
 Atkinson, P., & McIntosh-Smith, S. (2017). Comparison and Analysis of
Parallel Tasking Performance for an Irregular Application: Invited talk.
Intel® HPC Developer Conference 2017, Denver, United States.

Publisher's PDF, also known as Version of record

License (if available):
Other

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via INTEL at
https://www.intel.com/content/www/us/en/legal/terms-of-use.html. Please refer to any applicable terms of use of
the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/comparison-and-analysis-of-parallel-tasking-performance-for-an-irregular-application(e5c7b7b6-50a6-407f-802b-918de1d42ace).html
https://research-information.bris.ac.uk/en/publications/comparison-and-analysis-of-parallel-tasking-performance-for-an-irregular-application(e5c7b7b6-50a6-407f-802b-918de1d42ace).html

Comparison and analysis of parallel tasking performance for an

irregular application

Patrick Atkinson, University of Bristol (p.atkinson@bristol.ac.uk)

Simon McIntosh-Smith, University of Bristol

Intel® HPC Developer Conference 2017

Motivation

• Exploring task parallelism through a new mini-app (https://github.com/UoB-HPC/minifmm)

• Discovering limitations in OpenMP tasking model

• Optimising OpenMP implementation of algorithm through alternatives to task constructs

• Comparing performance of tasking in OpenMP runtime implementations and to other parallel

frameworks

• Determining whether using tasks can perform as well as data-parallel implementations whilst

reducing code-size

Intel® HPC Developer Conference 2017

https://github.com/UoB-HPC/minifmm)

Fast Multipole Method overview

• Used for solving N-body problems

• Reduces time complexity from O(n2) to O(n)

• Compute bound method

• Good fit for tasking for for tasking due to complex control flow – dependant on particle data

• Applications include: astrophysics, electrostatics, fluid dynamics, electromagnetics

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

FMM domain decomposition

Intel® HPC Developer Conference 2017

Method

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node interaction)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle interaction)

Intel® HPC Developer Conference 2017

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle)

Method

Intel® HPC Developer Conference 2017

• Each node in the tree will perform interactions with many other

nodes

• Interaction type determined by distance between nodes and

user-defined parameter

• Recurse until either:

o If two nodes are well-separated the interaction is

approximated (node to node)

o The leaf level is reached and the particle interaction is

calculated directly (particle to particle)

Method

Intel® HPC Developer Conference 2017

Using tasks for FMM

Intel® HPC Developer Conference 2017

• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not

known until runtime

• Tree could be highly imbalanced

Using tasks for FMM

Intel® HPC Developer Conference 2017

• We have many interactions to perform between groups of particles

• Interaction type dependant on distance between tree nodes – not

known until runtime

• Tree could be highly imbalanced

Solution? Use tasks

• Create task for each interaction

• Letting some thread complete the required work at any time

• Need a way to enforce two threads don’t update same values…

Intuitive implementation with task dependencies

• Generate task for each interaction type

• Nodes/cells typically contain O(100) particles -

enough work to for single task

• Allows for fine-grained synchronisation with other

stages of algorithm using task dependencies

• The order tasks are generated in determines order

of execution

Intel® HPC Developer Conference 2017

Effect of enforcing unnecessary ordering

• Plotting execution of each of

the calculation functions

• Whitespace = thread idle

time

• Unnecessary ordering of

dependencies causes large

amounts of idle time

core no.

Intel® HPC Developer Conference 2017

Performance gain from removing dependencies

• Investigation – what happens if we

remove dependencies?

• Incorrect behaviour due to multiple

threads updating same nodes

• However, much better thread

utilisation…

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 24 core Ivybridge

Significantly less idle time than

before, however…

core no.

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 24 core Ivybridge

Thread generating tasks

Threads lacking tasks to execute
core no.

Intel® HPC Developer Conference 2017

Effect of a single thread generating tasks – 256 threads, KNL

Problem even worse for KNL

Thread generating tasks

core no.

Threads 0 – 204 not shown

Intel® HPC Developer Conference 2017

So two issues…

• Need an efficient way to handle race condition

-> Ensure mutual exclusion through locks or atomics

• Can’t generate all tasks from single thread

-> Need to perform tree traversal in parallel

Intel® HPC Developer Conference 2017

Locking nodes of tree

• Lock target node while updating values

• taskyield – allows programmer to specify task

can be suspended

• Combine taskyield with locks so thread

encountering task can switch to another task

• untied task – task can be resumed by any

thread

• Can combine both taskyield and untied with

locks

Intel® HPC Developer Conference 2017

Atomically updating values

• Alternatively can atomically update values instead

of locking entire node

• Four atomics per node update (task)

• Which is better locks or atomics? It depends

• On KNL atomics performed worse, on Xeon CPU

depends if we can keep lock contention low

• Can lower lock contention with less work per node

Intel® HPC Developer Conference 2017

Using different lock implementations

Intel® HPC Developer Conference 2017

• Can specify in OpenMP which lock implementation to use

• First supported in Intel OpenMP - still not present in GCC (7.2)

• Can use locks that are better for high contention and/or

speculative locks

• Default lock implementation worked best in miniFMM, all other

combinations resulted in poorer performance

Commutative dependencies

• Commutative dependency type specifies tasks can run in

any order regardless of when they were generated

• Feature in OmpSs

• Would mean entire method could be implemented using

task dependencies – allows for fine-grained

synchronisation between stages

• But we would still suffer from starvation problem with one

thread generating tasks

Intel® HPC Developer Conference 2017

Performance comparison overview

• OpenMP implementations: Intel (17.2), GCC (6.3), Cray (8.5.8), BOLT

• Programming models: OpenMP, OmpSs, CILK, TBB

• Also compared to data-parallel implementation where list of interactions are collected and then

performed in a loop over the target nodes

• Typical problem size ~O(106) particles with maximum 500 particles per node

Intel® HPC Developer Conference 2017

Hardware

Intel® HPC Developer Conference 2017

Broadwell KNL

• 2x Intel Xeon E5-2699 v4 2.20 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 256-bit width vectors

• Intel Xeon Phi 7210 1.30 GHz

• 64 cores

• Up to 4 threads per core

• 512-bit width vectors

• 2x Intel Xeon Gold 6152 2.10 GHz

• 2 Sockets

• 22 cores per socket

• Up to 2 threads per core

• 512-bit width vectors

Skylake

Results – Dual socket 22-core Broadwell

• Most OpenMP implementations, CILK,

TBB, and OmpSs scale well and are close

to data-parallel algorithm

• Intel runtimes (OpenMP, CILK, TBB) and

OmpSs perform best whilst Cray and GCC

lag behind

• Can be explained by measuring time

outside of computational work, at 44 cores:

• Intel 2.01%

• GNU 8.31%

• Cray 9.13%

Intel® HPC Developer Conference 2017

Results – 64 core KNL

1 thread per core 4 threads per core

• Data-parallel code

slightly outperforms

task-parallel

implementations

• Good OmpSs

performance

required changing

scheduler to use

queue per thread

• Performance

degrades >~120

threads using GCC

Intel® HPC Developer Conference 2017

Results – Dual socket 22-core Skylake

Intel® HPC Developer Conference 2017

Summary

• Tasks can significantly reduce lines of code whilst achieving good performance

• Difficult to express parallelism in irregular methods like FMM using current

OpenMP task constructs – future changes in OpenMP could remedy this

• In the meantime alternatives to task dependencies exist

• Most programming models and implementations achieve good

scaling/performance until scaling to high thread counts

Intel® HPC Developer Conference 2017

Publications

Pragmatic Kernels, and Mini-apps including TeaLeaf, CloverLeaf, miniFMM, and SNAP

https://github.com/UK-MAC/

https://github.com/UoB-HPC/

On the performance of parallel tasking runtimes for an irregular fast multipole method application

Atkinson, Patrick and McIntosh-Smith, Simon

Assessing the performance portability of modern parallel programming models using TeaLeaf

Martineau, Matt, McIntosh-Smith, Simon, and Gaudin, Wayne

Many-core Acceleration of a Discrete Ordinates Transport Mini-app at Extreme Scale

Deakin, Tom, McIntosh-Smith, Simon N, and Gaudin, Wayne

The Productivity, Portability and Performance of OpenMP 4.5 for Scientific Applications Targeting Intel

CPUs, IBM CPUs, and NVIDIA GPUs

Martineau, Matt and McIntosh-Smith, Simon

Intel® HPC Developer Conference 2017

https://github.com/UK-MAC/
https://github.com/UoB-HPC/

Extra slides

Intel® HPC Developer Conference 2017

1 threads per core Broadwell 2 threads per core KNL

Intel® HPC Developer Conference 2017

