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Computerized paradigms have enabled gathering rich data on
human behaviour, including information on motor execution
of a decision, e.g. by tracking mouse cursor trajectories.
These trajectories can reveal novel information about
ongoing decision processes. As the number and complexity
of mouse-tracking studies increase, more sophisticated
methods are needed to analyse the decision trajectories. Here,
we present a new computational approach to generating
decision landscape visualizations based on mouse-tracking
data. A decision landscape is an analogue of an energy
potential field mathematically derived from the velocity of
mouse movement during a decision. Visualized as a three-
dimensional surface, it provides a comprehensive overview of
decision dynamics. Employing the dynamical systems theory
framework, we develop a new method for generating decision
landscapes based on arbitrary number of trajectories. This
approach not only generates three-dimensional illustration
of decision landscapes, but also describes mouse trajectories
by a number of interpretable parameters. These parameters
characterize dynamics of decisions in more detail compared
with conventional measures, and can be compared across
experimental conditions, and even across individuals. The
decision landscape visualization approach is a novel tool for
analysing mouse trajectories during decision execution, which
can provide new insights into individual differences in the
dynamics of decision making.

1. Introduction
Every minute of every day, we make decisions that affect our
personal and professional lives, sometimes to a great extent.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. Typical set-up of a mouse-tracking experiment. Circles represent an actual mouse trajectory during binary choice in a learning
task [4].

Despite this continuous practice, our decisions often leave much to be desired. To understand why we
make decisions the way we do, decision-making researchers have mainly focused on what people choose,
by proposing cognitive processes that would give rise to the observed choice outcome distributions.
Outcome distributions, however, constitute relatively loose constraints on the possible processes
underlying decision making. Consequently, researchers have argued that decision-making theories
should be tested on a functional (process) level rather than just on the level of outcome predictions
(e.g. [1]). This can be achieved by measuring behavioural activity during the decision-making process to
directly assess how a choice is made.

A variety of experimental methods have been used to study the cognitive processes underlying
decision making. One class of paradigms, including eye tracking [2] and different variations of the
information search paradigm [3], taps attentional processes, trying to answer the question of what
information is attended to in the course of a decision. Another strand of research, focused on hand or
mouse tracking, examines how decisions are executed through the motor system. These studies interpret
motor output of a decision as a continuous trace of decisional processes. In a typical experiment on
mouse tracking, the participant chooses between the two options presented in the corners of a computer
screen (figure 1). The dynamics of the response, as expressed in recorded mouse cursor trajectories, can
then reveal (post hoc) the degree of competition between the two options during choice.

Mouse (or hand) tracking have been employed to investigate decision-making dynamics in a variety
of different domains, e.g. speech processing [5,6], social categorization [7,8], numerical cognition [9,10],
intertemporal choice [11,12] and learning [4,13]; see also reviews in [14,15]. The recent development
of specialized software for capturing mouse cursor data [16,17] has further increased the amount and
complexity of the data generated by mouse-tracking studies.

Response trajectories provide rich continuous data, but the vast majority of available studies use a few
relatively simple measures. These include latency measures (initiation or response times), consistency
measures (e.g. changes in the x-direction (x-flips) or sample entropy) and trajectory curvature measures
(maximum deviation of the trajectory from an ideal, straight-line trajectory, or area under the curve of
difference between actual and ideal trajectories). The analyses of these measures are often highlighted
by average mouse trajectories, which may have several important limitations [5,18]. In recent years,
further methods have been proposed, including average mouse velocity plots (e.g. [19,20]), trajectory
heat maps [11,21], time plots of regression coefficients [21,22], and visualizations based on principal
component analysis [23]. However, given the rich spatial and temporal information in response
trajectories, it is likely that much potentially important information remains beyond our analytic capacity.
More advanced analysis and visualization methods can enable us to get deeper insights from the rich
data provided by the mouse-tracking paradigm.

1.1. Theoretical foundations of the decision landscape notion
Dynamical accounts of cognition posit that decision making should be treated as a continuous rather than
discrete process [24,25]. On the way to our final decision, we must traverse a multitude of intermediate
mental states; in other words, we gradually arrive at a decision instead of instantaneously falling into
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Figure 2. Mouse trajectory fromfigure 1 and a hypothetical decision landscape driving the decision process. Based in part on fig. 1 in [24].

it. On a neural level, this hypothesis is supported by the finding that intermediate states of a decision
process are characterized by partially activated neural populations in the dorsal premotor cortex [26,27].

In line with the foregoing perspective, we assume that the temporal dynamics of a decision can be
represented by a trajectory in the multidimensional space of all possible mental states. Some of these
states (attractors) are locally stable, so that every decision, although passing through a multitude of
intermediate states, eventually gravitates towards one of these attractors. A mouse trajectory can then
be treated as a projection of this high-dimensional trajectory onto a two-dimensional space represented
by the computer screen [24] (see also [14,23] for an extended discussion of theoretical foundations of the
mouse-tracking paradigm). Two attractors (‘pure’ mental states corresponding to finalized decisions) are
then mapped onto the locations of the decision outcomes on the screen. The mouse cursor (as a projection
of a multidimensional mental state) can then be viewed as a particle moving in an two-attractor force
field, much like a marble rolling down one of the two valleys in figure 2. However, up until recently the
notion of an attractor landscape driving the decision process remained purely hypothetical. The purpose
of this work is to facilitate practical and data-driven applications of this notion.

1.2. Current study
Here, we present a computational approach for illustrating mouse-tracking data through three-
dimensional visualizations of the decision landscape, motivated by recent work in the field [4]. We
assume that the decision process, as reflected in a mouse trajectory, and the decision itself are driven
by a decision landscape much like the motion of a physical particle in a force field is driven by its
potential energy. The parameters defining the shape of the decision landscape can then be tuned to
fit a specific decision trajectory (or a set of trajectories). Visualized as a three-dimensional surface, the
decision landscape provides a comprehensive overview of motor evolution of decisions. The suggested
method can generate illustrations of the decision landscape based on arbitrary number of trajectories
and, in addition, can effectively describe each mouse trajectory by a number of interpretable parameters.
These parameters, coupled with the generic landscape model, capture the time evolution of decisions
in more detail compared with conventional measures. Using previously collected data on a learning
task [4], we demonstrate how decision landscape visualizations can be used to compare sets of mouse
trajectories between experimental conditions or individual decision makers in a comprehensive and
visually appealing way.

2. Visualizing decision landscapes: method
The proposed method is aimed at reconstructing a three-dimensional decision landscape based on a
mouse trajectory of a decision (or a set of trajectories). To do this, we assume that each trajectory can
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Figure 3. Overview of the decision landscape visualization approach. Mouse data from an experiment are used to fit the parameters of
a mathematical model describing a double-well decision landscape.

be described by a dynamical system of a specific form, which incorporates a parametrized function
describing the shape of the two-attractor landscape. By fitting this dynamical system to a set of
trajectories, we obtain specific values of the parameters characterizing these particular trajectories. We
can then use these parameters to generate the three-dimensional visualization of the decision landscape
characterizing all of the given decisions (see figure 3 for the high-level overview of the method). The
source code implementing all the procedures of the method in Python is publicly available [28].

2.1. Data requirements and preprocessing
Our method can be used to visualize decision landscapes using the trajectories obtained in a typical
mouse-tracking experiment (figure 1). We assume that each decision trajectory starts in the bottom-
centre part of the screen and ends in either the top-left or top-right corner. The method can be
generalized to the case of more than two choice options; it can also be used with any other experimental
paradigm generating simple enough continuous trajectories (for instance, arm reaching [9,29,30], using
two-dimensional projections of actual three-dimensional trajectories).

Prior to feeding the experimentally obtained trajectories to the method, we preprocess the trajectories
as follows:

— The screen coordinates are rescaled such that each trajectory originates close to (x, y) = (0, 0) and
ends near (x, y) = (−1, 1) (left target) or (x, y) = (1, 1) (right target). The reason for this is that
the screen size and proportions can differ between experimental set-ups; we thus illustrate the
method for spatially normalized trajectories.

— Movement initiation time (the time during which the mouse cursor does not move from the
starting position) is disregarded.1 The final part of the trajectory (after the mouse has stopped in
the response area and its coordinates do not change until the end of the trial) is also discarded
from the trajectories.

— Time series describing x- and y-coordinates of the mouse cursor are resampled so that each
trajectory consists of the same number of data points (usually 101).2

— For each trajectory, mouse velocities in the x- and y-directions are computed by taking time
derivatives of the x and y mouse coordinate data. This can be done numerically using finite
difference approximations or Savitzky–Golay filters [33].

1Recently, a dynamic start procedure has been advocated, where a participant is only presented with the stimuli once they start moving
the mouse [11,31,32]. Dynamic start would mitigate the potential problem of meaningful information about the initial stages of decision
not being expressed in the mouse trajectory.
2Resampling to sufficient number of data points is unlikely to distort the relevant spatial information [17].
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2.2. Model of trajectory dynamics
Without aiming at developing a model explaining the dynamics of a decision, we use the simple
dynamical system to describe the decision trajectory, capturing the high-level features of motion of the
mouse cursor. We describe the x- and y-components of a decision trajectory by a system of differential
equations

τ ẋ = −∂V
∂x

and τ ẏ = −∂V
∂y

,

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

where x = x(t) and y = y(t) are the positions of the mouse along the x- and y-coordinates, and ẋ = dx/dt
and ẏ = dy/dt are the time derivatives of x and y, respectively, τ > 0 is the time-scale parameter
expressed in seconds, V(x, y) is an unknown function describing the decision landscape, which defines
the dynamics of the system, and ∂V/∂x and ∂V/∂y are partial derivatives of V. Our method is not
constrained by some particular function V(x, y); here we use one of the simplest possible variants.

We assume that V(x, y) comprises a fixed baseline component Vx(x) + Vy(y) and a parametrized
component Vxy(x, y):

V(x, y) = Vx(x) + Vy(y) + Vxy(x, y), (2.2)

where Vxy(x, y) can be fitted to the data, and Vx(x) and Vy(y) are polynomials chosen in such a way that
the two target locations, (−1, 1) and (1, 1), are attractors, and the starting location (0, 0) is a repellor of the
system (2.1), and thus (with the integration constants set to zero)

Vx(x) =
∫

∂Vx

∂x
dx =

∫
x(x + 1)(x − 1) dx = x4

4
− x2

2
(2.3)

and

Vy(y) =
∫

∂Vy

∂y
dy =

∫
y(y − 1) dy = y3

3
− y2

2
. (2.4)

Having a two-attractor decision landscape as a baseline, we introduce the parametrized polynomial
component Vxy(x, y) to be able to account for asymmetry in the landscape and other, more intricate
properties of experimental trajectories. Here, also for the reason of simplicity, for Vxy(x, y) we use a
polynomial function of x and y

Vxy(x, y) =
α∑

k=2

∑
i,j>0
i+j=k

cijxiyj

(k − 1)
, (2.5)

where the parameter α ≥ 2 determines the number of terms in the polynomial, which in turn determines
the descriptive ability of the model, and the parameters cij are fitted to the mouse data. With increase in α,
the number of free parameters increases, therefore the fitted values of these parameters may be difficult
to interpret for large α. Heuristically, we recommend to use the method with α = 2, 3 or 4, depending
on complexity of the trajectories, and taking into account the trade-off between approximation accuracy
and interpretability of the parameters.

The effect of the model parameters τ and cij on the shape of the decision landscape can be analysed
independently of the experimental data (figure 4). For any α, two parameters, τ and c11, always enter the
model. The parameter τ affects the characteristic time scale of the system motion: the larger the value
of τ , the slower the motion of the mouse generated by the model (in both directions).

The only second-order parameter of the model, c11, is the primary determinant of the asymmetry
of the decision landscape. Such asymmetry may be caused, for instance, by strong prevalence of one
decision outcome over another. Another possible example would be a situation when trajectories towards
one option are consistently faster compared to the trajectories pointing to the other option.

When α ≥ 3, two additional parameters enter the model, c21 and c12. Their effects are somewhat
similar to those of τ and c11, respectively (figure 4); however, these and the other higher-order parameters
allow for fine-tuning of the decision landscape to the experimental trajectories.

2.3. Fitting the model to one trajectory
For a single experimental trajectory, we aim to find the parameters allowing the model (2.1)–(2.5) to
reproduce the dynamics of this trajectory as closely as possible. We can quantify the fitting error in
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Note that here and in the further figures three-dimensional plots can be rotated differently to illustrate differences in the landscapes.

two ways: (i) as a function of the positional difference between the data and the modelled trajectory,
or (ii) based on the difference in mouse velocities between the data and the model. The first approach
would arguably result in a more accurate approximation of trajectories, but requires substantially more
computational effort, as in each step of the fitting algorithm the system of differential equations (2.1)
has to be solved.3 Here, we focus on the second, velocity-based approach, which is much more
efficient in terms of computational resources (although sometimes at the expense of approximation
accuracy).

Given an experimental mouse trajectory sampled at m time steps and the numerically derived mouse
velocity vectors vdata

x , vdata
y , we define the fitting error

H(τ , cij, v
data
x , vdata

y ) = 1
m

m∑
i=0

(vmodel
x (xi, yi) − vdata

x (ti))
2 + (vmodel

y (xi, yi) − vdata
y (ti))

2. (2.6)

Here, vmodel
x,y (xi, yi) are the values of the right-hand side of the system (2.1) (divided by τ ) computed at

each point (xi, yi) along the experimental trajectory

vmodel
x (xi, yi) = − 1

τ

∂Vx

∂x
(xi, yi),

vmodel
y (xi, yi) = − 1

τ

∂Vy

∂y
(xi, yi).

These values depend on the parametrization of the model, so the defined error function depends both
on the model parameter values and the experimental trajectory.

Using numerical optimization routines (available, e.g. in the Python package scipy.optimize),
we can now find the best-fitting values of the model parameters for a given mouse trajectory. Note
that the Jacobian of the error functions (2.6) and (2.7) can be analytically derived (see accompanying
source code [28]), which enables one to use more efficient and robust optimization algorithms. As an
initial approximation for the parameter fitting procedure, the parameters corresponding to the baseline
landscape Vx,y = 0 should be used.

3In this case, initial conditions for simulating model trajectories also need to be taken care of. In each experimental trial, the exact
starting point of the mouse trajectory is determined by where exactly in the ‘start button’ the participant clicked to begin the trial,
which makes this starting point effectively random. However, the system (2.1) is deterministic, so initial conditions fully define its
dynamics. Thus, in order to get reasonable fit to the data, one needs to minimize the error function not only over the parameters of the
dynamical system, but also over the range of possible initial conditions, which in themselves do not carry any meaningful information.
This further adds to computational requirements of this approach.

 on December 19, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


7

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170482

................................................
2.4. Fitting the model to multiple trajectories
Visualizing a decision landscape that would integrate the properties of multiple trials (within a single
experimental condition, individual participant or a group of participants) is where the method can
prove most useful. To be able to do this, we use the same approach as in the case of a single trial, and
minimize the average error across individual trials in the given set. Given the set of N trajectories and
their velocities vdata

x,n and vdata
y,n for n = 1, . . . , N, the fitting error for multiple trajectories is defined by

Ĥ(τ , cij, v
data
x,1 , vdata

y,1 , . . . , vdata
x,N , vdata

y,N ) = 1
N

N∑
n=1

H(τ , cij, v
data
x,n , vdata

y,n ), (2.7)

where H is defined in (2.6).

3. Visualizing decision landscapes: examples
We illustrate several potential scenarios of using decision landscapes to visualize mouse-tracking data
by applying the technique to previously obtained data on a simple learning task [4] (the data are publicly
available [34]). The task consisted of a series of binary choices between abstract symbols, with each
symbol yielding either low or high reward (e.g. 5 or 20 points). The goal of the participants was to get
as many points as possible throughout a set of 36 trials, which included low versus low, high versus low
and high versus high choices. By the end of the experiment, most of the participants successfully learned
to choose only the symbols associated with a high reward.

Here, we only consider the part of the data corresponding to high versus low choices (20 per
participant), so that the outcome of a decision is either ‘high’ (7, 10 or 20 points depending on
experimental condition) or ‘low’ (5 points). Without loss of generality, the data are preprocessed so that
the ‘high’ option is mapped to the right-hand corner of the screen (x = 1), and the ‘low’ option is located
in the left-hand corner (x = −1). To fit the experimental data, we used the version of the model (2.1)–
(2.5) with α = 3, which has four free parameters. The baseline values of the parameters were set to
τ = 0.05, cij = 0.

3.1. Single-trial decision landscapes
Fitted to a single trial’s mouse trajectory, the decision landscape captures both temporal dynamics and
geometry of a trial (figure 5 and table 1). Two key properties of mouse trajectories reflected by the fitted
landscapes are: motion time (MT), i.e. how long it takes for the cursor to reach the response area once
it leaves the starting location, and ‘max-d’, maximum deviation from the ideal, straight-line trajectory.
Slow trajectories are characterized by shallow landscapes, which indicate weak attraction towards the
eventually chosen option (e.g. trial 2 in figure 5). With decreasing MT, the attractor associated with the
chosen option becomes stronger, as reflected by the steeper slope of the landscape (trials 28 and 15 in
figure 5). However, if the trajectory deviates substantially towards the ‘low’ option, the second, latent
attractor emerges in the decision landscape (trial 28), although this option was not chosen. Still, the
chosen option attractor appears to be stronger than that of the unchosen option, reflecting the fact that
the participant was ‘pulled’ towards it eventually.

3.2. Learning
If the experimental task involves adaptation, the decision landscapes can be used to highlight learning
patterns within subjects. By way of example, we pooled all trials of a representative participant into three
consecutive blocks, so that the first six ‘high-low’ trials fell into Block 1, the next six into Block 2 and the
last eight ‘high-low’ choices formed Block 3. Across blocks, the participant learned to ignore the ‘low’
option (table 2). Figure 6 represents three decision landscapes separately fitted to all trajectories of each
block. The decision surface gradually changes from the two-attractor landscape with a more pronounced
potential well associated with the ‘high’ attractor to the single-attractor configuration, thereby tracking
the learning-induced evolution of preference across blocks. Here, besides the dynamics of the trials, the
decision landscape is shaped by the choice distribution: with practice, Participant 1334 learned to ignore
the ‘low’ option (in blocks 2 and 3 only the ‘high’ option was selected).

One may note that the decision landscapes suggest that the participant’s aversion to the ‘low’ option
has somewhat decreased from Block 2 to Block 3. This is likely to be the consequence of more curved
trajectories observed in Block 3, given that the choice distribution and MTs remained similar.
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slow and mildly conflicted. In trial 15, the trajectory was fast and close to the straight line. See table 1 for details.

Table 1. Trajectory measures of three representative trials of Participant 90.

chosen option motion time max-d

trial 28 1 (high) 0.37 0.77
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trial 2 1 (high) 0.72 0.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trial 15 1 (high) 0.15 0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3. Decision landscapes of individual decision makers
One of the potential applications of the present method is highlighting individual differences between
two participants performing the same task. To do this, one can obtain decision landscapes individually
for each participant by fitting the landscape model to all trials of that individual simultaneously. In the
case of multiple-trajectory fitting, the fitting error is defined as the average error across all trajectories of
a given participant (equation (2.7)), so the resulting decision landscape will integrate the information on
how often, how fast and with what degree of competition each option was chosen. This will provide a
comprehensive overview of the participant’s decisions throughout the experiment.

We illustrate this by two representative examples comparing pairs of participants. In the first example
(figure 7 and table 3), Participant 9276 was almost equally likely to choose either option, with faster
trajectories reaching towards the ‘low’ (left-hand side) option. Participant 9424 had chosen the ‘low’
response more often, and it was chosen on average faster than the ‘high’ option. This difference in choice
distributions is reflected in the decision landscapes of the two participants. Particularly, the decision
landscape favours the ‘high’ option more in Participant 9276, who chose this option relatively more
often than Participant 9424, although the MTs towards this option are similar in the two participants,
and despite the fact that trajectories of Participant 9424 towards this option were more direct.

The second example highlights the differences in decision landscapes of the participants with similar
choice distributions (figure 8 and table 4). Participant 1395 (purple surface) and Participant 1962 (green
surface) chose the ‘high’ option in 65% and 70% of the trials, respectively. However, because the
trajectories of Participant 1962 towards the ‘low’ choices were more deflected towards the ‘high’ option
than those of Participant 1395 (max-d 0.18 versus 0.06), the left-hand side attractor of the green decision
landscape is shallower than that of the purple landscape.

4. Discussion
The decision landscape visualizations provide a comprehensive overview of decision makers’ responses
in mouse-tracking experiments. Each visualization integrates the information on (i) the likelihood of
each option to be chosen, (ii) the duration of the response and (iii) the degree of competition between the
options.

The shape of the decision landscape is influenced (but not completely determined) by the likelihood
of choosing each option. If one option was selected much more often than the other, the optimal fit of
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Figure 6. Evolution of decisions of Participant 1334 throughout three consecutive experimental blocks as captured in (a) decision
landscapes and (b) mouse trajectories. In panel (b), dotted lines are average trajectories, and faint solid lines are individual trajectories.
See table 2 for details.

Table 2. Mean trajectory measures for three experimental blocks of Participant 1334.

option N motion time max-d

Block 1 1 (high) 7 0.94 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 1 1.08 −0.28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Block 2 1 (high) 6 0.72 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 0 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Block 3 1 (high) 6 0.59 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 0 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the landscape might be achieved by effectively ignoring the trajectories towards the less frequent choice,
which results in a one-attractor decision landscape. However, in the case of equally likely choices, the
best-fit decision landscape must necessarily capture the dynamics of the trajectories in both directions.
At the same time, temporal and geometrical aspects of the trajectories also contribute to the shape of
the landscape. Slow or very curved trajectories towards an option can lead to decreased attraction of
that option as expressed in the decision landscape, even though that option was finally chosen in the
end. Consequently, the decision landscape visualizations may aid in interpreting possible paradoxical
situations where one option is chosen less frequently, but faster and more directly, and the other option
is chosen often, but in a conflicted way.

The parameters of the decision surfaces generated by the method can be used to concisely describe
each trajectory (or set of trajectories). Much like coefficients in a Fourier series representation of a periodic
function, the parameters of our model define relative contributions of corresponding polynomial terms
of the ‘potential energy’ V(x, y) to the overall dynamics of a trial. On the one hand, the polynomial
approximation of a trajectory’s mouse velocity is more detailed (and less concise) than the standard
discrete measures used in the mouse-tracking literature, namely, response time and maximum deviation.
On the other hand, it is less detailed (yet more concise) than the original time series of mouse x- and
y-coordinates.

Traditionally, mouse-tracking data are visualized using mean mouse trajectories in the x–y plane [16].
This method, being one of the simplest visualization techniques, is easy to interpret: increased attraction
towards a competitor option is clearly reflected by a mean trajectory curved towards that option.
However, an important limitation of this approach is that, in order to generate mean trajectories, one
must either time-normalize trajectories to provide the same number of time steps per trajectory (e.g.
by interpolating each trajectory to 101 time steps) or average x–y locations within temporal bins. In the
former case, such mean trajectories allow one to visualize the geometry of the trajectories, but it ignores
their temporal dynamics: two geometrically identical mean trajectories of different durations would be
indistinguishable in the x–y plot. In the latter, one can visualize the average temporal dynamics of a set
of trajectories, but at the cost of averaging across space, and potentially occluding features of the typical
geometry of trajectories. The proposed decision landscape visualization approach addresses this issue
by incorporating temporal aspects of the trajectories as well as their geometrical properties.
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Figure 7. Decision landscapes of two individual participants: Example 1. The shape of the decision landscapes changes depending on the
choice distribution produced by the participants. See table 3 for details.

Table 3. Mean trajectory measures for Participants 9276 and 9424.

option N motion time max-d

Participant 9276 1 (high) 8 0.55 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 9 0.47 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 9424 1 (high) 7 0.53 −0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 13 0.4 −0.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first method for visualization of decision landscapes based on mouse tracking data was recently
provided by O’Hora et al. [4]. Their approach, however, is purely data-driven, and thus requires a
large number of trajectories (of order 100) to generate a reliable visualization of a decision surface.
By incorporating prior assumptions about decision landscape V(x, y) into a parametrized model, we
dramatically reduce the data requirements of our method. As demonstrated above, the method proposed
here can be used even with individual trajectories, but can also incorporate an arbitrary number of
trajectories. In addition, the decision landscape visualization method reported in [4] is constrained solely
to visualization, whereas we, owing to the underlying dynamical model, can extract from each trajectory
a set of parameters describing that trajectory. These parameters characterize time evolution of decisions,
and can be compared across experimental conditions and even across individual participants.

Even though the current approach can be employed to characterize the average decision landscape for
a person or even a condition within an experiment, the utility of the current model reduces as we move
further from individual trajectories. As we have demonstrated, ‘average’ landscapes can be meaningfully
generated for conditions within a participant. However, when dealing with large numbers of trajectories,
the computational costs of our method associated with fitting the dynamical system to the data become
too high for practical use, and hence, in this case, methods such as those proposed by O’Hora et al. [4] are
preferred. It is then possible to apply the approach proposed here to infer the landscape parameters by
fitting V(x, y) to these data-driven landscapes; this might facilitate comparison across groups of subjects.

Importantly, the presented version of the method assumes the continuity of trajectories, which is
not always the case: in a fraction of experimental trials, participants change their mind during a trial,
which is indicated by abrupt shifts in the x-direction of a decision trajectory. This happens even in simple
perceptual discrimination tasks [29]; depending on the task and the experimental set-up, the frequency
of changes of mind can reach 20% (e.g. [35]). The deterministic dynamical model of a decision trajectory
used in the present method does not account for such changes of mind. One way to conceptualize
such responses is that the landscape of a decision involving abrupt preference shifts should depend
on time and, thus, might be described by a non-stationary, possibly stochastic model. Development
of a method to infer decision landscapes from such change-of-mind trajectories is an important future
research direction.

It is important to note that, though the current visualizations provide a concise way of displaying
the most relevant features of mouse cursor movement during a two-choice experiment, they do not
constitute a process model of decision making. That is, the attractors at the response locations in the
model of a trajectory simply reflect the requirement that a participant chooses one of these responses
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Figure 8. Decision landscapes of two individual participants: Example 2. The choice distributions of the two individuals and
corresponding motion times are similar, and the difference in landscapes are mostly due to geometry of the underlying trajectories.
See table 4 for details.

Table 4. Mean trajectory measures for Participants 1395 and 1962.

option N motion time max-d

Participant 1395 1 (high) 13 0.72 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 7 0.61 0.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Participant 1962 1 (high) 14 0.85 0.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 (low) 6 0.63 0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

to complete a decision. The current visualization approach aims to facilitate comparison of mouse
data across experimental conditions or consecutive decisions, as we have demonstrated. Moreover, this
approach provides a rich outcome space within which to contrast the hypothetical outcomes of proposed
process models. For instance, decision-making models that infer differences between earlier processes
and later processes within a decision might predict specific changes in these landscapes under certain
experimental conditions.

Attractor models have proved useful in understanding outcomes of cognitive processes such as
categorization [36], risky decision making [37], intertemporal choice [38,39] and perceptual decision
making in intermittent motor control [40]. This work is among the first attempts to apply the concepts of
dynamical systems theory to process data characterizing decisions. We hope that the proposed decision
landscape visualization approach will eventually grow into a new tool for analysing decision trajectories,
which will be able to provide new insights into dynamics of decision making.
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