
                          Iannelli, A., Marcos, A., & Lowenberg, M. (2018). Study of Flexible Aircraft
Body Freedom Flutter with Robustness Tools. Journal of Guidance, Control,
and Dynamics, 41(5). https://doi.org/10.2514/1.G003165

Peer reviewed version

Link to published version (if available):
10.2514/1.G003165

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via AIAA at https://arc.aiaa.org/doi/10.2514/1.G003165 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/144579946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.2514/1.G003165
https://doi.org/10.2514/1.G003165
https://research-information.bris.ac.uk/en/publications/study-of-flexible-aircraft-body-freedom-flutter-with-robustness-tools(37022f93-8736-43cb-807e-1aa271000997).html
https://research-information.bris.ac.uk/en/publications/study-of-flexible-aircraft-body-freedom-flutter-with-robustness-tools(37022f93-8736-43cb-807e-1aa271000997).html


Study of Flexible Aircraft Body Freedom Flutter

with Robustness Tools

Andrea Iannellia and Andrés Marcosb and Mark Lowenbergc

Department of Aerospace Engineering, University of Bristol, UK

Body Freedom Flutter (BFF) is a dynamic instability featuring strong coupling be-

tween rigid-body and elastic modes of the aircraft. Flexible con�gurations with adverse

structural and geometric properties have been found susceptible to this phenomenon.

Features that complicate its study are the presence of multiple modal instabilities, and

the di�erent in�uence that system parameters have on each of them. The robust anal-

ysis framework based on Linear Fractional Transformation modeling and structured

singular value µ analysis is used in this work to study the BFF problem in a systematic

way. The analyses performed showcase the potential of these methods, not only in sup-

plying a characterization of the system in terms of its robustness, but also in gaining

further understanding of the BFF problem and reconciling the results with physical

features. It is also shown that the robust modeling analysis framework complements

the conventional, state of practice, methods while allowing the study of highly coupled

systems (of which the �exible aircraft is an example) to be addressed in an incremental

and methodological manner.

For this study a simpli�ed wing model is augmented including the short-period ap-

proximation aircraft model and the rigid-elastic coupling terms. The proposed model

captures properties and trends of both restrained wing �utter and BFF instabilities.
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Nomenclature

h, α = Plunge and pitch degrees of freedom of the typical section, m and rad

Kh, Kα = Linear and rotational sti�ness of the typical section, N
m2 and N

mw, m = Wing mass per unit span and total aircraft mass, kgm and kg

XE = Vector of elastic DOFs

La
E = Aerodynamic loads on the wing due to XE

Ms, Ks = Structural mass and sti�ness matrix

A = Aerodynamic In�uence Coe�cient (AIC) matrix

q = Dynamic pressure, N
m2

V = Airspeed, ms

EI, GJ = Bending and torsional sti�ness of the uniform wing, N.m2

ωb, ωt = Uncoupled bending and torsional natural frequencies of the uniform wing, rads

D = Tail leading edge distance from the nose, m

L = Wing span, m

ᾱ, θ̄ = Vehicle angle of attack and pitch angle, rad

q̄ = Vehicle pitch rate, rads

XR = Vector of rigid DOFs

La
R = Aerodynamic loads on the wing due to XR

ωSP , ζSP = Short-period frequency ( rads ) and damping

αloc = Wing local angle of attack (including rigid and elastic e�ects), rad

Cw,RL , Cw,EL = Wing rigid and elastic lift coe�cient

Vf , ωf = Flutter speed (ms ) and frequency ( rads )

VH = Aircraft tail volume

Iyy = Aircraft pitch moment of inertia, kg.m2

EIG = Bending sti�ness of the Goland wing, N .m2

σs = Bending sti�ness factor (de�ning the wing bending sti�ness as EI=σsEIG)

δx, λx = Uncertainty parameter x and corresponding level of uncertainty

∆y,R−z,C = Structured uncertainty matrix with total y real and z complex uncertainties

∆cr = Smallest perturbation matrix satisfying the determinant condition
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I. Introduction

Aeroelasticity investigates the coupled problem of a �exible structure surrounded by a �uid �ow

generating a pressure depending on its geometry. Flutter is one of the most important phenomena

which can be investigated within the aeroelastic framework. This is a self-excited instability in

which aerodynamic forces on a �exible body couple with its natural modes of vibration producing

oscillatory motion [1]. The level of vibration may result in su�ciently large amplitudes to provoke

failure and often this phenomenon dictates the design of the system.

In the aeronautical industry much analysis, at least for preliminary evaluations, relies on pre-

dictions based on restrained body models (e.g. cantilever wing), which assumes the occurrence of

�utter in a lifting surface as unrelated to the rigid-body motion of the vehicle where it is mounted.

Among the �rst studies on the interaction between aircraft motion and structural �exibility, the

work presented in [2] which focused on high-speed forward swept wing aircraft, is foundational.

The observed detrimental coupling between the rigid-body and the elastic dynamics of the vehicle,

termed Body Freedom Flutter (BFF), was exempli�ed by means of a simple low-order model and

a wealth of references where a similar problem had been investigated was provided. Recent stud-

ies [3�6] have con�rmed, using more sophisticated models, that structural sizing aimed to achieve

very light weight structure, and thus a signi�cant degree of �exibility, could lead to multiple �utter

mechanisms. Air vehicle layout, in terms of geometry and resulting aerodynamics, also plays a

decisive role in the extent of this phenomenon. As a result, the aeroelastic sizing required to ensure

�utter free behavior of the vehicle entails a multidisciplinary approach.

One of the contributions of the paper, which expands the initial work contained in [7], is to propose

a simpli�ed modeling process which, starting from the typical section model, attains a su�ciently

sophisticated mathematical description of the system to capture some of the most relevant aspects of

both the restrained wing �utter and the BFF. This framework is �rst employed to perform (a nom-

inal parametric) �utter analysis of a representative wing-fuselage-tail �exible aircraft con�guration

where variations in two meaningful parameters are considered. The outcomes of this parametric

analysis reveal interesting e�ects on �utter instability of modern aircraft design trends, such as

lightweight structures and geometric layout with lower static stability.
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However, another aspect further complicates the study of BFF. Despite the large amount of

e�ort spent in understanding �utter, it is acknowledged that predictions based only on computational

analyses are not totally reliable. One of the main reasons is the sensitivity of aeroelastic instabilities

to small variations in parameter and modeling assumptions, as thoroughly reviewed in [8]. Currently,

this is compensated by the addition of conservative safety margins to the analysis results as well as by

expensive �utter tests campaigns. In addressing this di�culty, the so-called robust �utter analysis

aims to quantify the gap between the prediction of the nominal stability analysis (model without

uncertainties) and the worst case prediction when the whole set of uncertainty is contemplated.

This method was �rst proposed for the study of �utter in [9, 10]. Other works that have addressed

aeroelastic studies by means of robustness tools include: [11], which focused on model reduction,

and [12] where di�erent approaches for in-�ight �utter analysis were investigated.

This study follows the approach of [9] in addressing this issue by making use of Linear Fractional

Transformation (LFT) models and µ analysis [13, 14]- respectively, the modelling and analysis cor-

nerstones of the so-called modern robust methods. The originality of this work is the methodological

study of the potentialities of the LFT-µ paradigm for the study of the highly coupled dynamics of

�exible aircraft exhibiting multiple instabilities. The interpretation of the results obtained within

this framework requires an adequate familiarity with the tools underpinning the analyses; hence the

paper �rst illustrates the manner in which robust techniques allow results found via conventional

approaches (e.g. eigenvalue and graphical parametric sensitivity analysis) to be retrieved. Later,

as the considered uncertain parameter space increases, the advantages in using robust techniques

are critically discussed and the reconciliation of the �ndings with di�erent physical aspects of the

problem is described.

The paper show that the proposed robust approach to study �exible aircraft aeroelastic insta-

bilities represents a powerful tool when used as a complement to the classical techniques. On the

one hand, it provides a quantitative assessment of the system stability degradation in the face of

uncertainties belonging to di�erent �elds (structural, aerodynamic, �ight mechanics). In that re-

gard, it could highlight weak points of the model requiring more re�nement and conversely identify

parameters that can be coarsely estimated as they do not have a strong in�uence on the results.
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And on the other hand, the obtained results can be used to interpret the outcomes of standard

parametric analyses, and the additional gained insight can be exploited in the de�nition of system

properties during the conceptual design stage (when the availability of accurate and time-e�cient

modeling and analysis tools is paramount).

The layout of the article is as follows. Section II discusses the build up of the proposed BFF

model which enables key features of this phenomenon to be captured. This model is built in a form

amenable to application of LFT modeling techniques (required to e�ciently recast the problem

in the robust analysis framework). Section III presents the results obtained with the adopted

model applying the p-k method, a classical algorithm for nominal �utter analyses. Section IV

provides an introduction to the robustness tools employed in this work, and Section V �nally shows

the application of the LFT modeling process and µ analysis framework to the BFF problem and

discusses the various results.

II. Aeroelastic model

In aircraft design, vehicle dynamics modeling and analysis are often addressed considering the

rigid-body dynamics and the structural dynamics separately, on account of a wide frequency sep-

aration between the two sets of natural modes. However, this hypothesis is being challenged by

the increased trend towards an optimal structural sizing and lightweight material selection, as well

as by the conception of aircraft geometric layouts with low static stability (or statically unstable)

but compensated with full-authority control systems. The enhanced coupling between the rigid

and �exible dynamics thus compels consideration of a model retaining both aeroelastic and �ight

mechanics physical e�ects. In this Section the development of a simpli�ed model to address this

task is described. First, the typical section is introduced and it is shown to enable prediction of

the instability of simple wing con�gurations (Subsection IIA). Then, starting from the restrained

wing model, a more comprehensive description is built up featuring also the rigid-body motion of

the aircraft (Subsection II B).

A. Restrained wing model

The typical section model, see Fig. 1, was introduced in the early stages of aeroelasticity to

investigate dynamic instabilities such as �utter [1]. Despite its simplicity, it captures the essential
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e�ects of this phenomenon.

From the structural side, it basically consists of a rigid airfoil with lumped springs simulating

the Degrees Of Freedom (DOFs) of the section, limited in this case to plunge h and pitch α.

The positions of the elastic axis (EA), center of gravity (CG) and the aerodynamic center (AC) are

also marked in Fig. 1. The main parameters in the model are: Kh and Kα (respectively the linear

and rotational sti�ness); half chord distance b; dimensionless distances a (from mid-chord to elastic

axis) and xα (from elastic axis to airfoil center of gravity). In addition to these parameters, the

inertial characteristics of the system are given by: the mass ratio mw (wing weight per unit span)

and the moment of inertia of the section about the elastic axis Iα.

Fig. 1 Typical section sketch

For the modeling of the aerodynamic loads, the unsteady formulation proposed by Theodorsen [1] is

employed. This approach is based on the assumption of a thin airfoil moving with small harmonic

oscillations in a potential and incompressible �ow.

In order to present the basic model development approach, the vectors XE = [h(t)
b α(t)]T and

La
E = [−Lh Mα]T are respectively de�ned for the elastic DOFs and the corresponding aerodynamic

loads. The set of di�erential equations describing the dynamic equilibrium can then be recast in

matrix form using Lagrange's equations [1]:

[
Ms

]
ẌE +

[
Ks

]
XE = La

E (1)
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where
[
Ms

]
and

[
Ks

]
are respectively the structural mass and sti�ness matrices (structural damping

is assumed null). They can be written as:

[
Ms

]
= mwb

 1 xα

xα r2
α

 ;
[
Ks

]
=

 bKh 0

0 Kα
b

 (2)

where rα=
√

Iα
mwb2

is the dimensionless radius of gyration of the section about the elastic axis.

The Theodorsen model provides an expression of La
E in the Laplace s domain as:

La
E(s) = q

[
A(s̄)

]
XE(s) (3)

where the dynamic pressure q, the dimensionless Laplace variable s̄ (=s bV with V the airspeed) and

the generalized Aerodynamic In�uence Coe�cient (AIC) matrix A(s̄) are introduced.

The �nal aeroelastic equilibrium is written in the frequency domain as:[[
Ms

]
s2 +

[
Ks

]
− q
[
A(s̄)

]]
XE(s) = 0 (4)

The premise of the typical section modeling is that the dynamics of an actual wing can be

investigated choosing the aforementioned properties to match those at a span station about 70%

distant from the aircraft centerline. Experience and studies (see references in [1]) have con�rmed

that this assumption is reasonable for wing con�gurations having large aspect ratio, small sweep

angle and spanwise characteristics varying smoothly.

In order to specialize Eq. (4) to the study of uniform wings, the structural mass matrix Ms

can be de�ned based on the inertial properties of the section at the proper wing station. As for

the structural sti�ness matrix Ks, an equivalence in terms of the �rst uncoupled bending (ωb)

and torsional (ωt) natural frequencies of a cantilever beam is imposed. First, structural properties

commonly used to characterize the wing elasticity, such as bending sti�ness EI and torsional sti�ness

GJ , are introduced. Then, two relations imposing the equivalence between the typical section and

the uniform wing are written down in order to �nd the values for the typical section sti�ness

parameters Kh and Kα to be substituted in Eq. (2). The following holds [15]:

ωb =
(

0.597
2π

L

)2
√
EI

mw
=

√
Kh

mw

ωt =
π

L

√
GJ

Iα
=

√
Kα

Iα
(5)
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The aerodynamic part of the system is the same as for the typical section, with the airfoil coe�cients

specialized to the geometry of the wing station. The 2D �ow assumption is in line with the other

hypotheses on the wing underlying this approach (which allow 3D e�ects to be neglected).

A prototype of a valid wing described by this model is shown in Fig. 2. The mean aerodynamic

chord c̄ and the span L are new parameters present in this problem.

Fig. 2 Straight wing geometry

B. Flexible aircraft model

In order to extend the �eld of application of the analyses to the interactions of the wing �ex-

ibility with the motion of the aircraft, the previous model is augmented with rigid-body e�ects.

Reference [16], which provides a comprehensive study on this subject, is taken as inspiration to

outline a possible strategy.

The aircraft geometry considered is a wing-fuselage-tail con�guration. The wing is assumed

to be described by the model in Subsection IIA, while new parameters are introduced for the

vehicle properties. Geometry parameters include the tail leading edge distance from the nose D,

the tail span Lt and the mean chord ct (St=Ltct is the resulting tail surface). The inertia quantities

considered are: tail (mt) and wing (mw) mass ratios, payload mp, and total aircraft mass m; the

vehicle pitch moment of inertia Iyy (similarly composed of payload pitch inertia IyyP , wing inertia

Iyyw and tail inertia Iyyt). Aerodynamic properties such as wing and tail lift e�ectiveness coe�cients

CwLα and CtLα are also speci�ed. A prototype of the air vehicle is sketched in Fig. 3.

Only the longitudinal dynamics are retained in the derived model, resulting in three additional

states: the vehicle angle of attack ᾱ, the pitch angle θ̄ and its pitch rate q̄ . This is the short period

approximation, which for conventional aircraft involves rapid heave and pitch oscillations at almost

constant translational speed. Surge velocity is neglected since, as discussed in [6], the phugoid mode

has a marginal role in the occurrence of the instability investigated here. The description of the
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Fig. 3 Simpli�ed aircraft geometry

longitudinal dynamics for level �ight is given in the frequency domain by [16]: (mV − Z ˙̄α)s− Zᾱ −(Zq̄ +mV )s

−(M ˙̄αs+Mᾱ) Iyys
2 −Mq̄s


 ᾱ(s)

θ̄(s)

 =

 0

0

 (6)

where q̄ = sθ̄, XR = [ᾱ θ̄]T is the vector of rigid-body degrees of freedom, and the aerodynamic

stability derivatives Zᾱ, Z ˙̄α, Zq̄, Mᾱ, M ˙̄α, Mq̄ have been introduced.

The characteristic equation associated with the system in Eq. (6) is a third order polynomial

with one pole at the origin and the remaining second-order polynomial expressing the short-period

approximation properties:

s2 + 2ζSPωSP s+ ω2
SP = 0

ω2
SP ≈

Mq̄

Iyy

Zᾱ
mV − Z ˙̄α

− Mᾱ

Iyy

mV + Zq̄
mV − Z ˙̄α

2ζSPωSP ≈ −(
Mq̄

Iyy
+

Zᾱ
mV − Z ˙̄α

+
M ˙̄α

Iyy

mV + Zq̄
mV − Z ˙̄α

)

(7)

All the aerodynamic stability derivatives are evaluated using a �rst-order approximation:

Z• =
∂Z

∂•
= −qSCL• ; M• =

∂M

∂•
= c̄qSCM• ; (8)

where • = {ᾱ, q̄, ˙̄α} and CL• , CM• are functions of the aircraft's geometry [16].

The �nal task is to determine the coupling terms, since the equilibrium of the elastic degrees of

freedom has already been stated in Eq. (4). The crucial aspects to address are: the understanding

of how the deformation a�ects the aerodynamic forces generated by the vehicle, and how the motion

of the vehicle contributes to change the loads acting on the structure. A proposed simpli�cation

commonly accepted to study stability of �exible aircraft is to consider the fuselage and tail as

rigid [17], which means that all the elasticity is concentrated in the wing.

First, the change in aerodynamic forces and moments produced by the aircraft due to the �exibility
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is considered. The e�ect of the elastic deformation on the lift generated by the local wing sections

is highlighted in the expression of the local angle of attack αloc = α0 + α + ḣ
V , where α0 is the

rigid-body angle of attack of the section, related through the twist to ᾱ. The aeroelastic stability

derivatives describing the e�ect of the deformation on the vehicle forces and moments can then be

derived: 
CwL = Cw,RL + Cw,EL

CwL = CwLα(α0 + α+ ḣ
V )

⇒
Cw,RL = CwLαα0

Cw,EL = CwLα(α+
ḣ

V
)

(9)

where CwLα is the wing lift e�ectiveness, Cw,RL is the rigid wing lift coe�cient (accounted for in the

aerodynamic derivatives previously introduced in Eq. (8)) and Cw,EL its elastic counterpart. This

procedure leads to the de�nition of the aeroelastic stability derivatives Zα and Zḣ, and follows the

same line of reasoning to obtainMα andMḣ given the geometry of the wing and the relative position

of center of gravity and aerodynamic centers. Note that for these coupling terms, describing the

e�ect of wing deformation on the rigid equilibrium, the hypothesis of quasi-steadiness is assumed

in order to keep consistency with the assumptions taken in evaluating the aerodynamic stability

derivatives in Eq. (8).

Vehicle motion, by means of the rigid DOFs, in turn in�uences the loads acting on the wing.

Speci�cally, a change in angle of attack ᾱ and pitch rate q̄ causes elastic terms containing ḣ
b and α

to generate further loads on the structure. If a quasi-steady �ow is considered, then the procedure

follows the one outlined in Eq. (9). More interestingly, when unsteadiness is retained, the relation

between displacements and forces mimics the Theodorsen model introduced in Eq. (3). In particular,

it is possible to write in the Laplace domain:

La
R(s) = q

[
A
][

T
]
XR(s) (10)

where
[
T
]
is a transformation matrix allowing the typical section degrees of freedom XE in terms

of XR to be expressed. This de�nes the remaining aeroelastic stability derivatives Lᾱ, Lq̄, Mᾱ, Mq̄.

A short-hand expression for the full system is given by:s2

MRR MRE

MER MEE

+ s

CRR CRE

CER CEE

+

 KRR KRE

KER(s̄) KEE(s̄)



XR

XE

 =

0

0

 (11)
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where the subscripts R and E refer again to the Rigid-body and Elastic DOFs. Note that if the

cross-coupling terms (RE or ER) are set to zero, the study of the dynamics of the system amounts

to separate consideration of the short-period approximation of the aircraft (governed by the RR

terms) and the restrained wing aeroelastic problem (described by the EE terms).

In Eq. (11) relevant aspects of the rigid-elastic coupling are featured. The aeroelastic derivatives

calculation process, outlined in Eqs. (9)-(10), follows the modeling construct rationale of [16], despite

the signi�cant simpli�cations adopted in this model. It is also noted that BFF is well predicted using

linear models for the aircraft and is not the result of aerodynamic or structural nonlinearities [3],

hence the hypotheses underpinning the dynamics in Eq. (11).

The goal of the presented mathematical model is twofold: on the one side, to retain important

features of the interaction between elastic and rigid modes (this aspect will be fully explored in

Section III); and on the other hand, to provide a manageable starting point for the de�nition of

reliable LFT models (this instrumental step in the investigation of the robustness of the system will

be addressed in Subsection VA).
III. Nominal analysis

Nominal �utter analysis studies the conditions at which the dynamic aeroelastic system, at

a �xed, known condition, loses its stability. This is a parameter-dependent problem, since as a

parameter of the model is varied, the system's behavior changes. Generally, this is accomplished

considering the air stream speed V as the critical parameter, and the result is the de�nition of a

speed Vf , called �utter speed, such that for all the speeds below it the system is stable.

Subsection IIIA presents the restrained wing �utter analyses performed on the general model from

Subsection IIA, and validating it with the Goland wing benchmark. Subsection III B showcases and

discusses the results obtained analyzing a notional �exible aircraft con�guration. The values of the

parameters de�ning the test case are given in Appendix in Table 4. Their selection is discussed in

Subsection III B.

A. Restrained wing model validation

The capability of the model built in Subsection IIA in predicting �utter onset of simple wing

geometries is validated against the Goland wing, a well-known benchmark problem in the liter-

ature [18]. This benchmark consists of a uniform rectangular wing with constant structural and
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inertial properties along the span and no control surfaces. This last feature can be seen as the

consequence of the natural frequency associated with this mode being much greater than the ones

related to bending and torsion modes.

The numerical algorithm employed in this work to perform nominal �utter analyses is the p-k

method [19]. This algorithm, a standard method for �utter analysis, is a natural choice due to the

frequency domain formulation of the problem (recall Eq. (11)). Fig. 4 displays the results of the

analyses. In Fig. 4(a) the eigenvalues corresponding to the two elastic modes are depicted as the

airstream speed is increased (the �rst speed analyzed is identi�ed in the �gure with square markers).

At a speed Vf=141
m
s (denoted by circle markers) the system exhibits an instability dominated by

the torsion mode. Note that ωf=73.2
rad
s refers to the �utter frequency (i.e. the frequency of the

torsion mode at �utter), while ωb−f=63.1
rad
s refers to the frequency of the bending mode at Vf .

The evolution of the mode frequencies as speed increases is shown in Fig. 4(b), with the dotted

vertical line emphasizing the �utter point.
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Fig. 4 Goland wing benchmark: bending and torsion modes variation with speed

In Table IIIA a comparison of the results obtained in this work with others from the literature

is shown. There is a satisfactory matching with another 2D approximation of the straight wing

model [20], while the discrepancies with an aeroelastic model comprising 3D e�ects [18] remain

below 3% in terms of Vf . In this regard, it is remarked here that, although the aspect ratio of the

Goland wing is not considered to be high, the model proposed in Sec. II is still able to adequately

capture its �utter behaviour. This can be ascribed to the simple geometry of the wing (null sweep
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angle, uniform geometrical properties) which reduces 3D aerodynamic e�ects.

Table 1 Comparison of results for the Goland wing �utter analysis

Flutter velocity [m
s
] Flutter frequency [ rad

s
]

Present work 141.1 73.2

2D approximation [20] 141.2 72.5

Original reference [18] 137.2 70.7

B. Study of �exible aircraft instabilities

The analysis shown in Subsection IIIA gives a prediction about instability occurrence consid-

ering the wing by itself (i.e. restrained model). This implies assuming �utter onset as unrelated to

the rigid-body motion of the vehicle on which the aerodynamic body is mounted. In Section II the

reasons to contemplate a more sophisticated model (including the vehicle motion and its coupling

with the wing elasticity) were motivated. The model built up therein enables studies on the so-called

Body Freedom Flutter (BFF) to be performed, which are presented and discussed next.

1. Preliminary considerations and test case de�nition

The aircraft geometry considered in this work was depicted in Fig. 3. It is remarked here that

the pursued analyses are not aimed at investigating the stability of a speci�c air vehicle layout.

Instead, the chief goal is to show how the proposed (simpli�ed) aircraft model incorporates features

of BFF.

Di�erent studies on this topic [5, 17, 21, 22] highlighted common design features which are responsi-

ble for amplifying the interaction between rigid and elastic dynamics. These references showed that

inertia and sti�ness play a decisive role in modifying free-vibration properties, bringing the lowest

elastic natural frequencies closer to the frequencies characteristic of the vehicle motion. They also

modify the corresponding mode shapes [3]. Similarly, aircraft geometry (with its associated e�ect

on the stability derivatives) is also decisive. An example of this is represented by the tail volume

VH parameter, which as shown in [22] can exacerbate the interaction between the rigid-body short

period and the wing �rst bending mode when of low value. This parameter is de�ned as

VH = (X̄t
AC − X̄CG)

St
S

(12)

13



where X̄t
AC and X̄CG are respectively the dimensionless (dividing by the mean aerodynamic chord

c̄) distances from the aircraft nose to respectively, the tail aerodynamic center and the aircraft center

of gravity. Once the lifting surfaces' sizes and inertial properties are �xed, VH is a function of D

(the distance from the nose to the tail leading edge), which was introduced in Subsection II B and

also explicitly depicted in Fig. 3. This parameter directly in�uences the value of X̄t
AC which is

known to have great e�ect on the aerodynamic stability derivatives of Eq. (8).

The above considerations inform the selection of the parameters de�ning the vehicle con�g-

uration. The wing is described by the same parameters that de�ne the Goland wing, with the

only exception of EI, which in here is assumed to represent an aeroelastic design variable that

re�ects the tendency towards a lightweight-oriented structural sizing. This design variable is given

by EI=σsEIG with EIG set at the value for the Goland wing and σs, referred to as the bending

sti�ness factor, ranging within prescribed values. Thus, EI represents a free parameter capturing

the range of bending sti�ness and taking values from maximum bending �exibility (σs=0.05) to

maximum bending rigidity (σs=1).

Note that the wing mass ratio mw is kept constant at the Goland wing value, although it could

be argued that the chosen variation in bending sti�ness implies also a variation in weight. This

assumption is dictated by the aim at this stage to investigate how the proposed model captures

the e�ect on BFF of speci�c parameters related to aeroelastic and �ight mechanics design aspects.

Torsional sti�ness is also kept constant because, as shown in Fig. 4(a), this mode is dominating the

�utter behavior of the wing and thus a design constraint in terms of its lower value is assumed to

hold.

With respect to the �exible aircraft layout, the parameters de�ning the geometrical and inertial

properties are obtained by scaling the values from [17] (which examines a similar aircraft layout)

through adopting the Goland wing mass ratio and span as the reference mass and length. As an

example, the de�nition of the vehicle payload pitch inertia IyyP becomes:

IyyP = I0
yyP

(
mw

m0
w

)(
L

L0

)2

(13)

where the variables with superscript 0 represent the values from [17]. Finally, the other design

parameter used is the position of the tail D, which represents the �ight mechanics design variable,
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due to its important role discussed earlier. This parameter is assumed to vary in a range between

5 m and 10 m, complying with static stability requirements.

2. Results

Following a traditional parametric analysis approach, Fig. 5 shows the �utter speed Vf , i.e.

the lowest speed at which the system loses stability, considering a grid of values for the design

parameters EI and D. Three values of the bending sti�ness factor σs (marked by vertical dashed

lines) are highlighted and will be discussed subsequently.

The �rst apparent feature observed in Fig. 5, and very familiar to aeroelasticians [1], is that the

tendency for instability is more pronounced as the bending ωb and torsional ωt frequencies become

closer. This is seen by the slope of the restrained wing (solid line), where it is evident that Vf

increases as σs (equivalently EI) is reduced. This is due to the fact that a decrease in EI implies

an analogous trend in the bending frequency, as expressed by Eq. (5). Since the torsional sti�ness

is kept constant in these analyses, a decrease in σs can hence be interpreted as a reduction in the

ratio ωb
ωt

between the uncoupled bending and torsional natural frequencies.

The �utter velocities obtained when rigid-elastic interactions are included (curves for D={5,6,8,10}

m in Fig. 5) maintain the above trend but only for as long as the tail volume of the vehicle does

not become critical to the stability. In fact, there is a whole range of bending �exibility values of

the wing (0.15<σs<1) where VH proves to have a negligible in�uence on �utter occurrence, and

thus the BFF model predicts only a relatively small decrease in �utter speed with respect to the

restrained model (up to 3%). But as the bending �exibility increases (σs<0.15), the interaction

between the short-period and the bending mode becomes signi�cant, which leads to an abrupt

decrease of �utter speed. Therefore, tail volume is con�rmed to play a crucial twofold role: it

prompts rigid-elastic coupling (in that it changes the σs threshold at which the leap occurs) and it

determines the magnitude of the change in the Vf value itself. In particular, Fig. 5 shows that a

lower D (i.e. lower VH) anticipates the transition to the BFF mechanism and determines a lower

�utter speed than for the scenario with greater VH , con�rming its role discussed earlier.

The behaviour detected in Fig. 5 can be better clari�ed observing the trend of the eigenvalues,

see Fig. 6, for two aircraft con�gurations. Tail distance D is for both cases equal to 5 m, while the
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Fig. 5 Flutter speed of the �exible aircraft at a grid of EI (i.e. σs) and D values.

bending sti�ness parameter σs is equal to 0.6 for case A and to 0.12 for case B (these cases are two

of those highlighted in Fig. 5 with vertical dashed lines). Hence they each belong to one of the two

stability regions detected in the plot.
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Fig. 6 Eigenvalues location as a function of speed within BFF model

In Fig. 6 the modes branches are identi�ed (and labeled) according to their genesis of pure rigid-

body or pure elastic modes. However, it is fair to remark that all the modes experience coupling due

to the aerodynamics (bending and torsion) and to motion (short period and bending), and hence

this labeling is only a naming convention for ease of explanation. For the �rst aircraft con�guration,

depicted in Fig. 6(a), the eigenvalues of the system exhibit a pattern qualitatively similar to the one

shown in Fig. 4(a) for the (restrained) Goland wing model. In fact, the �utter mechanism does not

involve coupling with rigid motion and it is the torsional mode which goes unstable at Vf=146.7
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m
s and ωf=75.3

rad
s (high frequency instability). The short-period eigenvalue follows the pattern

known for the pure rigid-body case (with a frequency increasing almost linearly with speed), and

thus proves to be almost unperturbed by the wing deformation. However, when bending �exibility

becomes more prominent (i.e. case B shown in Fig. 6(b)) two distinctive �utter mechanisms can be

observed. The �rst imaginary axis crossing takes place at a speed Vf1=150.3
m
s and at a frequency

ωf1=12.3
rad
s . This low-frequency instability is the result of the interaction between the short-period

and the bending modes (that is, the Body Freedom Flutter). The second crossing takes place at

Vf2=162.8
m
s at a higher frequency (ωf2=69.3

rad
s ), and is dominated by the torsion instability

already encountered in the other con�guration.

In conclusion, the trend depicted in Fig. 5 is motivated by a change in the mode �rst reaching the

�utter condition, which for the curves D={5,6,8} m (in the range of low bending sti�ness, i.e. the

left side of Fig. 5) is the rigid-elastic coupled mode, while in the other cases is still the torsional

mode (as clearly demonstrated in Fig. 6).

As a prelude to the following section, and serving as a summary of this one, it is noted that:

• The above results con�rm that the proposed model from Section II is able to capture known

physical e�ects of the BFF problem.

• The use of standard methods (e.g. p-k) for �utter sensitivity analysis can show the detrimental

e�ect on stability for the BFF problem (Fig. 5) and provides a characterization of the multiple

instabilities a�ecting the system by tracking the eigenvalues of the system as the airspeed is

varied (Fig. 6). The procedure implies a gridding of the parameter space and therefore it does

not provide theoretical guarantees on the results.

• Due to the latter gridding, when dealing with a larger number of variables, a parametric study

such as the one performed in this subsection is expected to become di�cult to interpret and

computationally onerous. As the sizing required to ensure a �utter free behavior of �exible

aircraft is inherently multidisciplinary, the opportunity to propose an approach, built on a

robustness modeling and analysis framework, which attempts to overcome the aforementioned

issues is envisaged.
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IV. Theoretical Background

This Section provides a cursory introduction to LFT [13] and µ analysis [14]. The interested

reader is referred to the aforementioned references for a thorough overview of these techniques.

They have been applied in the last two decades to the study of complex uncertain systems in

the aerospace �eld: see for example [23] for LFT modeling and [24] for µ and related worst-case

analysis. Further, in [25] their application to the structural and control optimization problem of an

aeroservoelastic system was presented.

A. Linear Fractional Transformation

LFT is an instrumental framework in modern control theory for robustness analysis and synthe-

sis. The underpinning idea is to represent an uncertain system in terms of nominal and uncertain

components given by matrices.

Let M ∈ C(p1+p2)×(q1+q2) be a matrix partitioned as M = [M11 M12; M21 M22] and ∆u ∈ Cq1×p1 .

The upper LFT with respect to ∆u is de�ned as the map:

Fu(M, •) : Cq1×p1 −→ Cp2×q2

Fu(M,∆u) = M22 + M21∆u(I−M11∆u)−1M12

(14)

Fig. 7 shows the feedback representation usually adopted to depict Fu(M,∆u) (the subscript in

∆u will be dropped in the following). If M is taken as a proper transfer matrix, Fu is the closed-

loop transfer matrix from input u to output y when the nominal plant (i.e. the system with no

uncertainty) M22 is subject to a perturbation matrix ∆. A crucial feature apparent in Eq. (14)

is that the LFT is well posed if and only if the inverse of (I −M11∆) exists, where M11 is by

de�nition the transfer matrix seen by the perturbation block ∆.

Fig. 7 Upper Linear Fractional Transformation (LFT).

B. µ analysis

µ, also known as structured singular value (s.s.v.) analysis, enables the robust stability and

performance of a system subject to real parametric and dynamic uncertainties to be addressed.
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The s.s.v. is a matrix function denoted by µ∆(M11):

µ∆(M11) =

(
min
∆̂∈∆

(β : det(I− βM11∆̂) = 0; σ̄(∆̂) ≤ 1)

)−1

(15)

where β is a real positive scalar and ∆ is the structured uncertainty set associated with Fu(M,∆).

For ease of calculation and interpretation, and without loss of generality, this set is norm-bounded

(i.e. σ̄(∆) ≤ 1) by scaling of M11. The result can then be interpreted as a robust stability (RS) test

of the plant represented by Fu(M,∆): if µ∆(M11) ≤ 1 then there is no perturbation matrix inside

the allowable set ∆ such that the determinant condition is satis�ed. That is, Fu(M,∆) is well

posed and thus the associated plant is robustly stable within the range of uncertainties considered.

On the contrary, if µ∆(M11) ≥ 1 a candidate (i.e. belonging to the allowed set) perturbation matrix

exists which violates the well-posedness, i.e. the closed loop in Fig. 7 is unstable.

It is known that µ∆(M) is in general an NP-hard problem [13], thus all µ algorithms work by

searching for upper (UB) and lower (LB) bounds. The upper bound µUB provides the maximum

size perturbation σ̄(∆UB) = 1/µUB for which RS is guaranteed, whereas the lower bound µLB

de�nes a minimum size perturbation σ̄(∆LB) = 1/µLB for which RS is guaranteed to be violated.

If the bounds are close in magnitude then the conservativeness in the calculation of µ is small,

otherwise nothing can be said on the guaranteed robustness of the system for perturbations within

[1/µUB , 1/µLB ]. A study on the performance and analysis e�ects of various µ algorithms was

performed in [26] using speci�c �utter-related uncertainty descriptions. These tests suggested that

the currently available algorithms are able to cope with the pure real problems of medium size that

frequently arise in �utter analysis. It is crucial, however, in order to provide reliable predictions, to

adopt the more appropriate algorithms among the options currently available. In this work, based

on the outcome of the aforementioned study, the Balanced form algorithm is employed for µUB

calculation, whereas the gain-based one [27] is adopted for µLB .

V. Robust analysis

This section exploits the capabilities of the robust modeling and analysis techniques presented in

Section IV to further investigate the dynamic aeroelastic instabilities exhibited by simpli�ed �exible

aircraft con�gurations. The �rst subsection describes the LFT models employed in the analyses,

followed by the presentation and discussion of the results.
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A. LFT models

The goal of the LFT modeling process is to recast the aeroelastic system, described for the

nominal case by Eq. (11), in the framework of Fig. 7 and Eq. (14). A systematic review of possible

strategies to perform this task for aeroelastic applications is documented in [26], which contains a

detailed study of the di�erent problem formulations and uncertainty description options. In this

work, the method outlined in [9], known as µ-k method, is adopted and the basic steps are recalled

here.

First note that parametric uncertainties can be used to describe parameters whose values are

varying or not known with a satisfactory level of con�dence. Considering a generic uncertain param-

eter g, with λg indicating the uncertainty level with respect to a nominal value g0 and δg ∈ [−1, 1]

representing the uncertainty �ag, a general uncertain representation is given by:

g = g0 + λgδg (16)

This expression is often referred to as additive uncertainty [13]. At a matrix level, the operator G

a�ected by parametric uncertainties can be expressed as:

[
G
]

=
[
G0

]
+
[
VG

][
∆G

][
WG

]
(17)

where VG and WG are scaling matrices which, provided the uncertainty level λg for each parameter,

give a structured perturbation matrix ∆G belonging to the norm bounded subset, i.e. σ̄(∆G) ≤ 1.

These uncertainty blocks can be obtained by writing the uncertainty parameters in symbolic form

and using, for instance, the well consolidated LFR toolbox [28] or alternative algorithms [29].

The �rst step is thus to use the additive uncertainty de�nition for the operators in Eq. (11) that

are considered uncertain. The matrix uncertainty description obtained by applying Eq. (17) to the

aeroelastic sti�ness operator KEE and the rigid sti�ness operator KRR is:

[
KEE

]
=
[
KEE

0
]

+
[
VKEE

][
∆KEE

][
WKEE

]
[
KRR

]
=
[
KRR

0
]

+
[
VKRR

][
∆KRR

][
WKRR

] (18)

In this example, uncertainties are assumed to a�ect the structural sti�ness and the unsteady aero-

dynamic properties for the �rst operator (recall from Eq. (4) that KEE = Ks − qA), whereas

variability of stability derivatives as Zᾱ and Mᾱ are captured in KRR (see the short period ap-

proximation in Eq. (6)). In general, this operation will provide for each considered operator the
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auxiliary matrices ∆•, V•, and W• (with • ={M?,C?,K?} and ? ={RR,RE,ER,EE}).

Once this is accomplished, the uncertainty operators are substituted in Eq. (11) and the nominal

dynamics is separated from the uncertain terms, leading to the evaluation of M11 which is the

matrix used by µ analysis to perform the RS test (Eq. (15)).

This subsection is concluded with the de�nition of the LFTs employed in the subsequent anal-

yses. Based on the discussions and evidence of the previous subsections, three important design

variables are selected as the considered uncertainty parameters: wing bending sti�ness EI, tail

distance D, and wing mass ratio mw.

The �rst two parameters and their role in the instabilities that the aircraft may encounter were

amply commented on in Subsection III B 2. The wing mass is also a fundamental parameter of the

�exible aircraft dynamics, since it signi�cantly in�uences the rigid-body equilibrium: it alters the

vehicle inertia properties (assumed to scale with the wing weight, as shown in Eq. (13) for the pitch

inertia) as well as the CG location (with important e�ects on the short-period properties). In addi-

tion, the restrained wing �utter itself is known to be highly dependent on the inertial contribution

and thus an uncertainty a�ecting the structural mass matrix (as mw does, see de�nition of Ms in

Eq. (2)) has substantial repercussions.

The reason to capture these parameters in an LFT fashion is therefore twofold. On the one hand,

their values (especially EI and mw) are only known within a certain tolerance until the �nal design

stage and therefore all �utter analyses should take into account this uncertainty. On the other hand,

they are key design variables selected during the conceptual design stage, typically characterized by

di�erent concurrent requirements, and hence additional insights are invaluable at that stage. For

these reasons, it is of interest to explore the capabilities of µ in this highly coupled scenario.

In addition to these three parameters, uncertainty in some of the aerodynamic transfer functions (the

generic terms Aij) is considered to allow for inaccuracies in the aerodynamic model and potential

violations in its underlying hypotheses (e.g. the fact that 3D e�ects are not necessarily negligible).

As aforementioned, an LFT model is formed by a nominal system and an associated uncertainty

block ∆. For the latter, two uncertainty descriptions are adopted in this work, yielding 2 di�erent
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LFT models. Their schematic ∆ block representations are:

∆1
8,R−3,C = diag(δDI7, δEI , δA12

, δA21
, δA22

)

∆2
18,R−3,C = diag(δmwI10, δDI7, δEI , δA12

, δA21
, δA22

)

(19)

where the size of the uncertainties (total ∆ dimension) and their nature (real R or complex C)

is recalled in the superscripts, while In indicates the identity matrix of size n (for repeated un-

certainties). These two LFTs both capture the variability in aerodynamics, bending sti�ness, and

tail distance, and for the second (LFT-2) also that for the mass ratio δmw . Thus, LFT-1 will allow

similar analyses to those from the previous section to be explored. Note that LFT-1 can be obtained

as a particular realization of LFT-2 (δmw = 0). The uncertainty description for all the parameters

re�ect the additive relation given in Eq. (16). The aerodynamic uncertainties are complex and

their uncertain description is such that they range in the disc of the complex plane centered in the

nominal value and having a radius equal to 3% [26].

For µ analyses, an LFT model requires a stable, so-called LFT nominal, plant that is obtained

by setting ∆ to zero. Both of the above LFT models are centered at EI = 0.15EIG (i.e. σs = 0.15,

marked with a vertical dashed line in Fig. 5) and D = 6m. Using these values and mw as in Table

4, the �utter speed of the corresponding aeroelastic system can be read o� from Fig. 5 as Vf = 162

m
s . Therefore, the LFT nominal plant is centered at the sub-critical speed V= 150 m

s .

With reference to Fig. 5, it is worth noticing that the system is located close to the boundary

between the two regions discussed in Subsection III B 2. In particular, this con�guration features

(for the speci�ed value of tail distance) one of the highest �utter speeds, lying at the same time close

to the abrupt leap in the �utter curve. From a �utter design perspective, this layout can thus be

regarded as optimal in that it attains the highest �utter speed given a prescribed margin from BFF

occurrence. It is therefore of interest to perform a thorough investigation looking at its robustness.

In order to further characterize the �utter behaviour of this con�guration, Fig. 8 shows the pole

locations of the LFT nominal system, highlighting speeds and frequencies for the instabilities taking

place. The system exhibits both the low frequency (Body Freedom Flutter at ω1) and high frequency

(restrained wing �utter at ω2) instabilities. Note that in comparison to Fig. 6(b), the restrained

wing �utter is the �rst to be encountered (i.e. corresponding to the lowest speed) at Vf2 = 162 m
s
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and ωf2 = 69.7 rad
s , while the BFF occurs at a speed Vf1 = 175 m

s and a frequency ωf1 = 14.7 rad
s .
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Fig. 8 Poles location as a function of speed for the nominal aircraft

B. µ-analysis results for LFT Model 1

Parametric sensitivity study. The �rst goal in using LFT-1 is to show the capability of µ analysis

in inferring similar conclusions about the system's instabilities as those drawn in Subsection III B 2

via the manual parametric study. This is done here by assessing the role played by each uncertainty

in the robust stability calculation, i.e. a type of robust parametric sensitivity analysis performed

within the µ analysis framework. Once a condition is de�ned (for RS this is the determinant

condition in Eq. (15) such that the LFT is ill-posed), µ highlights the relevance of the selected

uncertainty parameter in the uncertainty block. Although more advanced µ sensitivity analyses

can be employed using the skew-µ concept [30], this task is assessed here considering two di�erent

uncertainty levels (10% and 30%) for both the wing bending and the tail distance. Fig. 9 shows

the µ results for the four di�erent combinations of the two uncertainty ranges. Since the upper and

lower bounds are close in each case, only the upper bounds are plotted for clarity. Before discussing

the µ analyses of Fig. 9, the signi�cance of the four range cases (RC1-#) is discussed based on the

analyses of Fig. 5:

• RC1-A & RC1-B: the plant is expected to be robustly stable because when σs varies within

10% of its nominal value (0.135 < σs < 0.165) the �utter speed is always above 150 m
s ;

• RC1-C & RC1-D: BFF is expected to occur at lower speeds than 150 m
s because the rigid-

elastic coupling could be magni�ed for certain allowed combinations of σs and D.

All the analyses show two distinctive peaks in the µ plot, a low frequency-one ω1 at about 10 rads
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Fig. 9 µ analysis LFT-1: µUB sensitivity for di�erent ranges (λEI , λD) of EI and D.

(related to the BFF mechanism) and a high frequency-one ω2 at about 70
rad
s (related to the torsion-

bending coupling). The values of these peaks for each case are also highlighted in a dedicated table

inset in Fig. 9. When the �rst uncertainty level RC1-A is considered (solid line), µ is smaller than 1

for the whole frequency range, indicating that the system is robustly stable in the face of the allowed

uncertainties. The values of the peaks are respectively 0.58 at ω1 and 0.62 at ω2. When the tail

distance uncertainty level is tripled in RC1-B (red dashed line), there is a greater increase in the low

frequency peak (0.74) than in the high-one (0.63). This suggests that the BFF instability is more

sensitive to variations on this parameter. When the wing bending sti�ness is tripled in RC1-C (blue

dotted line), the system RS undergoes a remarkable degradation. In particular the low frequency

peak (1.37) is highly a�ected indicating that with the present uncertainty level the stability of the

system is violated for the selected sub-critical speed of 150 m
s . Note that the predicted instability

(i.e. the lower frequency) is the one that was deemed less critical according to the nominal analyses

in Fig. 8. Finally, the scenario when both the parameters vary with a triple uncertainty level in

RC1-D (cyan dash-dot line) results in an even more critical robustness degradation for the BFF

(1.7), whereas the high frequency instability is almost unchanged (0.72).

Stability-based results in support of system level decisions. For an easier interpretation of these

results, Fig. 5 and the related comments should be recalled. As aforementioned, the loss in robust

stability margin (measured by the distance of the peak value from 1) is directly related to the sensi-

24



tivity of the instability to that parameter. The observed trends provide another perspective on the

discussion in Subsection III B 2 on the role of these parameters, pointing at similar conclusions. In

particular, it is con�rmed that both parameters are more critical for the BFF instability (than for

the restrained one) and that in addition the tail distance D barely a�ects the torsional-bending cou-

pling (high frequency instability) which reconciles with physical understanding. Another interesting

aspect that can be deduced by these results is that the e�ect of D on BFF is not magni�ed when

the sti�ness uncertainty level is enlarged (given that the system is �exible enough to be susceptible

to BFF). This is inferred from a comparison between the relative increase, almost the same, in the

peaks between the uncertainty level cases (from 0.58 to 0.74 for RC1-A to RC1-B, and from 1.37

to 1.7 for RC1-C to RC1-D). In other words, the bending sti�ness is highly detrimental, as often

mentioned in the literature, but it does not further exacerbate the in�uence of D (which was not so

obvious prior to the µ analyses). This aspect is well connected with the curves for D = {5,6,8} in

Fig. 5, which have the same slope (i.e. they are parallel) in the BFF region- indicating that the rel-

ative drop in �utter speed (that is, from curve to curve) is irrespective of the value of EI. Thus, it is

clearly shown in Fig. 9 how µ analysis is able to provide this detailed information without requiring

discrete calculations which can generally be less accurate (because no continuous guarantee exists)

and more computationally expensive. It should be noted however that the results obtained with the

conventional approach in Sec. III B 2 aided in providing an appropriate starting point for the insight

on the µ results, i.e. they informed the selection of the LFT nominal model. This complementarity

between the analyses is highly desirable and one of the novelties of the presented study.

Worst-case analysis. An additional advantage of the LFT-µ analysis framework, is that in addi-

tion to the previous sensitivity analysis, the accurate estimation of the lower bound µLB allows for

the determination of the smallest critical perturbation matrix satisfying the determinant condition.

In Table 2 the values of ∆cr
1 matrices obtained at the two peak frequencies for the LFT-1 and

RC1-C are reported.

It is apparent that for the �rst peak the instability is triggered by a reduction of both EI and D

(negative values for δEI and δD), in accordance to what happens in Fig. 5 within the region where

BFF is prominent. The examination of the second peak (∆cr
1 |ω2

) reveals that a positive perturba-
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tion δEI is detrimental for the restrained �utter mechanism. This is in agreement with this �utter

mechanism, for which as previously commented, instability is more pronounced as the bending sti�-

ness is increased and thus bending and torsional frequencies become closer. It is equally important

to assess that the µLB is accurate in predicting the worst-case parameter combination. This can

be accomplished by applying the perturbations in Table 2 to the nominal system and evaluating its

eigenvalues or simulating it in the time-domain. This test is not reported here but has been applied

to all the ∆cr matrices discussed in the work.

Table 2 Worst-case perturbations for Model 1 at the two frequency peaks

∆cr
1 δD δEI δA12 δA21 δA22

∆cr
1 |ω1

-0.7622 -0.7622 -0.35-0.65i 0.37 + 0.64i -0.67 + 0.31i

∆cr
1 |ω2

-1.4156 1.4156 1.32 + 0.50i 1.1 - 0.9i -0.72 + 1.21i

C. µ-analysis results for LFT Model 2

Parametric sensitivity study. This second LFT model (associated with ∆2 in Eq. (19)) aug-

ments the previous one with an additional uncertainty, namely the wing mass ratio mw. The

sensitivity of the system's instabilities to this new parameter is studied following the same process

as before. Fig. 10 shows the µ analyses, now with three di�erent uncertainty range combinations.
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Fig. 10 µ analysis LFT-2: µUB sensitivity for di�erent ranges (λmw ,λEI , λD) of mw, EI, and D.
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As before, two frequency regions are observed each representing a di�erent type of system instability

(these frequencies are very close to those in Fig. 9). A comparison with the peak values in Fig. 9 for

the �rst uncertainty level case RC2-A (solid line) reveals that the variation in mass is detrimental,

particularly for the low frequency instability. The peak corresponding to the high frequency is also

a�ected, but less markedly. The other two uncertainty level cases analyzed in Fig. 10 extend to the

wing mass ratio the observations made before for the tail distance and the bending sti�ness uncer-

tain parameters. In addition, a quantitative measure of the robustness degradation is provided by

the algorithm.

From further assessment of Fig. 10, it can be concluded that the mw parameter is crucial since

the BFF mode (associated with ω1) changes from stable to unstable between RC2-A and RC2-B

(δmw from 0.1 to 0.2), while a similar switch was not observed in Fig. 9 for the other parameters until

their scaling level was three times higher. Note also that the most critical instability mechanism

switches again from the bending-torsional (ω2) to the rigid-elastic (ω1) one. Recalling from Fig. 8

that the nominal tests indicated the torsional-bending (Vf2 = 162.8 m
s , ωf2 = 69.7 rad

s ) was the

�rst to achieve instability with respect to the BFF (Vf1 = 175 m
s , ωf1 = 14.7 rad

s ), now the reversal

is seen in Fig. 10.

Worst-case analysis. As before, an inspection of the critical perturbations is performed next

and is given in Table 3 (for RC2-B in Fig. 10).

Table 3 Worst-case perturbations for Model 2

∆cr
2 δmw δD δEI δA12 δA21 δA22

∆cr
2 |ω1

-0.87 -0.87 -0.87 -0.35 - 0.8i 0.33 + 0.8i -0.83 + 0.25i

∆cr
2 |ω2

1.37 -1.37 1.37 1.20 + 0.65i 1.14 - 0.75i -0.67 + 1.2i

As concerns the instability at ω1 (i.e. BFF), the corresponding ∆cr con�rms the trend in Table 2 for

tail distance and bending sti�ness, and indicates that this instability is exacerbated by a decrease

in mass. The torsion-bending coupling instability (ω2) is instead favoured by an increase in wing

mass. This last e�ect can be ascertained by focusing solely on the interaction between the two

elastic modes (similar to what was done before for ∆cr
1 |ω2

). For the BFF instability worst-case, i.e.
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∆cr
2 |ω1

, however, this is less straightforward than before. Nonetheless, the information provided by

µ (i.e. a reduction in wing mass enhances the aircraft proneness to BFF) reconciles with known

features of BFF in the literature, as was the case for D and EI. In fact, this aspect was ascribed in

[3] to the e�ect that a lower vehicle pitch inertia Iyy had in increasing the short period frequency ωSP

(recall its expression in Eq. (7)) and thus pushing it closer to the wing bending lowest frequency.

The robust (LFT and µ) �utter framework presented in here allows for the analytical ascertainment

of this aspect, but crucially from a worst-case perspective, and also allowing additional relevant

parameters to be included within the same analysis.

D. Reconciliation of complex physical e�ects via LFT modeling and µ analysis

In order to gain further insights into the mechanism prompting the instability detected by

Table 3, the worst-case perturbations provided by µ for LFT Model 1 and Model 2 are exploited.

The focus of this physical reconciliation is on the dynamical properties (i.e. modes shapes and

frequencies) of the two modes featuring the rigid-elastic interaction, i.e. the bending (B) and the

short period (SP). The idea is to �rst characterize these two modes considering only the frequencies

associated with the pure elastic and rigid modes. For the bending mode, the frequency obtained by

performing a standard restrained wing analysis is considered- note that by de�nition this includes the

aeroelastic e�ects of the wing but ignores its coupling with the rigid-body motion. For the short-

period mode, the frequency associated with the longitudinal characteristic equation of Eq. (7),

namely ωSP , is employed. A second characterization is then performed evaluating these properties

when the coupling terms are included.

In both cases, the monitored quantities are a function of the airspeed V , and the Modal Assurance

Criteria (MAC) [31] is employed in order to associate the eigenpair (eigenvalue and eigenvector) with

the two investigated modes (B and SP). The MAC algorithm enables the mode tracking problem to

be addressed by quantifying the linearity between two mode shapes. This is crucial for the proposed

characterizations because often a merging of the frequencies is observed in cases with strong coupling

and thus a rationale to distinguish the eigenpairs is needed. The procedure adopted in this work

consists of starting the analysis at a low speed such that the two modes to be tracked are distinct

and well detectable. At each speed an eigenvalue analysis is performed and the tested eigenpairs are
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associated with the investigated modes using the modes classi�ed at the previous step as reference

modes for the comparison. The modal reference basis is then updated and so the dynamics at the

next speed can be studied.

This study is performed for four systems: System 1 (the LFT nominal); System 2 (the LFT-1

with δD = −1, and δEI = −1); System 3 (the LFT-2 with δmw = −1, δD = −1, and δEI = −1); and

System 4 (the LFT-2 with δmw = 1, δD = −1, and δEI = −1). For the three parameters mw, D,

and EI an uncertainty range of 10% is considered and no aerodynamic uncertainties are included

(i.e. δA12
= δA21

= δA22
= 0).

This choice of systems re�ects the �ow of the analyses presented before. A nominal plant (System 1)

was de�ned and starting from this a �rst LFT model was proposed taking into account perturbations

in the wing bending �exibility EI and in the tail distance from the nose D. Results in Fig. 9 and

Table 2 showed that a reduction in both the parameters is instrumental in lowering the �utter speed

provoking the BFF (System 2). When wing mass is added as a varying parameter (System 3),

the analysis in Fig. 10 shows again that it is the BFF mode (as opposed to the restrained wing

instability) that is more susceptible to disturbances in this parameter. In order to get more insight

into the physical explanation for this latter mechanism, the mass is increased from -1 (System 3,

the one identi�ed as most critical by the previous worst case analyses) to +1, yielding System 4.

Fig. 11(a) presents the �rst characterization (i.e. without interaction between the two modes),

whereas Fig. 11(b) shows the frequencies obtained with the comprehensive model.
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Fig. 11 Physical BFF modes reconciliation: frequency vs velocity
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Looking at Fig. 11(a), the bending frequencies are a�ected by the coupling with the higher frequency

torsion mode as speed increases, resulting in the observed trend. The short period frequencies in-

stead vary linearly with �ight speed and there are slight di�erences among the various systems due

to the e�ect of tail distance and vehicle inertia. Note, as mentioned before, that System 3 has the

highest uncoupled short-period frequency among the perturbed systems due to the e�ect of Iyy.

When Fig. 11(b) is considered, the scenario sensibly changes. As the airspeed increases (and thus

the aeroelastic e�ects become more prominent), the frequencies are pushed away from their original

values. In particular, a common trend is observed for both modes which tend to approach each other

in terms of frequency values before abruptly separating. Additional features that can be detected

for each system include: the speed at which the coupling gets strong enough to make the frequencies

detour from their original values; the distance, in terms of frequency, reached from the original val-

ues; and a measure of the closeness of the rigid-elastic modes frequencies. All these characteristics

can be seen as a qualitative measure of the strength of the rigid-elastic coupling experienced by

each of the systems. System 2 and 3 seem, following the previous criteria, to be the most a�ected

and thus a detrimental e�ect on their BFF stability could be expected. In fact, these two systems

were found by µ analysis to be the most critically perturbed systems (among the uncertain families

described by LFT 1 and LFT 2 respectively).

For the case of System 3, a unique pattern in the frequencies is also observed, since after getting

close they do not invert their trend as do the others. As the airspeed is increased (beyond that

for which the frequencies become almost coincident), the algorithm associates the frequency of the

short-period mode to that expected for the bending mode (based on similarities with the trend of

the other systems), and vice versa. Recalling that MAC associates the eigenpair with a reference

mode by evaluating the linearity between two modes, it is inferred that the two tested eigenmodes

are very similar (i.e. the mode shapes are almost linearly dependent). The analysis thus suggests

that a coalescence of the eigenmodes is taking place, in addition to that of the frequencies. This

speculation was veri�ed a-posteriori by looking at the MAC of the two modes, which, around the

speed for which the coalescence in Fig. 11(b) takes place, is approximately 1 (where MAC=1 would

mean the eigenmodes are linearly dependent).
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These observations, prompted by the results provided by the µ analysis, give an interesting perspec-

tive on the e�ect of the wing mass. The main �nding is indeed that this parameter is responsible

for a merging between the �rst bending and short-period eigenmodes. This aspect recalls previous

works, such as that of reference [22], which stressed that parameters able to adversely modify the

mode shapes of the aircraft are responsible for exacerbating the BFF instability.

VI. Conclusion

This article describes a dynamic aeroelastic robust stability study for �exible aircraft con�gura-

tions. In order to take into account rigid-body motion and its interaction with the elastic modes, an

aeroelastic model based on a straight wing and unsteady aerodynamic hypotheses is coupled with

a short-period approximation of the aircraft longitudinal motion.

The key aim of the work is to demonstrate a methodology based on well-established robust-

ness tools for the study of dynamic aeroelastic instabilities. The nominal system of the developed

aeroelastic model is recast as a Linear Fractional Transformation capturing the variability (or un-

certainty) of those system parameters assumed signi�cant for stability (wing mass, tail distance and

bending sti�ness). The structured singular value (µ) analysis technique is then employed to perform

robustness assessment for the developed LFTs. In particular, two uncertainty descriptions di�ering

by the presence of a wing mass uncertainty parameter are studied.

The results showcase the potential of the proposed methodology and of the developed model

to: [i] capture in a concise representation the dependence of the system on di�erent parameters in

a highly coupled scenario; [ii] quantitatively estimate the degradation of stability in the face of the

de�ned uncertainties; [iii] perform a sensitivity analysis of the multiple existing instabilities to the

parameters captured in the LFT; and [iv] infer further characteristics of the instabilities which can

guide physical understanding. These goals were achieved by applying the robustness approach in

conjunction with conventional strategies (e.g. parametric eigenvalue analysis), showing that they

represent a powerful tool when used together. In this regard, examples are given of investigations

prompted by �ndings obtained with LFT/µ and further ascertained with standard �utter analysis,

and also vice versa. The advantages o�ered by the LFT/µ framework over standard approaches are

discussed and their bene�ts to the understanding of the complex physical and coupled interactions
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featuring BFF addressed.

It is noted that in the preliminary conceptual design stages, when typically a large number of

concurrent requirements are taken into account, the proposed methodology could supply invaluable

understanding of the system. In this respect, it is envisaged that these insights could inform passive

means to mitigate the onset of dynamic aeroelastic instabilities. In this work, for example, trade-o�s

in wing sti�ness, aircraft static margin, and mass are emphasized� which may substantially increase

the �utter-free envelope. In a more advanced stage, when the nominal system layout is frozen, these

tools can provide robustness stability and performance assessments in a time e�cient way.

Appendix

The parameter values for the analyses are reported in Table 4. As detailed and motivated in

Section III, the parameters de�ning the wing properties are derived from [18], whereas the geometric

properties of the aircraft are obtained by scaling the values from [17]. As for the aerodynamic model,

the Theodorsen AIC matrix A is tabulated in [32].

Table 4 Parameters for the �exible aircraft model

Parameter Value Parameter Value

b 0.9144 m a -0.333

mw 35.7187 kg
m

rα 0.4998

xα 0.2 ρ 1.225 kg
m3

Kh 1.493 104 N
m2 Kα 6.567 104 N

EIG 9.77 106 N.m2 GJ 9.89 105 Nm2

c̄ 1.8288 m L 12.192 m

ct 0.3 m Lt 2.2 m

m 1.351 103 kg Iyy 1.4 103 kg.m2

σs 0.05-1 D 5-10 m

CwLα ,C
t
Lα 2 π
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