∫
t=0

p (t) t2dt + r3

3!

∞∫
t=0

p (t) t3dt...

+ (−r)n−1

n!

∞∫
t=0

p (t) tndt

⎞
⎠

asn → ∞

(18)

But

∞∫
t=0

p (t) tdt = E (T) (19)

where E (T) is the 1st moment of age or mean age of the popu-
lation. Moreover, from Eq. (13) it is also the population average
life expectancy for a steady-state population: E (T) = X. Simi-
larly,

∞∫
t=0

p (t) t2dt = E
(

T2
)

∞∫
t=0

p (t) t3dt = E
(

T3
)

∞∫
t=0

p (t) t4dt = E
(

T4
)

...

(20)

where E (Tn) is the nth moment of age about the origin. There-
fore:

Xd = 1
r

(
rE (T) − r2

2!
E
(

T2
)

+ r3

3!
E
(

T3
)

− r4

4!
E
(

T4
)

...

)
= E (T) − r

2!
E
(

T2
)

+ r2

3!
E
(

T3
)

− r3

4!
E
(

T4
)

+ ...

+ (−r)n−1

n!
E (Tn)

as  n → ∞

(21)

We  may proceed further by defining the moment ratio, � (n),
as the ratio to the mean of the nth root of the nth moment of
age about the origin:

� (n) = (E (Tn))
1
n

E (T)
(22)

Starting from � (1) = 1, � (n) is a monotonically increasing
function of power, n. See Fig. 3.

The mean age of the population will be a proper fraction,
b, of the life expectancy at birth:

E (T) = X = bX (0) (23)

where b will depend on the GDP per head, b = b (G) (Appendix
C derives an approximate relationship). Eq. (22) then becomes,
E (Tn) = �n (n) Xn = (b� (n))nXn (0) (24)
moment of age about the origin to the mean age.

Substituting from Eq. (24) into Eq. (21) then gives,

Xd = b� (1) X (0) − r

2!
(b� (2))2X2 (0) + r2

3!
(b� (3))3X3 (0)

− r3

4!
(b� (4))4X4 (0) + r4

5!
(b� (5))5X5 (0) + ...

+ (−r)n−1

n!
(b� (n))nXn(0)

asn  → ∞ (25)

Eq. (25), in principle exact as n → ∞,  illustrates how pop-
ulation discounted life expectancy, Xd, is related analytically
to life expectancy at birth, X (0),  with net discount rate, r, as
parameter.

5.  The  life-expectancy  ratio,  b,  and  the
moment  ratio,  �(n)

An expression for life-expectancy ratio, b, is derived in
Appendix C, where, based on World Bank data from 2008 and
the piece-wise linear models of Appendix A, the b-value is
shown to start at 2⁄3 for undeveloped countries and decrease
towards ½ for highly developed countries. The progression is
shown to be represented well by a first-order lag with GDP per
head as the base parameter, Eq. (C1), repeated below:

b = bs + (b0 − bs) e− G
GT (C1)

where b0 = 0.667, bs = 0.52 and GT = 4295 Int$ per year. An
important feature of this model (matched by the data) is that
there is only a small variation in b once GDP  per head has
reached 12,900 Int$ per year.

The life-expectancy ratio, b, for the UK for 2009 (ONS,  2016)
may be calculated as 79.76/41.07 = 0.515. Applying Eq. (A28)
from Appendix A allows the value of the parameter, k, used
in the piecewise-linear survival function to be determined as
k = 0.299. The estimated nth moment of age about the origin,
E(Tn)∗, follows from Eq. (A25), repeated in abbreviated form
below:

E(Tn)∗ = (1 + k)n+2 − (1 − k)n+2

2k (n + 1) (n + 2)
Xn (0) (26)
Applying Eq. (22) then gives the estimated moment ratio,
�∗ (n). Table 1 compares the moment ratios calculated by Eq.
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Table 1 – Moment ratios, �(n), n = 1–5 for UK 2009.

n �∗ (n) using
Eq. (27)

� (n) from
life-tables

Correction
factor, ˛ (n)

1 1 1 1
2 1.170354 1.165885 0.996181
3 1.293044 1.282562 0.991894
4 1.388475 1.371293 0.987625
5 1.466211 1.442172 0.983604

Fig. 4 – Discounted population-average life expectancy:
comparison of methods of calculation for Mozambique,
Ukraine and Japan.
(It is difficult to distinguish the two curves on this scale for
Japan and almost impossible for Ukraine. Meanwhile the
c
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w

e
5
d
r
M
i

6
d

H
a
t
p
t

(

(

urves lie very close together for Mozambique).

26) with those calculated using the UK 2009 life tables and the
LEARE computer program.

A correction factor, ˛ (n),  close to unity, may be applied to
ring them exactly into line and it will be assumed henceforth
hat,

(n) ≈ ˛ (n) �∗ (n) (27)

ill be applicable across all nations.
Fig. 4 compares the discounted, population-average life

xpectancies calculated using the methods of Sections 4 and
 with a more  accurate method that uses the full life-table
ata. It is clear that the 5th-order polynomial gives a good
epresentation of reality over the full range of nations, from
ozambique, which had a life expectancy at birth of 51 years

n 2008 to Japan, with a life-expectancy at birth of 82.6 years.

.  Application  of  the  J-value  across
ifferent  nations

ere it is supposed that a typical nation in the world will
ttempt to improve the quality of life of each of its citizens by
aking a rationally balanced view of measures to increase the
opulation-average life expectancy. Specifically, it is assumed
hat in all nations:

i) People will decide to spend the same fraction, a, of their
national income per head on life-extending measures
(which will include not only medical services but also,
for example, the supply of plentiful and clean drink-
ing water, the installation and maintenance of effective

sewage disposal systems and the regulation of safe trans-
port systems). The sum spent per person is then,
y = aG (28)

The value of a will lie in the interval 0 < a ≤ 1.0, but it is
not necessary to specify the fraction, a, further for the
purposes of this paper other than to say that it is likely to
lie at the lower end of its range;

(ii) Within the budget defined by Eq. (28), the average person
in the nation will spend on health and safety measures
resulting in life extension an overall amount such that a
J-value of unity will result, implying that this spending
will just maintain the life quality index: ıQ = 0;

iii) The value of risk-aversion, ε, applicable when decisions
on life extension are being made, will remain constant as
wealth and life expectancy increase in tandem and will
be the same for all nations in the world;

(iv) The net discount rate, r, applied to life expectancy will
remain constant as wealth and life expectancy increase
in tandem.

Health care spending across the world has been examined
in Thomas (2017a), who finds that, while the world-average
spend as a fraction of per capital GDP has remained a broadly
constant fraction, 10%, of GDP per head for the past 10
years (World Bank, 2012a,b,c), there are significant differ-
ences between countries. Thomas (2017a) shows that the
health spending per head in less developed countries remains
a roughly constant fraction of GDP per head, but that the
more  developed nations are steadily increasing the fraction
of GDP per head devoted to health care. This is consistent
with the J-value assumption of overall expenditure per head
on health and safety being proportional to GDP per head under
the following argument. Having installed many  of the public
health measures that yield very large improvements in life
expectancy, the more  developed countries need to turn their
attention increasingly to individual health care provision and
hence, within the overall envelope of health and safety spend-
ing, to spend a growing fraction of GDP per head on individual
health care. By contrast it makes sense for less developed
countries to devote a higher fraction of their resources to
improving public health and infrastructure (for example the
supply of clean drinking water and the introduction of effec-
tive sewage disposal systems), and, by the same token, a lower
fraction of GDP per head on individual health care. Such health
care spending can be expected to remain a constant fraction
of GDP per head as long the opportunities for extending life
expectancy elsewhere are good enough to remove the incen-
tive to expand health care provision.

In view of the many  and various demands on resources,
health and safety measures will take up a relatively low pro-
portion of the average person’s income. Moreover, the average
life extension generated is likely to be a small fraction of the
average person’s current life expectancy. Hence, Eq. (5) may be
written in differential form, thus giving the rate of change of
life expectancy with GDP per head:

dXd

dG
= (1  − ε)

Xd

G
(29)

Differentiating Eq. (28) gives,
dy

dG
= a = y

G
(30)
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Fig. 5 – Ln X vs ln G for 180 nations in 2009 (the “Bristol
curve”). 18 outliers (marked with crosses) were  excluded
from the final fit (OECD, 2011; World Health Organization,
2012).
Meanwhile another expression for dXd/dG may be found from
the formal differentiation:

dXd

dG
= dXd

dy

dy

dG

= dXd

dy

y

G

(31)

where Eq. (30) has been used in the second step.
Substituting from Eq. (31) into Eq. (29) gives:

dXd

dy

y

G
= (1 − ε)

Xd

G
(32)

and so:

dXd

dy
= (1  − ε)

Xd

y
(33)

Now consider nation A, where the average individual has an
income (GDP per head), GA, a corresponding health and safety
spend, yA = aGA, and a discounted life expectancy of XdA. If the
average wealth, and so the amount that can be afforded for
health and safety, increases, then the basic health and safety
measures that initially cost yA will be augmented so that the
total cost gradually increases to a new value, y. Hence we  may
integrate Eq. (33) according to,

Xd∫
XdA

1
X′ dX′ = (1 − ε)

y∫
yA

1
y′ dy′ (34)

This gives

ln
Xd

XdA
= (1 − ε) ln

y

yA
(35)

or

Xd = XdA

(
y

yA

)1−ε

(36)

Furthermore, based on Eq. (28), we  can write:

G

GA
= y

yA
(37)

Hence

Xd

XdA
=
(

G

GA

)1−ε

(38)

Thus the population-average life expectancy scales with
GDP per head according to Eq. (38), parameterized by the risk-
aversion, ε. Eq. (38) constitutes the “J-value model” of the
growth in national life expectancy: as GDP per head rises from
an initial value, GA, to a higher figure, G, so population-average
discounted life expectancy will rise from XA to X.

Alternatively, if another country has a greater GDP per
head, GB, that country’s discounted life expectancy is pre-
dicted to take the higher value, XdB:

XdB = XdA

(
GB

GA

)1−ε

(39)
Hence we  propose that Eq. (38) should apply across all nations,
each of which will use the same value of risk-aversion, ε,
and the same value of net discount rate, r (the uniformity
of risk-aversion and of net discount rate across nations are
mathematical constraints inherent in the derivation of Eq.
(39)). This proposal incorporates the egalitarian assumption
that people in all nations will act equivalently, given the same
level of GDP per head.

By its nature, the model is constrained to be a steady-state
description, as large changes in national income might require
structural change before feeding through into changes in life
expectancy. Hence one would expect its predictions to be best
when a country’s conditions are settled and to lose accuracy
the further those conditions are from a steady state. Poor pre-
dictions could thus be expected if the nation’s GDP per head
has undergone a major change or if it is experiencing war or
major unrest. For example, the discovery of significant min-
eral wealth might boost GDP per head very quickly but not
be reflected in improved health and hence life expectancy for
many years.

Eq. (38) may be written in the logarithmic form:

ln X = (1 − ε) ln
(

G

GA

)
+ ln XA (40)

Given that risk-aversion, ε, is constant in the model, Eq.
(40) has the linear form y = mx + c. Once a reference nation,
A, with GDP per head, GA, and life expectancy, XA, has been
selected, it is possible to fit a regression line to find the slope
and hence the risk-aversion, ε. It is found from the data of 180
countries out of 193 registered with the United Nations that
ε = 0.95, with the square of the correlation coefficient, R2, tak-
ing the value of 0.6. When the number of countries is reduced
to 162, the risk-aversion stays the same, ε = 0.953 (with a 90%
confidence interval of 0.950–0.956), but R2 rises to 0.8. This is
the line shown in Fig. 5, which explains 80% of the variation in
the logarithm of population-average life expectancy of the 162
nations in terms of the logarithm of GDP per head. The best-
match value of risk-aversion lies within 10% ± 5% of the values
derived by diverse methods: 0.82 (Thomas et al., 2010a), 0.83
(Blundell et al., 1994), 0.85 (Thomas et al. 2010b) and 0.8–0.9
(Pearce and Ulph, 1995).

The 18 outliers marked in Fig. 5 are: Afghanistan, Angola,
Botswana, Cameroon, Chad, Congo, Cote d’Ivoire, Equato-
rial Guinea, Eritrea, Gabon, Guinea-Bissau, Lesotho, Malawi,
Namibia, Nicaragua, South Africa, Swaziland, Zambia. Argu-

ments can be made for why many  of these countries should
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e regarded as being in an unsteady state, but further research
s desirable on this topic.

.  Validation  of  the  J-value  model

he philosophy of model validation is discussed in Thomas
1999). See also Butterfield and Thomas (1986a,b). Suppose we
ave a mathematical model that makes a set of predictions;
ow much logical justification can we have for regarding these
redictions as correct? The basis for an answer to this question
as provided by the philosopher Sir Karl Popper in 1934, who
as interested in the characteristics of a scientific theory. (We
ay note here that a mathematical model, perhaps embod-

ed in a computer programme may be regarded as a scientific
heory—and a very well documented theory at that.) Popper’s
onclusions (Popper, 1934) were that:

. To be deemed scientific, a theory must be “falsifiable”. That
is to say, it must be empirically testable, in principle at least,
and there must be some test that we  can set for the theory
in which an unfavourable outcome will prove the theory
wrong; and

. There can never be a rigorous logical justification for any
scientific theory. The best we can do is to set empirical tests
for the theory – fair tests, but the more  severe the better –
and continue to use the theory only so long as the theory
passes all the tests.

 theory can never be proved by any of its successes, since a
ew test, perhaps as yet not thought of, may come along that

t will fail. Failure in any fair test, on the other hand, indicates
 fault in the theory: “falsifies” it. At this stage, effort will need
o be spent in improving the theory or devising a completely
ew theory.

Following Popper’s conclusions, we  see that we  will never
e able to prove beyond doubt that any model is correct, a

udgement that must be applied to many  famous and gener-
lly applied theories, from Newton’s Laws of Motion through
instein’s General Relativity to Quantum Theory, for example.
odel validation does not and cannot prove the model or the-

ry is correct. On the other hand, confidence in the model’s use
n practical situations is generated when that model passes a
air test, especially a test that is difficult as well as fair.

The fact that the J-value model produces a risk-aversion
alue close to previous, diverse estimates while generating a
igh value for the R2 statistic provides a high degree of cor-
oboration for the J-value model. Meanwhile predicting the
ocio-economic behaviour of most countries in the world in
pplying health and safety measures (180 nations at R2 = 60%
nd 162 out of the 193 countries in the United Nations at
2 = 80%) can hardly be regarded as an easy problem. Hence

t is argued that the J-value model has passed an important
nd difficult validation test. The J-value model may thus be
egarded as validated in the sense of having been proved
trong (L: validus) although, of course, not proven true, the
atter being impossible for any scientific theory.

The R2 value found for the logarithm of population-average
ife expectancy in terms of the logarithm of GDP per head for
he 162 nations is high at 80%, which corresponds to a cor-
elation coefficient of just under 90%. Nevertheless it allows
or residual differences in the way in which different nations

pply their resources to health and safety spending. As noted
n the brief discussion on outliers, some nations may fulfil bet-
ter the requirement to have reached (or be close to) a steady
state, perhaps much better than others. But there may also be
other differences arising independently as a result of different
cultures and different styles of government.

Some might suppose that assumption (ii) in Section 6
implied the conscious use of the J-value method in deciding
the level of resources to devote to improving health and safety
in any given case. This supposition might then be followed by
an ethical objection to taking economic factors into account
(as implied by the J-value method) when making decisions on
life extension. But in fact no claim has been made that people
have been performing J-value calculations in their heads; nev-
ertheless the good match between the J-value model and the
observations suggests that the world’s nations are allocating
societal resources to extending life as if they were using such
a method. Regarding such socio-economic models, Bueno de
Mesquita (2009) provides useful clarification on the intent of
such mathematical descriptions:

“Real people may not be able to do the cumbersome math
that goes into a model, but that doesn’t mean they aren’t
making much more  complicated calculations in their heads
even if they don’t know how to represent their analytic
thought processes mathematically.”

He illustrates the point further by pointing out that no player
could or would solve the plethora of differential equations on
angle, velocity, position, wind-speed etc. needed to model the
process of playing a normal return shot in tennis. Friedman
(1953, 1966) makes a similar point with respect to billiards pro-
fessionals, and also to whether or not businessmen are aware
that their behaviour is well predicted by marginal analysis:

“The articles on both sides of the controversy largely
neglect what seems to me  clearly the main issue – the con-
formity to experience of the implications of the marginal
analysis –and concentrate on the largely irrelevant ques-
tion whether businessmen do or do not in fact reach their
decisions by consulting schedules, or curves, or multi-
variable functions showing marginal cost and marginal
revenue.”

He takes the argument further by stating

“Truly important and significant hypotheses will be found
to have ‘assumptions’ that are wildly inaccurate descriptive
representations of reality, and, in general, the more  signif-
icant the theory, the more  unrealistic the assumptions (in
this sense). The reason is simple. A hypothesis is important
if it ‘explains’ much by little, that is, if it abstracts the com-
mon  and crucial elements from the mass of complex and
detailed circumstances surrounding the phenomena to be
explained and permits valid predictions on the basis of
them alone. To be important, therefore, a hypothesis must
be descriptively false in its assumptions; it takes account
of, and accounts for, none of the many  other attendant
circumstances, since its very success shows them to be
irrelevant for the phenomena to be explained.

“To put this point less paradoxically, the relevant question
to ask about the ‘assumptions’ of a theory is not whether
they are descriptively ‘realistic’, for they never are, but
whether they are sufficiently good approximations for the
purpose in hand. And this question can be answered only

by seeing whether the theory works, which means whether
it yields sufficiently accurate predictions.”
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The J-value model, developed to explain pan-national
differences in life expectancy with GDP per head as just dis-
cussed, has been tested elsewhere in a different role, namely
the prediction of future life expectancy at birth within a given
country (Thomas, 2017b). Drawing on results specific to the
Preston curve that are derived in the next section and includ-
ing an allowance for the steady reduction over the past 50
years in the gap between male and female life expectancies
at birth in industrialised countries, the J-value model incorpo-
rating “male catch-up” has been validated against UK data on
life expectancy at birth over the 20 year period, 1985–2005. In
addition, a close correspondence has also been found between
20 year forecasts for life expectancy at birth in 35 industrial-
ized countries made by the J-value model incorporating male
catch-up and those produced in a recent study that applied
Bayesian model averaging to 21 demographic projection mod-
els (Kontis et al., 2017).

The calculations were made using the figure for risk-
aversion, εP, derived in the next section for use with the
Preston curve, namely εP = 0.91, slightly less at than the general
figure for the Bristol curve. (See Thomas, 2016, for a general
discussion of the risk-aversion parameter, ε.) Obviously the
remarks of Bueno de Mesquita and Friedman apply here also:
the people of the UK were not making J-value calculations dur-
ing that 20-year period, but the growth in life expectancy over
that time can be modelled well using the J-value assumptions
(i)–(iv), listed at the beginning of Section 6.

The J-value model for life expectancy emerges as a scien-
tific theory, which can be tested. It has been validated in two
independent tests, first in accounting for the differences in
population-average life expectancy amongst nations and sec-
ond in explaining the growth in life expectancy at birth within
the same nation. These successes cannot be taken as implying
that the model and its assumptions are true, but they do give a
significant degree of confidence in the continuing, future use
of the J-value method for assessing whether or not the cost of
a safety measure is reasonable and hence whether it should
or should not be implemented.

8.  Explaining  the  Preston  curve

As shown above, the J-value model has provided a confirmed
prediction for the form of the curve relating population-
average life expectancy, X, to GDP per head, G. To facilitate
discussion, this curve will be referred to in the rest of the paper
using another British place-name, and so the “Bristol curve”,
reflecting the city in which the two authors of this paper work.
But the Preston curve (named after Samuel Preston) comprises
something slightly different, namely the relationship of life
expectancy at birth, X (0), to GDP per head, G. Do the results
carry over from the Bristol to the Preston curve, and if so, how?

8.1.  Deriving  the  decrement  in  risk-aversion,  �

To answer the question, we shall generalise by considering
first what the population-average discounted life expectancy
depends on.

Holding the net discount rate, r, constant, the common
term, X (0),  in the expansion of Eq. (25) means that the
population-average discounted life expectancy for a general
nation may be written:
Xd = X (0) f (X (0)) (41)
In the particular case of nation A, Eq. (41) may be written:

XdA = XA (0) fA (XA (0)) (42)

so that,

Xd

XdA
= X (0)

XA (0)
f (X (0))

fA (XA (0))
(43)

Using Eq. (38) and rearranging gives:

X (0)
XA (0)

=
(

G

GA

)1−ε fA (XA (0))
f (X (0))

(44)

Now let the dimensionless quantity, fA/f , be represented
by the GDP ratio raised to the power, �, where generality is
assured by allowing � to take both positive and negative val-
ues. In the most general case, � = �(G) and � = constant is a
special instance, which produces the test Eq. (45) below:

fA (XA (0))
f (X (0))

=
(

G

GA

)�

(45)

Substituting from Eq. (45) into Eq. (44) gives:

X (0)
XA (0)

=
(

G

GA

)1−ε+�

=
(

G

GA

)1−(ε−�)
(46)

showing that � is the decrement in risk-aversion arising from
the transposition of life expectancy at birth for population-
average life expectancy. The J-value model will produce the
Preston curve with the same value of risk-aversion when the
risk-aversion decrement is zero, � = 0, and it will give the Pre-
ston curve with a different, constant value of risk-aversion if �

is a constant, independent of G. Both these cases will validate
the test Eq. (45), and, moreover, the J-value model will have
provided an explanation for the Preston curve.

If � varies with G, then the extent of the variation over the
range of possible values of GDP per head will give an indica-
tion of the degree to which observation and model diverge.
A small enough variation of � with G will suggest that the J-
value method can explain the Preston curve, in line with the
general precepts of the Model Distortion method (Butterfield
and Thomas, 1986a,b).

If f and fA are available (or at least approximations to these
functions), then the risk-aversion decrement, �, may be found
by considering Eq. (45) and taking logs:

� =
ln fA(XA(0))

f (X(0))

ln G
GA

(47)

Meanwhile, from Eq. (43):

fA (X (0))
f (X (0))

= XdA

Xd

X (0)
XA (0)

(48)

so that, on combining Eq. (48) with Eq. (47), we  achieve,

� =
ln X(0)

XA(0) − ln Xd
XdA

ln G
GA

(49)

a form that is useful when the relevant life expectancies are
available from life-table calculations.
In the undiscounted case, when r = 0, comparing Eqs.
(25) and (41) shows that f (X (0)) =  Xd/X (0) = b, with the
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Fig. 6 – Risk-aversion decrement, �, calculated for different
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Fig. 7 – The best-fitting power-law model of log
life-expectancy at birth (X (0), years) versus log GDP per
head (G, international dollars) overlaid on the data from the
Preston curve of Fig. 2. Eighteen outliers (marked with
DP per head for nation: 400, 13,600 and 45,000 Int$ p.a.

orresponding expression for nation A being fA (XA (0)) =
dA/XA (0) = bA, so that, from Eq. (47), and nothing that �(1) =
.0

 = ln bA
b

ln G
GA

(50)

Different values of � will result for the same value of G (and
ence b, by Eq. (C1)), depending on the characteristics of the
eference nation A.

If the chosen reference nation, nation A, has a high GDP
er head, e.g. GA = 45,000 Int$ per year and the nation under
xamination has a lower GDP per head, e.g. G = 5000 Int$ per
ear, then not only will G/GA < 1, but, since the life-expectancy
atio falls with income, then bA/b < 1. Hence both logarithms
n Eq. (51) will return a negative value, so that the risk-aversion
ecrement at G, �, will be positive.

On the other hand, if the chosen reference nation, nation
, has a low GDP per head, e.g. GA = 500 Int$ per year and

he nation under examination has a higher GDP per head,
.g. G = 30,000 Int$ per year, then G/GA > 1. Now bA/b > 1 as a
esult of life-expectancy ratio falling with income, so that both
ogarithms in Eq. (50) will return a positive value. Hence the
isk-aversion decrement at G, �, will again be positive. How-
ver the larger figures for � will now occur at higher values
f GDP per head, rather than at the low values found in the
revious paragraphs.

Thus the value of G at which the high and low values of
isk-aversion decrement, �, occurs depends on the choice of
eference GDP per head. Fig. 6, which will be discussed further
n the next subsection, shows that high, positive values of �

ccur at the low end of the income scale if a high GA is chosen,
hereas if a low GA is chosen, then � is low when the GDP per
ead is low, but rises to a peak at about 10,000 Int$ per year
efore declining rather slowly over the rest of the range.

.2.  Calculating  the  decrement  in  risk-aversion,  �

he risk-aversion decrement will be zero when G /= GA if the
ife-expectancy ratios are the same: b = bA. In fact, by the model
f Appendix C, this situation will occur approximately if GA

nd G are both above about 13,000 Int$ (2009) per year.
Using the correlation for life expectancy ratio, b, developed

n Appendix C and setting the income per head of reference

ation, A, at 45,000, 13,600 and 400 Int$ p.a. produces the
raphs of risk-aversion decrement, �, against GDP per head,
crosses) were  excluded from the final fit.

G, previously introduced as Fig. 6. The GA values chosen rep-
resent the cases of high and low income, while the mid-range
figure is the average GDP per head of the 180 countries sur-
veyed. The corresponding square roots of the means of the
integral squared value of � were 0.020, 0.039 and 0.055, with
an arithmetic average of 0.038.

The fairly small size of the average risk-aversion decre-
ment, less than 0.04 compared with the risk-aversion of 0.95
found from the J-value model, suggests that a curve of the
form,

ln X (0) = (1  − (ε − �)) ln
G

GA
+ ln XA (0) (51)

should provide a reasonable fit to the observed data on life
expectancy at birth, X(0) versus, GDP per head, G. With ε = 0.95
and � = 0.04 it could be predicted that an effective risk-aversion
of εP ≈ ε − � = 0.91 would hold for the Preston curve. Further,
the strong variation in risk-aversion decrement below about
13,000 Int$ p.a. and the relative constancy � above that figure
for all the GA curves would suggest that the goodness of fit of
Eq. (51) might be slightly worse below this income level and
better above it.

These conclusions are broadly confirmed by using linear
least-squares curve fitting and finding the slope of the regres-
sion line, 1 − ε, and hence the risk-aversion, ε, for the data on
life expectancy at birth versus GDP per head for the 180 nations
discussed previously. See Fig. 7. The best fitting model for 180
nations has εP = 0.91 and a correlation statistic of R2 = 0.41, not
as high as the figure, R2 = 0.60, found for the Bristol curve, but
moderately good nevertheless.

It can be seen from Fig. 7 that there are a number of points
that lie significantly away from the trend of the data, and 18
countries (10% of the sample) were excluded to assess any
bias introduced to the regression by these points. The quality
of the fit is improved to R2 = 0.78 with no change in the best-
fitting risk aversion of ε = 0.91 (with a 90% confidence interval
of 0.905–0.917):

ln X (0) = (1  − εP) ln
G

GA
+ ln XA (0) (52)

where GA = 7600, XA (0) = 70 and the effective risk-aversion,
εP = 0.91, is in line with the value predicted using an average

value of the risk-aversion decrement, �. Meanwhile the square
of the correlation coefficient, R2 = 0.78, is now almost identical
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Fig. 8 – Risk-aversion increment, �, at different net discount
rates; GA = 13,600 Int$ p.a.

Fig. 9 – Risk-aversion difference versus GDP per head,
to the figure of R2 = 0.80 found for the Bristol curve. It may thus
be seen that the J-value model is able to predict the shape of
the Preston curve with some accuracy.

Since εP < 1.0, Eq. (52) implies that the life expectancy at
birth, X (0),  will rise as GDP per head, G, increases. Eq. (52) sets
no cut-off point for this process, but a limit may be arrived
at when “the inherent life expectancy at birth” is reached,
estimated as about 100 years (see Appendix A, paragraphs fol-
lowing Eq. (A130) and Figs. A4 and A5). However it is possible
that in future years improvements in medical technology may
overcome this apparent limit.

9.  Discounting  population-average  life
expectancy

The arguments of the previous section have established that
the data making up the Preston curve are well represented an
equation of the form:

X (0)
XA (0)

=
(

G

GA

)1−εP

(53)

The value of risk-aversion, εP, used to explain the Preston
curve (which deals with life expectancy at birth) may now be
used as a reference point for judging the effect of discounting
on the risk-aversion, ε, that should be used in J-value calcula-
tions, which deals with the average life expectancy across all
ages in the population.

In the reverse procedure of that used in Section 8, Eq. (53)
may be substituted into Eq. (43) to give,

Xd

XdA
=
(

G

GA

)1−εP f (X (0))
fA (XA (0))

(54)

Let the dimensionless quantity, f/f A, be represented by the
GDP ratio raised to the power, −�:

f (X (0))
fA (XA (0))

=
(

G

GA

)−�

(55)

where � = � (G).  Substituting from Eq. (55) into Eq. (54) gives:

Xd

XdA
=
(

G

GA

)1−εP−�

=
(

G

GA

)1−(εP+�)
(56)

establishing � as the increment in risk-aversion arising from
the transposition of population-average life expectancy for life
expectancy at birth. It may be found by taking logs in Eq. (56),

� =
− ln f (X(0))

fA(XA(0))

ln G
GA

=
ln fA(XA(0))

f (X(0))

ln G
GA

= � (57)

where the final step follows from comparing Eqs. (47) and (57).
The expected identity between � and � emerges.

Eq. (57) may be evaluated for a range of GDP per head, G,
by using Eq. (53) to give X (0) and applying the methods of Sec-
tions 4 and 5 to give the life expectancy ratio, b, and then the
discounted life expectancy, Xd. The function f (X (0)) =  Xd/X (0)
then follows. Fig. 8 gives the results for risk-aversion incre-
ment, �, based on GA = 13,600 Int$ p.a. It can be seen that the
effect of a positive net discount rate is generally to cause an
increase in the value of risk-aversion, ε = εP + �.

Fig. 8 for � at different values of the net discount rate,

r, displays the same distinction between developed and less
well-developed countries as was seen with � (=�)  in Fig. 6,
13,000 Int$ p.a. to 44,000 Int$ p.a.

where a zero net discount rate is assumed, r = 0. The curves of
� and � undergo significantly less variation once GDP is above
13,000 Int$ per head.

The difference between the risk-aversion, ε, at net discount
rate, r, and that at a zero net discount rate is:

ε − ε0 = εP + � − (εP + �0) = � − �0 (58)

This difference is plotted in Fig. 9 for more  developed coun-
tries, with GDP per head above 13,000 Int$ per head and the net
discount rate, r, set successively at 0.5%, 1.0%, 1.5% and 2.0%
p.a. It is clear from the figure that an increase in the net dis-
count rate is accompanied by a corresponding increase in the
risk-aversion to be used in J-value analysis, with the one tend-
ing to counteract the other. So while a higher net discount rate
will cause the amount spent against any particular hazard to
be reduced, this reduction will tend to be offset by the higher
risk-aversion, which will call for the amount to be increased.

The effect may be quantified numerically. From Fig. 9,
ε − ε0 ≈ 0.025 when the net discount rate is r = 1.5% p.a. A cal-
culation may be made at J = 1 of the amount that should be
spent on protecting number of members of the UK public from
a radiation dose of 10 mSv  per year for a period of 10 years. For
example, choosing a risk-aversion, ε = 0.91, for a discount rate,
r = 1.5% p.a., will imply a risk-aversion at a zero discount rate of
ε|r=0 = εo = 0.91 − 0.025 = 0.885. Using this value of ε0 and the

2009 UK life tables values the average future life as £5.18 M
at J = 1. Increasing the net discount rate to 1.5% and using
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Fig. 10 – Risk-aversion increment, �0, at a net discount rate
of zero, countries with GDP per head between 13,000 and
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4,000 Int$ p.a.; GA = 28, 500 Int$ p.a.

he appropriate value of risk-aversion, ε = 0.91, produces an
nchanged figure for the average life to come, namely £5.18 M
t J = 1. The decrease in value due to the higher net discount
ate, r = 1.5% p.a., has been balanced by the increase in value
ue to the higher risk-aversion.

It may be concluded that there will be little point in adding
he complication of a non-zero net discount rate in J-value cal-
ulations of the desirable expenditure to protect against loss
f life expectancy, since the effect will tend to be balanced out
y the rise in the necessary value of risk-aversion, ε.

It is clear that, although the egalitarian model produces an
xcellent fit to the data, there is nevertheless some difference,
etween the way that developed and less developed countries
espond, as illustrated in Fig. 8. To understand the situation
etter for more  developed countries, the spread of national

ncomes per head has been limited in Fig. 10 to between 13,000
nd 44,000 Int$ per year, with the reference level of GDP per
ead set at GA = 28, 500 Int$ per year. The figure shows the
alue of risk-aversion increment, �0, at r = 0, which has a root
ean squared value of 0.005. Because the life-expectancy ratio

s now close to its asymptotic value for countries with a GDP
er head above 13,000 Int$ p.a., the risk-aversion, ε = ε0, used in
ndiscounted J-value calculations is very close to the Preston
urve value:

0 = εP + �0 (59)

here �0 is small. In the limiting case where all countries have
he same life expectancy ratio, b, then �0 = 0, from Eqs. (57) and
50). As shown in Appendices A and C and Fig. C1, this situation
s approximated well as countries’ GDP per head rises to values
haracteristic of the developed world, with b → 1/2 as G → ∞.

Thus for a developed country with GDP per head in excess
f 28,500 Int$ per year, the risk-aversion appropriate for use in

-value calculations is ε = ε0 = εP = 0.91. Such a value is roughly
0% higher than the figure of 0.82 derived in Thomas et al.
2010a) and 8% higher than the figure of 0.85 calculated as an
verage over all risk decisions except those of frequent occur-
ence for the average UK adult (Thomas et al., 2010b,c). Such
ncreases in risk-aversion do not seem unreasonable prima
acie, given that the J-value is applied to situations where life
xpectancy is at stake.

Section 10 offers an alternative but complementary per-
pective, providing corroboration for a higher figure for

isk-aversion, ε, found from the Preston and Bristol curves
hen human life is at stake.
Fig. 11 – Risk-aversion versus employee’s fraction, UK.

10.  The  risk-aversion  for  use  in  J-value
analysis  in  developed  countries

A potential weakness associated with the figure for risk-
aversion for the UK contained in Thomas et al. (2010a) is that
the model used in its derivation assumes that the average per-
son is valuing the extra years of life expectancy solely in terms
of the extra years of free time he expects to gain, taking no
benefit from his extra years of working, which are no longer
his to dispose of as he thinks fit. The assumption is that these
have been sold in their entirety to an employer, a stance that
is open to the objection that employees might be expected
to gain at least some value and satisfaction from the perfor-
mance of their work duties, with certain employees, perhaps
those with a lot of freedom to chose the manner in which they
work, gaining a lot of satisfaction.

This potential weakness in the model may be remedied by
assuming that the employee values a fraction, the “employee’s
fraction”, ς, of his working time as if it were part of his free
time, with the remaining fraction, 1 − 	, being regarded as
undertaken for the sole benefit of the employer.

The result of this modification is that the effective work
fraction for the average employee is then (1  − 	) w0, which
expression replaces the average work fraction, w0, in the anal-
ysis of Thomas et al. (2010a). The value of the exponent, q, then
follows from a modified version of Eq. (19) of Thomas et al.
(2010a):

q = 1
ˇ

(1 − ς) w0

1 − (1 − ς) w0
(60)

where  ̌ is the share of wages  in the economy. Hence risk-
aversion, ε = 1 − q is given by:

ε =
1 − ˇ+1

ˇ (1 − ς) w0

1 − (1 − ς) w0
(61)

Fig. 11 shows the variation in risk-aversion with employee’s
fraction, ς, based on UK figures of w0 = 0.091 and  ̌ = 0.546
(Thomas et al., 2010a). An employee’s fraction of 1/3 gives
a risk-aversion of 0.88, ς = 1/2 gives ε = 0.91, while 2/3 gives
ε = 0.94.

Thus ε = 0.91 implies an equal, 50:50 deal between the
employer and the employee on how much satisfaction the
average employee will gain from his work. For such an
employee, an hour spent working provides 50% of the enjoy-

ment he would get from an hour spent solely under his own
direction. This model, which uses the additional parameter of
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Table 2 – GDP per head and life expectancy for countries
of widely varying income (2008 data).

Country G (Int$/year) X(0) (year) X (year) b = X
X(0)

Mozambique 840 51.0 32.9 0.645
Rwanda 1080 57.9 35.4 0.633
Kenya 1570 54.3 34.3 0.612
Ukraine 7300 66.9 36.4 0.545
Mexico 14,800 75.8 40.5 0.537
Saudi Arabia 22,300 72.0 38.7 0.535
Japan 33,800 82.6 43.0 0.521

Germany 37,200 80.0 41.7 0.521

the employee’s fraction, 
, with 
 = 1/2, provides an answer
to the reservation raised in the first paragraph of this section,
and possesses an attractive degree of verisimilitude. For while
there are some people who “live for their work”, so that ς = 1,
and some who regard their work as pure drudgery, for whom
ς = 0, such extremes will not be representative of the average
person, who is more  likely to find himself at the “half-way
house”, with 
 = 1/2. Such would be the expected value of 


for any symmetrical probability distribution on 0 to 1, such as
a uniform distribution or a (truncated) normal distribution.

An explanation is thus available for the process by which a
risk-aversion higher than ε = 0.82 will come about for decisions
where life expectancy is at stake. The value for a developed
nation under the assumption of an equal employer-employee
bargain, namely ε = 0.91, corroborates the value suggested
from the analysis of the Preston and Bristol curves.

11.  The  implications  of  a  zero  net  discount
rate

Putting r = 0 in Eq. (2) gives the pure time discount rate as:

� = g (1  − ε) (62)

Using a long-term average value of UK GDP growth, g:

g = 2.41% p.a. for 1949 to 2010 (63)

and using a risk-aversion of ε = 0.91 gives,

� = 0.22% p.a. (64)

for the UK.
The dearth of objective evidence for the value of the pure

time preference rate led Weitzman (2007) to propose a figure
of � = 2.0 % p.a. based on his “own rough point-guesstimate
of what most economists might think”, on the evidence of
his informal survey of 2000 economists. Oxera (2002) recom-
mended a value of � = 1.5 % p.a. based on a semi-quantitative
analysis, and this value was adopted by the UK Treasury (2003,
2011), as valid for payment periods of 30 years or less. However,
Stern (2007, 2009) suggests a much lower value of � = 0.1 % p.a.
Moreover, in his seminal paper, Ramsey (1928) recommends
� = 0.0 % p.a., saying,

“One point should perhaps be emphasised more  par-
ticularly; it is assumed that we do not discount later
enjoyments in comparison with earlier ones, a practice
which is ethically indefensible and arises merely from the
weakness of the imagination; we  shall, however, in Section

II include such a rate of discount in some of our investiga-
tions”
It can be seen that this new, fully quantitative route to deter-
mining the pure time preference rate comes up with a value
that is significantly closer to Stern and Ramsey than to Oxera
and Weitzman.

Meanwhile the social discount rate, r*, used to discount
future payments so as to produce an equivalent up-front lump
sum, is given by Ramsey’s formula:

r∗ = � + gε (65)

Combining Eqs. (62) and (65) gives r* as:

r∗ = g (66)

Thus we have the pairing for the social discount rate, r*,
and net discount rate, r:

r∗ = g

r = 0
(67)

for use in J-value assessments. In the case of the UK, r* = 2.41%
p.a., based on long-term trends.

Applying Eq. (67) together with a risk-aversion of 0.91 to the
UK produces an average value for life to come in the UK in 2009
of £6.61 M. This is about 4 times the VPF figure in use in the UK
(£1.596 M in 2009, Department for Transport, 2013). Of course,
it needs to be borne in mind that the UK VPF has been demon-
strated to have no evidential basis (Thomas and Vaughan,
2015a,b,c), despite the figure being in widespread use in the
UK since 1999. On the other hand, the figure of £6.61 M is close
to the $9.1 M used by the Environmental Protection Agency
in the USA in 2010 in deciding how much should be spent
on defences against air pollution (Appelbaum, 2011), and later
adopted by the US Department of Transportation (Trottenberg,
2013).

12.  Conclusions

The J-value method allows a model to be devised whereby a
typical nation in the world attempts to improve the quality of
life of its citizens by taking a rationally balanced view of mea-
sures to improve the the population average life expectancy.

The model has been tested for validity against extensive
data on life expectancy and GDP per head. It able to explain the
shape of the Bristol curve with an R2 value of 0.80 for 162 out of
the 193 nations recognised by the UN. Thus the J-value model
explains 80% of the variation in the logarithm of population-
average life expectancy with the logarithm of GDP per head,
and so provides a substantial degree of validation for the J-
value. An extension of the model explains the Preston curve,
which deals with life expectancy at birth rather than the aver-
age expectation of life amongst all ages in the population. It
is predicted correctly that moving from the Bristol to the Pre-
ston curve will cause the risk-aversion to fall by about 5%. The
log–log version of the Preston curve is then explained with
an almost identical R2 value, 78%, for the 162 countries. This
adds to the validation reported elsewhere of the J-value model
when tested against actual UK data on life expectancy at birth.

The J-value approach emerges as essentially a formalisa-
tion of an approach being used intuitively all over the world
to assess most health and safety spending decisions.
The J-value model is able to explain the Bristol and Pre-
ston curves when the net discount rate is zero. Any increase
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n the net discount rate is then counteracted by a countervail-
ng increase in the risk-aversion, leaving unchanged the safety
pend calculated using the J-value. Hence it is recommended
hat a zero net discount rate is used when applying the J-value

ethod.
Examination of the detail of the Bristol and Preston curves

uggests that there is, in fact, a small difference in risk-
version between less developed and developed countries.
his is supported by a re-examination of the arguments lead-

ng to the choice of 0.82 as the value of risk-aversion for use in
-value studies in the UK. Allowing for the average employee
aining satisfaction from his work, equal to half the satisfac-
ion he would have gained had he been free to dispose of his
ime according to his own wishes, leads to the same value of
isk-aversion as produced by a detailed analysis of the Bristol
nd Preston curves, namely 0.91.

In addition to the validation of the J-valuation just
escribed, the model has enabled a closed-form algebraic
xpression to be derived for the first time for an important eco-
omic parameter, the pure time discount rate estimated up to
ow only on a subjective basis. The resulting figure emerges
s much closer to the estimates of Ramsey and Stern than
o the value currently being used by the UK Treasury. The
ure time discount rate is particularly relevant to decisions
n combating climate change and its effects.

The life expectancy ratio (population-average life
xpectancy divided by life expectancy at birth) is pro-
osed as an important indicator of development, as detailed

n Appendices A to C. It can vary between an upper limit of
⁄3 and a lower limit of ½. The upper limit is representative of
ndeveloped countries, while the lower limit is the asymptote
owards which developed countries are moving.

A final conclusion of potential interest to Governments and
he insurance industry as regards pension payment, is that no
iscernable limit is apparent to the process by which people

ive ever longer as they get ever richer, at least up to the point
here the intrinsic life expectancy of ∼100 years, is reached, a

imit that improvements in medical technology might in any
ase bypass.
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Appendix  A.  Piecewise  linear  approximations
to the  survival  probability:  the  life  expectancy
ratio, b,  as  an  indicator  of  development.

Starting at unity at age zero, t = 0, the survival probability
declines with age, reaching very close to zero at age 100,
which constitutes the upper age used by the UK life tables.
Survival probability is a decreasing sigmoid function of age
that has so far defied fully successful analytical characterisa-
tion. However, simple linear expressions may be used to give
an approximate description. These have the merit that when
limiting values are applied, the resultant functions provide a
useful insight into the basic mortality mechanisms that must
be at work in the world.

From Eq. (13), the life expectancy of a steady state popula-
tion, X, is equal to the average age of that population. So using
Eq. (8) also, we may write,

X = E (T) =
∞∫

t=0

p (t) tdt = 1
X (0)

∞∫
t=0

tS (t) dt (A1)

where p (t) = S (t) /X (0) is the probability density for age in the
steady-state population. Meanwhile it is known that the life
expectancy at birth, X (0),  is given by the area under the sur-
vival probability curve, S (t):

X (0) =
∞∫

t=0

S (t) dt (A2)

Eq. (A2) may be expanded formally as:

X (0) =
X(0)∫
t=0

S (t) dt +
∞∫

t=X(0)

S (t) dt (A3)

Subtracting

X(0)∫
t=0

S (t) dt from the left-hand side of Eq. (A3) allows

the definition of a difference, Y, between life expectancy at
birth and the integral of survival probability up to an age equal
to the initial life expectancy:

Y = X (0) −
X(0)∫
t=0

S (t) dt =
X(0)∫
t=0

dt −
X(0)∫
t=0

S (t) dt =
X(0)∫
t=0

(1 − S (t)) dt (A4)

Meanwhile subtracting the same quantity,

X(0)∫
t=0

S (t) dt, from the

right-hand side of Eq. (A3) gives the difference, Y, as:

Y =
∞∫

t=X(0)

S (t) dt (A5)

Equating the right hand sides of Eqs. (A4) and (A5) gives,

X(0)∫ ∞∫

t=0

(1 − S (t)) dt =
t=X(0)

S (t) dt (A6)
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Fig. A1 – Actual and approximate survival probability
functions.

Fig. A2 –

t∫
tS (t) dt and

t∫
tS∗ (t) dt.

pair (A7) represents a limiting case for a generalised survival
Suppose we  now define a function, S∗ (t), by,

S∗ (t) =
{

1 fort ≤ X (0)

0 fort > X (0)
(A7)

We  may substitute from Eq. (A7) into Eq. (A6) to give:

X(0)∫
t=0

(S∗ (t) − S (t)) dt =
∞∫

t=X(0)

S (t) dt (A8)

Add

X(0)∫
t=0

S (t) dt to both sides of Eq. (A8),

X(0)∫
t=0

S∗ (t) dt =
∞∫

t=0

S (t) dt (A9)

But, from the definition of Eq. pair (A7),

X(0)∫
t=0

S∗ (t) dt =
∞∫

t=0

S∗ (t) dt.

Thus,

∞∫
t=0

S∗ (t) dt =
∞∫

t=0

S (t) dt (A10)

Thus the function, S∗ (t), has the same area under its curve as
the true survival probability, S (t),  and hence may be regarded
as a rectangular approximation to the survival probability.
Moreover, the life expectancy at birth is the integral of the
survival probability (Eq. (A2)) and so

∞∫
t=0

S∗ (t) dt = X (0) (A11)

Fig. A1 shows the actual and the approximate survival
probability for functions for UK combined gender data for
2007 (ONS, 2016). The increase in the area under the actual
curve above t = X (0) compensates exactly for the deficit in
area between the actual and the approximated curves up to

age, t = X (0).
0 0

If the approximate, rectangular survival probability is used
in Eq. (A1) then an estimate, X*, of the life expectancy averaged
over all ages will be:

X∗ = 1
X (0)

∞∫
t=0

tS∗ (t) dt (A12)

Fig. A2 compares the integral,

t∫
t=0

tS∗ (t) dt, with the actual

integral,

t∫
t=0

tS (t) dt, for combined genders for 2007. It is clear

that the integral based on the rectangular survival probability
provides a good match to the actual not only for low values of
t, but also as t → ∞.  Note, however, that,

∞∫
t=0

tS∗ (t) dt <

∞∫
t=0

tS (t) dt (A13)

where S (t) is the true survival probability, so that X* < X by Eqs.
(A1) and (A9). Inequality Eq. (A13) is proved in Appendix B.

Integrating the left-hand side of Eq. (A13) gives:

∞∫
t=0

tS∗ (t) dt =
X(0)∫
t=0

tdt =
[

t2

2

]X(0)

0

= X(0)2

2
(A14)

Hence, from Eq. (A12), the population average life
expectancy, X*, under the rectangular survival probability is,

X∗ = X (0)
2

(A15)

Thus the ratio, b*, of the life expectancy at birth to the
population-average life expectancy under this rectangular sur-
vival probability is

b∗ = X∗

X (0)
=  0.5 (A16)

In fact the rectangular survival probability described by Eq.
probability that remains at unity from age 0 to age (1 − k) X (0),
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Fig. A3 – Generalised approximations to survival
probability.
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hen begins to fall in a linear fashion with slope, 1/ (2kX (0)),
o that it passes through the point (X (0) , 0.5) before reaching
ero at t = (1  + k) X (0), where 0 ≤ k ≤ 1. See Fig. A3. Eq. pair (A7)
s then generalised to,

∗ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for t ≤ (1  − k) X (0)

1 + k

2k
− t

2kX (0)
for (1 − k) X (0) <  t ≤ (1  + k) X(0)

0 for t > (1  + k) X (0)

(A17)

he parameter value, k = 0, gives rise to the rectangular sur-
ival probability function already described, while the other
imit, k = 1, leads to a survival probability that starts at unity
nd then declines linearly with a constant slope,−1/ (2X (0)),
ntil it reaches zero when age has reached twice the life
xpectancy at birth.

It is clear from the geometry of Fig. A3 that the area under
he generalised survival probability of Eq. set (A17) will be the
ame as the area under the rectangular survival probability of
q. pair (A7). Hence Eq. (A11) will hold, implying that the true
ife expectancy at birth will be retained under Eq. set (A17) for
ll k : 0 ≤ k ≤ 1.0. Moreover, the extra degree of freedom associ-
ted with the parameter, k, allows the adjustment of S∗ (t) so
hat,

∞∫
=0

tS∗ (t) dt =
∞∫

t=0

tS (t) dt (A18)

ince for a steady-state population,

(t) = X (0) p (t) (A19)

rom Eq. (8), it follows that

∞∫
t=0

tS (t) dt represents a scaled ver-

ion of the first moment or expected value of age, T, randomly
elected from the population:

(T) =
∞∫

t=0

tp (t) dt = 1
X (0)

∞∫
t=0

tS (t) dt (A20)
Moreover, since from Eq. (13), E (T) = X, it follows from Eqs.
(A18) and (A20) that,

X = 1
X (0)

∞∫
t=0

tS∗ (t) dt (A21)

Thus it possible, under the generalised survival probability
model of Eq. set (A17), to ensure that both the life expectancy
at birth and the population-average life expectancy can be
made equal to the true values, X (0) and X.

The full set of estimated moments, E(Tn)∗ =
∞∫

t=0

tnp∗ (t) dt,

about the origin may be found from:

∞∫
t=0

tnp∗ (t) dt = 1
X (0)

∞∫
t=0

tnS∗ (t) dt n = 0, 1, 2, 3, ... (A22)

Meanwhile the general integral,

∞∫
t=0

tnS∗ (t) dt , may be found

using Eq. (A17) as:

∞∫
t=0

tnS∗ (t) dt =

(1−k)X(0)∫
t=0

tndt + 1 + k

2k

(1+k)X(0)∫
t=(1−k)X(0)

tndt − 1
2kX (0)

(1+k)X(0)∫
t=(1−k)X(0)

tn+1dt

= 1
2k (n  + 1)

Xn+1 (0)
(

(1 − k)n+1 (k − 1) + (1 + k)n+2
)

− 1
2k (n + 2)

Xn+1 (0)
(

(1 + k)n+2 − (1 − k)n+2
)

(A23)

Hence

∞∫
t=0

tnS∗ (t) dt = (1 + k)n+2 − (1 − k)n+2

2k (n + 1) (n + 2)
Xn+1 (0) (A24)

Thus,

E(Tn)∗ =
∞∫

t=0

tnp∗ (t) dt = 1
X (0)

∞∫
t=0

tnS∗ (t) dt = (1 + k)n+2 − (1 − k)n+2

2k (n + 1) (n + 2)
Xn (0)

(A25)

Putting n = 0 gives

∞∫
t=0

p∗ (t) dt = 1, as required, while setting

n = 1 gives:

∞∫
t=0

tS∗ (t) dt = (1 + k)3 − (1 − k)3

12k
X2 (0)

=
1 + 3k + 3k2 + k3 −

(
1 − 3k + 3k2 − k3

)
12k

X2 (0)

= 6k + 2k3

12k
X2 (0)

(A26)
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Fig. A4 – Survival probabilities to ages 80, 90 and 100 in the

UK.

As a result, the population-average life expectancy emerges
as the following function of k:

X∗ = 1
X (0)

∞∫
t=0

tS∗ (t) dt = X (0)
2

(
1 + k2

3

)
(A27)

while the ratio of population-average life expectancy to life
expectancy at birth is,

b∗ = X∗

X (0)
= 1

2

(
1 + k2

3

)
(A28)

From Eq. set (A17) the lower limit, k = 0 produces the rectan-
gular survival probability, which may be regarded as the ideal,
since it defines a population where all the people attain what
might be described as their ‘inherent life expectancy at birth’,
with no early deaths due to accidents or disease. Since the haz-
ard rate, h (t),  may be defined the ratio of the rate of decline of
the survival probability to the existing survival probability:

h (t) = − 1
S (t)

dS∗ (t)
dt

(A29)

the hazard rate, h (t),  may be characterised for the rectangular
case by:

h (t) =
{

0 fort < X (0)

∞ fort = X (0)
(A30)

It is only when the inherent life expectancy at birth, X (0),
has been reached, that these people experience “wear out”
due to aging, perhaps in much the same way as described
by Oliver Wendell Holmes in his poem, “The Wonderful One-
Hoss Shay” (Encyclopaedia Britannica, 2015), with all bodily
systems, despite all interventions and repairs, failing together.
There is evidence for the value of the inherent life expectancy
at birth being currently about 100 years for both genders, based
on UK data. While the number of centenarians is steadily
increasing, their life expectancy once they have reached this
age is not. Fig. A4 shows the growth over time of the probability
of survival to the three ages: 80 years, 90 years and 100 years,
graphed on a logarithmic scale to allow the changes to the sur-

vival probability to age 100 to be distinguished clearly (ONS,
2016). The probability of survival has increased markedly at
Fig. A5 – Life expectancies at ages 80, 90 and 100 in the UK.

each of these ages over the past 30 years or so, with male catch-
up being a further pronounced phenomenon. (For example,
the chances of a baby boy reaching the age of 80 rose from
28% in 1981 to 58% in 2014.) But as shown in Fig. A5, while
the life expectancy at ages 80 and 90 has risen steadily over
the past 30 years, the life expectancy at age 100 has remained
approximately static for both men  and women.

[While the “inherent life expectancy at birth” may currently
be about 100, this may be regarded as (roughly) the ultimate
life expectancy at birth only against the background of the cur-
rent technology and culture. Future developments in medical
technology might cause the ultimate life expectancy at birth
to rise higher in developed countries, as a result, for example,
of greater access to artificial organs. In this case the inherent
and ultimate life expectancies at birth would diverge.]

The rectangular survival probability leads to b* = 0.5, as
shown in Eq. (A16), and it can be further shown that the most
highly developed countries have a life expectancy at birth of
about 80 years or more  and a value of b that approaches 0.5,
typically 0.52.

On the other hand, the upper limit, k = 1, defines the trian-
gular survival probability, where, from Eq. set (A17):

S∗ (t) = 1 − t

2X (0)
= 2X (0) − t

2X (0)
(A31)

and so,

dS∗ (t)
dt

= − 1
2X (0)

(A32)

As a result, using equation (A.29), the hazard rate, h (t),  in this
case is

h (t) = 1
2X (0)

× 2X (0)
2X (0) − t

= 1
2X (0) − t

(A33)

For these people, the hazard rate approaches infinity only
when their age has reached twice their life expectancy at
birth: h (t) → ∞ as t → 2X (0). The age, 2X (0), under the tri-
angular survival probability model is equivalent to the age,
X (0), under the rectangular survival probability, in the sense
that it is the ultimate age beyond which no-one in the pop-
ulation can survive. No-one is going to live to be older than
2X (0), but on average they will die before they get half-way

to this age, well before they approach their intrinsic wear-out
age. The triangular survival probability leads to b∗ = 2⁄3, a value
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hat fits approximately the values of b characterising under-
eveloped countries, where the life expectancy at birth, X (0),

s around 50 years. The triangular survival probability model
ould thus suggest the inherent, limiting age a person from

uch a country would be about 100 years, which tallies well
ith the observed maximum age in developed countries.

Thus the life-expectancy ratio, b, emerges as an indicator
f national development. It will start near 2/3 for an undevel-
ped country then decrease as the country gets richer, with
he ratio for a highly developed country coming close to the
imiting value of ½. The process by which the life expectancy
atio progresses from 2/3 towards the asymptotic value of ½
s modelled empirically in Appendix C.

ppendix  B.  Proof  that

∞∫
t=0

tS∗ (t) dt <

∞∫
t=0

tS (t) dt.

t is obvious that t < X (0) for all t : 0 ≤ t < X (0),  and this implies
hat

(0)∫
t=0

t (S∗ (t) − S (t)) dt <

X(0)∫
t=0

X (0) (S∗ (t) − S (t)) dt (B1)

ut

(0)∫
t=0

X (0) (S∗ (t) − S (t)) dt = X (0)

X(0)∫
t=0

(S∗ (t) − S (t)) dt = X (0) Y (B2)

here Y is the difference given in Eq. (A4) and the last step
ollows from applying Eqs. (A5) and (A8). Hence, using Eq. (B2)
n inequality Eq. (B1), it follows that,

(0)∫
t=0

t (S∗ (t) − S (t)) dt < X (0) Y (B3)

eanwhile it is clear that, t > X (0) for all t : X (0) < t < ∞,  and
o,

∞∫
=X(0)

tS (t) dt >

∞∫
t=X(0)

X (0) S (t) dt (B4)

ut,

∞∫
=X(0)

X (0) S (t) dt = X (0)

∞∫
t=X(0)

S (t) dt = X (0) Y (B5)

here the last step follows from Eq. (A5). Substituting Eq. (B5)
nto inequality Eq. (B4) gives,

∞∫

=X(0)

tS (t) dt > X (0) Y (B6)
Fig. C1 – The behaviour of life expectancy ratio, b.

Using condition Eq. (B6) in condition Eq. (B3) gives:

X(0)∫
t=0

t (S∗ (t) − S (t)) dt <

∞∫
t=X(0)

tS (t) dt (B7)

Adding

X(0)∫
t=0

tS (t) dt to both sides of inequality Eq. (B7) gives,

X(0)∫
t=0

tS∗ (t) dt <

X(0)∫
t=0

tS (t) dt +
∞∫

t=X(0)

tS (t) dt (B8)

But since S∗ (t) = 0 for t > X (0), it follows that

X(0)∫
t=0

tS∗ (t) dt =

∞∫
t=0

tS∗ (t) dt. Moreover,

X(0)∫
t=0

tS (t) dt +
∞∫

t=X(0)

tS (t) dt =
∞∫

t=0

tS (t) dt.

Substituting these two forms into equation (B.8) gives the
desired result:

∞∫
t=0

tS∗ (t) dt <

∞∫
t=0

tS (t) dt (B9)

Appendix  C.  Dependence  of  the
life-expectancy  ratio,  b,  on  GDP  per  head.

Table 2 presents data from 2008 on life expectancy and GDP
per capita, G, for countries of widely varying income, includ-
ing the life-expectancy ratio, b. It may be seen that the value
of b corresponds well to the figure predicted by the model
of Appendix A, being close to 0.667 for undeveloped coun-
tries and approaching 0.5 for highly developed countries. The
parameter, b, is plotted against G in Fig. C1, as is the model
fitted to it, which has the form.

b = bs + (b0 − bs) e− G
GT (C1)

where b0 = 0.667 and bs = 0.52, while GT = 4295 Int$/year is cho-
sen to minimise the sum of the squared errors.

Eq. (C1) is that for a targeted growth model, specifically a
proportional feedback control system around an integrator,

which is fed a constant target or set-point of bs, starting from
an initial b-value of b0. The aspiration inherent in this math-
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s
e
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ematical description of a system trying to reach its set point
would seem to correspond well with what can plausibly be
assumed of populations seeking to survive and prosper.

The data suggest that it is currently very difficult to achieve
a b-value much below 0.52, a fact reflected in the choice of bs

in the model. But Eq. (C1) suggests that 95% of the discrepancy
between b0 and bs will have been eliminated by the time the
country’s income per head has risen to 13,000 Int$/year. Hence
b should be roughly constant for incomes above the latter level.

Eq. (C1) may be expressed in the alternative form:

b − bs

b0 − bs
= e− G

GT (C2)

so that,

ln
b − bs

b0 − bs
= − 1

GT
G (C3)

Given observed values of life expectancy ratio, b = X/X (0), and
GDP per head, G, a best-fit value of GT could be found based
on all the world’s nations.
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