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Motivation

• Exploring task parallelism through a new mini-app (https://github.com/UoB-HPC/minifmm)

• Discovering limitations in OpenMP tasking model

• Optimising OpenMP implementation of algorithm through alternatives to task constructs

• Comparing performance of tasking in OpenMP runtime implementations and to other parallel 

frameworks

• Determining whether using tasks can perform as well as data-parallel implementations whilst 

reducing code-size
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Fast Multipole Method overview

• Used for solving N-body problems

• Reduces time complexity from O(n2) to O(n)

• Compute bound method

• Good fit for tasking for for tasking due to complex control flow – dependant on particle data

• Applications include: astrophysics, electrostatics, fluid dynamics, electromagnetics
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FMM domain decomposition
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FMM domain decomposition
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FMM domain decomposition
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Method

• Each node in the tree will perform interactions with many other 

nodes

• Interaction type determined by distance between nodes and 

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is 

approximated (node to node interaction) 

o The leaf level is reached and the particle interaction is 

calculated directly (particle to particle interaction)
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Using tasks for FMM
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• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not 

known until runtime

• Tree could be highly imbalanced



Using tasks for FMM
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• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not 

known until runtime

• Tree could be highly imbalanced

Solution? Use tasks

• Create task for each interaction

• Letting some thread complete the required work at any time

• Need a way to enforce two threads don’t update same values…



Intuitive implementation with task dependencies

• Generate task for each interaction type

• Nodes/cells typically contain O(100) particles -

enough work to for single task

• Allows for fine-grained synchronisation with other 

stages of algorithm using task dependencies

• The order tasks are generated in determines order 

of execution
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Effect of enforcing unnecessary ordering

• Plotting execution of each of 

the calculation functions

• Whitespace = thread idle 

time

• Unnecessary ordering of 

dependencies causes large 

amounts of idle time

core no.
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Performance gain from removing dependencies

• Investigation – what happens if we 

remove dependencies?

• Incorrect behaviour due to multiple 

threads updating same nodes 

• However, much better thread 

utilisation…
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Effect of a single thread generating tasks – 24 core Ivybridge

Significantly less idle time than 

before, however…

core no.
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Effect of a single thread generating tasks – 24 core Ivybridge

Thread generating tasks

Threads lacking tasks to execute
core no.

Intel® HPC Developer Conference 2017



Effect of a single thread generating tasks – 256 threads, KNL

Problem even worse for KNL

Thread generating tasks

core no.

Threads 0 – 204 not shown
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So two issues…

• Need an efficient way to handle race condition

-> Ensure mutual exclusion through locks or atomics

• Can’t generate all tasks from single thread

-> Need to perform tree traversal in parallel
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Locking nodes of tree

• Lock target node while updating values

• taskyield – allows programmer to specify task 

can be suspended

• Combine taskyield with locks so thread 

encountering task can switch to another task

• untied task – task can be resumed by any 

thread

• Can combine both taskyield and untied with 

locks
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Atomically updating values

• Alternatively can atomically update values instead 

of locking entire node 

• Four atomics per node update (task)

• Which is better locks or atomics? It depends

• On KNL atomics performed worse, on Xeon CPU 

depends if we can keep lock contention low

• Can lower lock contention with less work per node
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Using different lock implementations
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• Can specify in OpenMP which lock implementation to use

• First supported in Intel OpenMP - still not present in GCC (7.2)

• Can use locks that are better for high contention and/or 

speculative locks

• Default lock implementation worked best in miniFMM, all other 

combinations resulted in poorer performance



Commutative dependencies

• Commutative dependency type specifies tasks can run in 

any order regardless of when they were generated

• Feature in OmpSs

• Would mean entire method could be implemented using 

task dependencies – allows for fine-grained 

synchronisation between stages

• But we would still suffer from starvation problem with one 

thread generating tasks
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Performance comparison overview

• OpenMP implementations: Intel (17.2), GCC (6.3), Cray (8.5.8), BOLT

• Programming models: OpenMP, OmpSs, CILK, TBB

• Also compared to data-parallel implementation where list of interactions are collected and then 

performed in a loop over the target nodes

• Typical problem size ~O(106) particles with maximum 500 particles per node
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Hardware
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Broadwell KNL

• 2x Intel Xeon E5-2699 v4 2.20 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 256-bit width vectors

• Intel Xeon Phi 7210 1.30 GHz

• 64 cores

• Up to 4 threads per core

• 512-bit width vectors

• 2x Intel Xeon Gold 6152 2.10 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 512-bit width vectors

Skylake



Results – Dual socket 22-core Broadwell

• Most OpenMP implementations, CILK, 

TBB, and OmpSs scale well and are close 

to data-parallel algorithm

• Intel runtimes (OpenMP, CILK, TBB) and 

OmpSs perform best whilst Cray and GCC 

lag behind

• Can be explained by measuring time 

outside of computational work, at 44 cores:

• Intel 2.01% 

• GNU  8.31%

• Cray 9.13%
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Results – 64 core KNL

1 thread per core 4 threads per core

• Data-parallel code 

slightly outperforms 

task-parallel 

implementations

• Good OmpSs

performance 

required changing 

scheduler to use 

queue per thread 

• Performance 

degrades >~120 

threads using GCC
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Results – Dual socket 22-core Skylake
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Summary

• Tasks can significantly reduce lines of code whilst achieving good performance

• Difficult to express parallelism in irregular methods like FMM using current 

OpenMP task constructs – future changes in OpenMP could remedy this

• In the meantime alternatives to task dependencies exist

• Most programming models and implementations achieve good 

scaling/performance until scaling to high thread counts
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Publications

Pragmatic Kernels, and Mini-apps including TeaLeaf, CloverLeaf, miniFMM, and SNAP

https://github.com/UK-MAC/

https://github.com/UoB-HPC/

On the performance of parallel tasking runtimes for an irregular fast multipole method application

Atkinson, Patrick and McIntosh-Smith, Simon

Assessing the performance portability of modern parallel programming models using TeaLeaf

Martineau, Matt, McIntosh-Smith, Simon, and Gaudin, Wayne

Many-core Acceleration of a Discrete Ordinates Transport Mini-app at Extreme Scale

Deakin, Tom, McIntosh-Smith, Simon N, and Gaudin, Wayne

The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications Targeting Intel 

CPUs, IBM CPUs, and NVIDIA GPUs

Martineau, Matt and McIntosh-Smith, Simon
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Extra slides
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1 threads per core Broadwell 2 threads per core KNL
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