
                          Fujimoto, K. (2019). Deflationism beyond arithmetic. Synthese, 196(3),
1045-1069. https://doi.org/10.1007/s11229-017-1495-8

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1007/s11229-017-1495-8

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/144579885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s11229-017-1495-8
https://doi.org/10.1007/s11229-017-1495-8
https://research-information.bris.ac.uk/en/publications/deflationism-beyond-arithmetic(bd3678bb-6a4d-4808-89d7-2878d0cfd0a8).html
https://research-information.bris.ac.uk/en/publications/deflationism-beyond-arithmetic(bd3678bb-6a4d-4808-89d7-2878d0cfd0a8).html


Synthese
DOI 10.1007/s11229-017-1495-8

Deflationism beyond arithmetic

Kentaro Fujimoto1,2

Received: 7 December 2016 / Accepted: 8 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract The conservativeness argument poses a dilemma to deflationismabout truth,
according to which a deflationist theory of truth must be conservative but no adequate
theory of truth is conservative. The debate on the conservativeness argument has so far
been framed in a specific formal setting, where theories of truth are formulated over
arithmetical base theories. I will argue that the appropriate formal setting for evaluating
the conservativeness argument is provided not by theories of truth over arithmetic but
by those over subject matters ‘richer’ than arithmetic, such as set theory. The move to
this new formal setting provides deflationists with better defence and brings a broader
perspective to the debate.

Keywords Truth · Deflationism · The conservativeness argument · Axiomatic
theories of truth

1 Introduction: the conservativeness argument

The term ‘deflationism’ is used to stand for many different views on truth by different
philosophers. Perhaps they have only a few points in common, but many deflationists
would probably agree on these two points:
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Synthese

(D1) Truth is not a substantial property.
(D2) Truth owes its raison d’etre to its logico-linguistic function.

The thesis (D1) is the core doctrine of deflationism about truth. What exactly it means
is not clear and may vary among deflationists, but only one implication that (D1) is
alleged to have will be important in this article, namely, that we should not be able to
obtain any new substantial knowledge of non-semantic facts by invoking the notion
of truth. The thesis (D2) will be closely examined in Sect. 3.

Here I follow Horsten (2011) and call the function of truth logico-linguistic. Some
deflationists like Field (1994, 1999) simply call it logical, but I agree with Horsten
that truth is also a linguistic notion, since truth operates on linguistic entities (broadly
interpreted)—the bearers of truth. Furthermore, as Halbach (2001) points out, truth
can’t be purely logical in the sense that it is ontologically neutral, since quite modest
truth axioms imply the existence of at least two distinct objects. In this article, I assume,
to avoid unnecessary complications, that the bearers of truth are sentence types; butmy
arguments can be applied to theories of truth with other truth bearersmutatis mutandis.

Horsten (1995), Shapiro (1998) andKetland (1999) independently presented the so-
called conservativeness argument against deflationism about truth. Their arguments
are actually based upon a specific formal conception of ‘theory of truth’, in which
theories of truth are given as a result of adding a truth predicate and its axioms on top of
some axiomatic formal theory. That is to say, we first fix some recursively axiomatised
theory B, such as Peano Arithmetic (PA) and Zermelo–Fraenkel Set Theory (ZF), of
the subject matter in question, which is called a base theory. Then we add a truth
predicate T to the language LB of B and a recursive set T of axioms for T to B;
we call the resulting theory an axiomatic theory of truth over B (or, over the subject
matter in question, such as arithmetic and set theory, whenwe need not specify the base
theory). Now, with this formal conception of ‘theory of truth’, the conservativeness
argument aims to pose the following dilemma:

(C1) A deflationary theory S of truth must be conservative over its base theory B:
that is, an LB-sentence σ must be provable in B whenever it is provable in S.

(C2) However, no adequate theory of truth over B can be conservative over B.1

Throughout this article I take the standpoint that Azzouni (1999) calls first-order
deflationist: namely, I commit myself to the ordinary effective notion of first-order
logical consequence, and the word ‘provable’ always means the provability in the
sense of the ordinary first-order logic unless otherwise specified.2

1 The conclusions that Shapiro, Horsten, and Ketland draw from this dilemma are different: Shapiro (1998)
concludes that deflationism needs a strong and non-effective notion of logical consequence; Horsten (2011)
regards the conservativeness argument as reductio ad absurdum of (C1); Ketland (1999) simply denies
deflationism.
2 The target of the conservativeness argument is those first-order deflationists who adopt the specific
axiomatic conception of ‘theory of truth’ described in Sects. 1–2, and I will focus on this type of theory of
truth in this article. Many other types of theories of truth fall outside of the scope of the conservativeness
argument. For instance, so-called ‘semantic’ theories of truth are concerned with providing an interpretation
of the truth predicate T on a given fixed model-theoretic structure of a base language LB. Such a model-
theoretic structure is usually assumed to possess what we may call the reduct property in the terminology of
abstract model theory: that is, it completely and invariably determines which LB-sentences are designated
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Synthese

The presupposition of the clear distinction between the base partB and the truth part
T of a theory S of truth is necessary for the conservativeness argument; otherwise, the
conservativeness requirement (C1) would make no sense. Furthermore, the distinction
of the truth and base parts must be given in the way that the truth predicate T is fresh to
LB andB tells us nothing about T . In order for (C1) to be a reasonable requirement, the
base theoryBmust formally theorise about its subjectmatter (to the extent that it serves
one’s purpose) without any help from T ; otherwise, truth would play a substantial
(‘inflationary’) role in theorising about the subject matter, and new axioms T for
such a substantial factor in the theorisation of the subject matter might well yield
new theorems about the subject matter.3 Accordingly, we may also assume that B is
a theory of non-semantic subject matter, unless we are interested in formalising the
Tarskian hierarchy of truths in which truths of higher levels are applied to truths of
lower levels. The most common form of axiomatic theories of truth, such as the ones
found in (Halbach 2010), is consonant with the so far described formal conception of
‘theory of truth’.4

The conservativeness argument has been criticised byAzzouni (1999), Field (1999),
Tennant (2002) and others; then Horsten (2011), Shapiro (2004) and Ketland (2005,
2010) gave counterarguments to these criticisms. A plethora of arguments have been
exchanged back and forth between those and many others, and the conservativeness
argument forms a central topic of the debate on deflationism about truth nowadays.
My view is, however, that many of these debates are placed in an inappropriate setting.

Footnote 2 continued
therein and which are not, and the interpretation of any predicate not belonging to LB has no effect on
the designation of LB-sentences. Hence, for semantic theories of truth, the conservativeness requirement
(C1) would make no sense or just be trivially satisfied. The same applies to theories of truth with a strong
non-effective logic that gives a categorical characterisation ofLB-theorems, such asω-logic and full second-
order logic (in the case where B is arithmetical); this is exactly why Shapiro (1998) concludes from his
conservativeness argument that deflationism requires a non-effective notion of logical consequence (cf.
fn 1). It goes beyond the scope of this article to discuss what form an adequate theory of truth should take,
but my own view is that there are some important cases for which the axiomatic approach to truth with
the ordinary effective notion of logical consequence is necessary, for example, where we consider what
Vänäänen (2001) calls urlogic and truth over it: urlogic is ‘the most primitive formal language we use to
study the process of doing mathematics’ (p. 510) and ‘a formalization of the act of doing mathematics’
whose semantics is ‘totally informal’ (p. 512). Firstly, I completely agree with Väänänen’s conclusion that
those strong non-effective logics are not acceptable as the logic of urlogic. Secondly, the axiomatic approach
is the most natural and suitable for theories of truth over urlogic, since urlogic is maximally rich in the
sense that I will discuss in Sect. 5 (cf. fn 23).
3 This point provides an immediate rebuttal toHorsten’s counterargument to Field (1999) inHorsten (2011),
Ch.7.2.2; Horsten’s rendering of CT[[PA]] (defined in p. 7) as the result of adding the Tarskian clauses, as
the truth axioms, on top of the base theory PA + L+

N
-Ind (defined in p. 7) violates this requirement, since

this base theory already contains the truth predicate T , and thus the truth axioms must be added to it in
terms of another truth predicate, say T ′.
4 There are other types of theories of truth, such as theories of Frege structures. In Frege structures, truth
plays a crucially substantial role in the construction of sets: truth is used to define propositions, new sets are
constructed from those propositions, truth is further applied to statements involving those newly constructed
sets, from which more propositions are obtained, and this process goes on circularly or transfinitely. With
this ‘inflationist’ conception of truth, it makes little sense to separate the non-semantic base part and the
semantic truth part of these structures, and truth is not something to be added on top of a clearly separated
non-semantic theory; see Aczel (1980) and Beeson (1985), Ch. XVII.7.
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The study of axiomatic theories of truth has so far centred around those over arith-
metic, and philosophical debates concerning axiomatic theories of truth have been
based on formal results about those theories of truth over arithmetic. The debate on
the conservativeness argument so far is no exception to this trend. This is presumably
not because philosophers are only interested in arithmetical truth. Rather, it is probably
because they believe that theories of truth over arithmetic provide a ‘generic’ case and
most of the relevant results concerning them and philosophical arguments based on
those results can be generalised to other cases. However, I doubt the validity of this
extrapolation and suspect that theories of truth over arithmetic do not constitute such a
generic case. Recent research in formal logic, such as (Fujimoto 2012, 2017), reveals
certain significant dissimilarities between axiomatic theories of truth over arithmetic
and those over set theory, and we will see a further example of such dissimilarity in
this article. These formal results indicate that theories of truth over arithmetic do not
constitute such a generic case.

My proposal in this article is that the appropriate formal setting for evaluating the
adequacy or inadequacy of the conservativeness argument is provided not by theories
of truth over arithmetic but by those over much ‘richer’ subject matters such as set
theory. The move to this new formal setting provides deflationists with better defence
against the conservativeness argument, but the goal of this article is not to refute the
conservativeness argument. My primary goal in this article is to give a closer exam-
ination of the formal assumptions upon which the conservativeness argument relies,
and thereby to uncover a new area of debate on deflationism and the conservativeness
argument, to which the previous debates in the literature on theories of truth over
arithmetic cannot be straightfowardly generalised.

2 The conservativeness requirement

One peculiar but important feature of the notion of truth is its ‘universality’: truth
is topic-neutral and can be applied to any (declarative) sentence about any subject
matter. Many philosophers would probably agree on this, but we have to be careful
when formally spelling it out. We have supposed that truth is a linguistic device
operating on sentences. Hence, any theory of truth must be accompanied by some
theory of syntax as the theory of its bearers. There are, however, different methods of
incorporating a theory of syntax into a theory of truth.5 In this article, I focus on the
most customary method in which the following condition (Syn) on base theories is
assumed:

(Syn) A base theory contains a theory of syntax (either intrinsically or via coding),
which plays the role of the theory of truth bearers, and on which the truth
predicate operates.

There are two different cases to be separately considered concerning how a theory of
syntax is ‘contained’ in a base theory. Theories of some subject matters intrinsically
contain a theory of syntax per se, but others do not; for instance, a reasonably strong

5 See (Achourioti et al. 2015, pp. 12–15) where three different such methods are compare and discussed.
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theory of sets intrinsically contains a theory of syntax (such as a theory of finite strings
of symbols of some alphabet, where those symbols may be treated as urelements),
while the intended domain of arithmetic contains nothing syntactic and a theory of
natural numbers is not intrinsically concerned with syntax per se; in the latter case,
a theory of syntax must be embedded in a base theory via a certain coding schema
such as Gödel numbering. Note that (Syn) is a quite exclusive condition; theories of
many subject matters, such as biology and medicine, do not necessarily contain any
theory of syntax either intrinsically or via coding, and cannot be bases of theories of
truth under the assumption of (Syn). As I will illustrate in Sect. 5, the conservativeness
argument crucially relies upon the assumption of (Syn).

The universality of truth suggests that in the debate on truth we should take into
account theories of truth over subject matters other than arithmetic, at least on equal
terms with those over arithmetic. Even under the assumption of (Syn), we have many
different theories of different subject matters available as bases of theories of truth.
Hence, we have a variety of base theories that we can take in place of B in the
components (C1) and (C2) of the conservativeness argument. However, the veracity
of the claim (C2), that no adequate theory of truth over B is conservative over B,
depends not only on what theory of truth is taken to be adequate but also on what
base theory is taken in place of B; if B is inconsistent, then (C2) is trivially false, no
matter what theory of truth is taken to be adequate; even if B is consistent, we can
still construct an artificial counterexample to (C2) in many cases.6 Hence, a natural
question to ask is: What base theories are to be taken into account in (C1) and (C2)?

Since deflationists hold that truth is a logical device, they may well contend that
it should be applicable not only to arbitrary subject matters but also to arbitrary base
theories of the subject matters, as other logical devices are. Hence, a naïve answer to
the aforementioned question is perhaps the following:

(C3) The requirement (C1) should be applied to any base theory B of any subject
matter, as long as B meets the condition (Syn).

(C3) makes the task of the proponents of the conservativeness argument easier, since
then they have only to find at least one base theory B of one subject matter, from a
large variety of options, such that no adequate theory of truth over B is conservative
over B. I suspect that this (C3) is implicitly assumed by many proponents of the
conservativeness argument and that this is why they are content to only consider a
single base theory PA and take the non-conservativeness of some theories of truth
overPA as a ‘witness’ of the substantiality of truth. One of my goals in this article is to
argue that we should reject (C3) and exclude some subject matters and base theories,
arithmetic in particular, from the scope of (C1).

6 For instance, let B′ be an LN-theory that comprises all the LN-theorems of CT�PA� (see p. 6). Then
we trivially have that CT�B′� is conservative over B′. This theory B′ is arithmetically sound and primitive
recursively axiomatisable; in fact, B′ is identical with PA plus the schema of transfinite induction up to εε0
(only for LN-formulae, of course).
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3 Logico-linguistic functions of truth

In this section, I will specify one minimal requirement for adequate theories of truth
through consideration of the logico-linguistic function of truth.

Deflationism about truth claims that truth is a mere logico-linguistic device. The
first question to ask is: what is the logico-linguistic function of truth? It is often
claimed by deflationists that truth is a device of ‘indirect endorsement’ and ‘infinite
conjunction’. The use of truth as a device of indirect endorsement is exemplified in
statements like ‘whatKarl said at the trial is true’, inwhich one endorseswhatKarl said
at the trial without bothering to write down it or even without knowing exactly what
he said. This function of truth is normally achieved by means of the truth predicate T
and definite descriptions of the sentences one wants to endorse; for instance, given a
definite description K x of the sentence that Karl asserted at the trial, we can formally
express ‘what Karl said at the trial is true’ by ∀x(Kx → T x). The use of truth as
a device of infinite conjunction is exemplified in sentences like ‘all axioms of ZF
are true’, in which the truth of infinitely many sentences are asserted; we first pick a
predicate Ax characterising the set of the axioms of ZF, such that Ax holds if and
only if x is (a code of) an axiom of ZF, and thereby formally express the sentence by
∀x(Ax → T x).

The second question to ask is: what truth axioms are needed to properly implement
the logico-linguistic function of truth? In this article, I will focus on two kinds of
theories of truth, which are particularly at issue in the debate on the conservativeness
argument. Given a base theory B and its language LB, let L+

B be the language of
theories of truth overB, which is obtained by adding a truth predicateT or a satisfaction
predicate Sat to LB; the choice between T and Sat depends on the theory of truth at
stake and its specific formulation, but I will be deliberately sloppy about the distinction
between them to avoid unnecessary technical complications and always assume that
the truth predicateT is explicitly defined in terms of Sat when Sat is taken as a primitive
predicate symbol ofL+

B .
7 We first consider purely disquotational theories TB� and TB

of truth. The theory TB� of truth over a base theory B is obtained by extending B with
the schema LB-TB of T -biconditionals for LB:

LB-TB: T�σ� ↔ σ, for all LB-sentences σ,

where �σ� denotes a code (or a name) of an LB-sentence σ . Now, some base theories,
such as PA, contain axiom schemata, such as the schema of arithmetical induction,

7 If we formulate a theory of truth in terms of the truth predicate T over a base theory B whose language
LB does not contain enough names for the objects of the domain of discourse ofB, then we sometimes need
a stronger theory of syntax than the ordinary finitary one, which needs to encode an expanded language
L∞
B with constant symbols for all objects of the domain of discourse; a typical example of such a case is

found in the definition of CT��ZF� in Fujimoto (2012). In contrast, if we use the satisfaction predicate Sat,
we only need to assume that base theories interpret some fixed weak fragment of arithmetic such as I�1,
independently of our choice of subject matter, and thereby we can give a uniform treatment to theories of
truth across different subject matters. There is, however, a subtle technical difference between satisfaction
and truth in the current axiomatic setting (see Enayat and Visser 2015), but, as far as the philosophical
arguments in this article are concerned, we need not bother about it and we can assume without loss of
generality that truth and satisfaction can be defined in terms of each other.
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but no instance of the axiom schemata containing T is added to TB� as an axiom. So,
let TB denote the extension of TB� obtained by extending all the axiom schemata of
B, if any, to the entire language L+

B . For an important example, let us write L-Ind
for the schema of arithmetical induction for a language L extending the language LN

(=LPA = {0, S,+,×,<}) of first-order arithmetic, i.e.,

L-Ind: ϕ(0) ∧ ∀x
(
ϕ(x) → ϕ(Sx)

) → ∀xϕ(x), for all ϕ ∈ L;

then the theory TB over PA is obtained from TB� over PA by adding L+
N
-Ind. We

secondly consider compositional theoriesCT� andCT of typed truth. The theoryCT�
over a base theory B is obtained by augmenting B with the axioms expressing the
inductive clauses of the Tarskian definition of truth, such as ‘for all LB-sentences σ ,
¬σ is true iff σ is not true’; see (Ketland 1999, pp. 79–80) or (Halbach 2010, p. 65)
for more formal details. The crucial difference betweenCT� and TB� is that each truth
axiom of CT� involves quantification over all sentences and states some property of
truth about all sentences at once, whereas each truth axiom of TB� is an instance of
the schema LB-TB and only refers to a single sentence. It is known that TB� is a
sub-theory of CT� over any base theory, but the converse does not hold.8 The theory
CT is obtained from CT� by extending all the axiom schemata of B, if any, to L+

B ;
e.g., CT over PA is defined as CT� over PA plus L+

N
-Ind. In what follows, when we

consider a theory of truth over a particular base theory, we indicate it by putting it in
double square brackets �· · ·�; e.g., CT�PA� means the theory CT over PA.

The theory TB� is often seen as sufficient for capturing the aforementioned two
functions of truth (e.g., Halbach 1999). However, some deflationists think that TB� is
insufficient and CT� needs to be part of any adequate deflationary theory of truth.9 In
fact, the schema LB-TB alone does not license us to make deductions of a certain type
that we expect to be able to make by means of truth. Consider the following deductive
inference.10

(a) What Karl said at the trial is true.
(b) Judy said that what Ikoma said contradicts what Karl said.
(c) Therefore, if what Judy said is true, then what Ikoma said is false.

Let Kx , Jx , and Ix be predicates that give definite descriptions of what Karl, Judy,
and Ikoma said respectively, and let x , y, and z be the unique sentences such that Kx ,
J y, and Iz. Here, we need not explicitly specify what sentences Karl and Ikoma said.

8 In fact, TB� can prove no general theorem with quantification over all LB-sentences (Halbach 1999,
Proposition 1); e.g., the statement ‘allLB-sentences are either true of false’ is provable inCT� but in neither
TB� nor TB.
9 Field (1999, p. 535) writes ‘it is more interesting to add truth in a way that includes the general laws [the
axioms of CT�], since I think it is clear that without such general laws the truth predicate would not serve
its main purpose.’ Azzouni (1999, p. 542) seems to share the same view.
10 We assume here that Karl, Judy, and Ikoma uttered exactly one sentence. Even if they uttered more
than one (but finitely many) sentences, we can still carry out the same kind of blind deduction by means of
the axioms of CT� by taking the conjunctions of what they uttered. However, blind deductions involving
infinitelymany sentences seem to need a different treatment and some further truth-theoretic axioms stronger
than those of CT�; I will expand on this point in fn 20; this point is also related to fn 12 below.
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Now, suppose (a) and (b). Then, what Judy said (=y) is that what Ikoma said (=z)
implies the negation of what Karl said (=x); namely, we have y = z→. ¬. x , where we
write h. for a representation (or a code) of a syntactic operation h (see Halbach 2010,
p. 32). Further suppose what Judy said is true, that is, T y. By the above equation, we
have T(z→. ¬. x). From this, we want to deduce T z → ¬T x , by which we immediately
obtain ¬T z because we have supposed (a), i.e., T x . However, we do not know exactly
what Karl and Ikoma said; we are only given their definite descriptions and certain
objects that satisfy the descriptions. In order to use LB-TB in a deduction, we need
to explicitly specify a sentence σ to which we apply the schema LB-TB. Hence,
without knowing exactly what Karl and Ikoma said, the schema LB-TB cannot be
used for deducing T z → ¬T x from T(z→. ¬. x).11 Therefore, we cannot implement
the desired deduction in TB� nor TB, and we would need some general principles
such as ‘for all LB-sentences v and w, v→. w is true if and only if the truth of v

implies the truth of w’. In this example, we give a deductive argument about the truth
of some sentences by analysing and manipulating their logico-syntactic structures
without explicitly specifying exactly what these sentences are. Let us call this type
of deductive reasoning blind deduction.12 Neither TB� nor TB enables us to carry
out blind deduction in general, and the axioms of CT� or something equivalent are
necessary. Hence, in what follows, I assume that the axioms of CT� are a minimal
requirement for adequate theories of truth, and thus any adequate deflationary theory
of truth must prove the axioms of CT�.

Another function or feature that may well be required of truth is self-applicability.
Suppose Karl said ‘Everything the Pope says is true’ and the Pope said ‘Everything
Judy says is true’. Then what Karl said should entail whatever Judy says. To formally
implement this reasoning in a theory of truth, the theory should contain some axioms
that enable iterative application of the truth predicate, since what Karl said entails
what Judy says by way of what the Pope said, which involves the truth predicate.
Truth-theorists ultimately have to settle the problem of what axioms are adequate for
self-applicable truth, but this problem is far from settled and beyond the scope of this
article, and so let us restrict our discussion to non self-applicable (‘typed’) truth; it
is to be noted that the above example of blind deduction does not require any self-
application of truth for the argument to go through, and we can simply assume that
what Karl, Judy, and Ikoma said do not contain the truth predicate; hence, even with
this restriction, we still need the axioms ofCT� as a minimal requirement for adequate
theories of truth.

4 Two conservativeness arguments

I will introduce two variants of the conservativeness argument that are not vulnerable
to the existing objections in the literature. The conclusion I will draw in the subsequent

11 Formally speaking, assuming sentences are coded by natural numbers, we cannot exclude the possibility
that what Karl and Ikoma said are coded by non-standard natural numbers.
12 A more sophisticated example of blind deduction is the standard proof of GRef PA (see Sect. 4.2) in
CT�PA�, in which we reason about the truth of arbitrary sentences without explicitly specifying what they
are; but, note that this deduction is made not solely by truth but also by means of inductive generalisation
on numbers using L+

N
-Ind.
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sections is that both arguments are hard to counter if one confines one’s attention to
theories of truth over arithmetic, but the difficulty they pose to deflationism can be
overcome by turning to other kinds of bases, which gives a support and motivation to
my proposal.

4.1 Induction as a syntactic principle

The theory CT�PA� is known to be non-conservative over PA, and its non-
conservativeness is often considered by proponents of the conservativeness argument
as evidence of the substantiality of truth, whereas CT��PA� is conservative over PA.
The difference between CT��PA� and CT�PA� lies in whether the schema of arith-
metical induction is restricted toLN or extended toL+

N
. Hence, those proponents need

to establish that an adequate theory of truth over PA must prove the schema L+
N
-Ind

of arithmetical induction for the extended language L+
N
.

A paradigmatic example of such an argument to this end is proposed by Shapiro
and it appeals to the indefinite extensibility of arithmetical induction. Shapiro (1998)
advocates the following view:

(S1) Commitment to all instances of arithmetical induction with any predicate of
natural numbers constitutes our understanding of the concept of natural number,
and thus the schema of arithmetical induction should be conceived as indefinitely
extensible to any newly introduced predicate of natural numbers.13

This leads him to make the next general claim:

(S2) Any adequate theory of truth over B must prove L+
B -Ind, whenever the subject

matter of B includes arithmetic.

In his rejoinder to Shapiro, Field (1999) points out that (S1) does not imply (S2). His
argument relies on the next two theses:

(F1) One should not conclude from the non-conservativeness of a theory of truth
S = B + T over B that truth is substantial without first showing that each truth
axiom of T is ‘essential to truth’ and postulated solely by virtue of the nature of
truth.

(F2) The indefinite extensibility of the axiom schemata of the base theory B, if it
is required by anything about the non-semantic subject matter of B, is not part
of the deflationary concept of truth, and the extension of any of them is not an
axiom ‘essential to truth’.

Thereby he concludes that the non-conservativeness of CT�PA� is not a problem for
deflationists, since the indefinite extensibility at issue is derived from ‘something about
our idea of natural numbers’ and ‘nothing about truth’ (p. 539).14

13 This view itself is shared by many philosophers of mathematics, such as Dummett, Parsons, and Lavine.
Field (1999) also agrees with (S1) but rejects (S2) for the reason explained below.
14 Field’s insight that we can generally meet the conservativeness requirement (C1) by excluding the
extensions of mathematical schemata, such as L+

N
-Ind, from the principles ‘essential to truth’ is actually
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There is, however, another route to (S2), not by way of (S1), which evades Field’s
argument. Sentences and formulae of a formal language are recursively defined, and
induction on the construction (or complexity) of them is an indispensable theorem-
proving tool in meta-mathematics. Let us call inductive inference along the recursive
construction of the syntactic structure of a formal language syntactic induction. Syn-
tactic induction may be formulated in different ways, but a typical example of its
formulation is:

(SI) Let� be any predicate of formulae. Suppose that� holds for all atomic formulae,
and that if � holds for all sub-formulae of A, then � holds for A. Then � holds
for all formulae.

In general, the way we understand how the sentences of a language are constructed is
essentially of this inductive nature, and it naturally commits us to syntactic induction
like (SI).15 One can thereby argue that the indefinite extensibility of syntactic induction
to any newly introduced predicate of syntactic objects constitutes our understanding of
the syntactic structure of any formal language no less than the indefinite extensibility
of arithmetical induction constitutes our understanding of natural numbers. Therefore,
whenever we use a theory of syntax for any purpose, we are committed to the indefinite
extensibility of syntactic induction.

Now, recall that truth is a logico-linguistic predicate operating on syntactic objects
and every theory of truth must accompany an appropriate theory of syntax. Hence,
our commitment to the indefinite extensibility of syntactic induction is made prior
to having any particular theory of truth and independently of any epistemic and/or
mathematical commitment that we might make as to its base theory and subject mat-
ter. This suggests that the schema of syntactic induction, such as (SI), for the entire
language of theories of truth is a necessary part of any adequate theory of truth; it is
not essential only to truth but essential to truth and its necessary companion. Further
recall that we have assumed (Syn), which says that every base theory must contain
an appropriate theory of syntax on which truth operates. In particular, when a base
theoryB is arithmetical, a theory of syntax needs to be embedded inB via Gödel num-
bering, and thus induction on natural numbers and induction on syntactic objects are
inevitably ‘entangled’ within B. If we simply identify these two induction principles,
an adequate theory of truth overPA should includeCT�PA� and non-conservativeness
thus results.

Our deflationist might try to avoid this non-conservativeness consequence by only
postulating the schema of syntactic induction for L+

N
, in the form of (SI) or similar,

Footnote 14 continued
well supported by formal results obtained so far. Most, if not all, of the axiomatic theories of truth over
arithmetic presented so far become conservative when we restrict arithmetical induction to LN. The same
applies to those over set theory or many other subject matters; for instance, if we restrict the axiom schemata
of set theory to L∈, the language of first-order set theory, then the resulting theories of truth are also
conservative in many cases (see Fujimoto 2012).
15 This is not only the case for formal languages but also for natural languages, although a theory of syntax
for a natural language would involve more complicated simultaneous recursive definitions of the parts of
speech. In his program, Hilbert took such an inductive nature of syntactic structures as the basis for his
meta-mathematics and proof theory therein (see Sieg 1999).
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as a distinct and separate principle from L+
N
-Ind, without identifying them. How-

ever, natural numbers and syntactic objects are so intimately and deeply entangled
in arithmetical base theories that the schema of syntactic induction actually implies
the schema of arithmetical induction; for instance, the schema (SI) for L+

N
implies

L+
N
-Ind.16 Even if we postulate the schema of syntactic induction in a form other

than (SI), the schema L+
B -Ind is still implied thereby in most cases.17 This is a quite

general phenomenon, as is expected from the folklore view that the theory of syntax
is essentially the same thing as arithmetic.18 Hence, in particular, CT��PA� plus the
schema of syntactic induction for L+

N
is just equal to CT�PA� anyway and thus not

conservative over PA.
This is what I call the syntactic conservativeness argument: it aims at establishing

(S2), not on the basis of the indefinite extensibility of arithmetical induction, but on
the basis of that of syntactic induction. Field’s theses (F1) and (F2) do not seem to
help us evade this variation of the conservativeness argument, since the extension of
syntactic induction toL+

B is not required by something about the non-semantic subject
matter of the theory of truth in question but rather required by the constitutive element
of our understanding of the syntactic structure of formal languages.

4.2 Commitment to logic

Onemajor issue concerning the logico-linguistic function of truth, in the context of the
conservativeness argument, is whether truth should not only express infinite conjunc-
tions but also establish some of them. LetBewB(x) be a canonical provability predicate
forB expressing ‘x is anLB-sentence provable fromB’. The so-called global reflection
principle GRef B for a base theory B denotes an L+

B -sentence ∀x
(
BewB(x) → T x

)
,

which expresses that all theorems of B are true. This GRef B is a principal example of
an infinite conjunction that is claimed by proponents of the conservativeness argument
to be a necessary consequence of any adequate theory of truth. They then conclude
that truth is substantial, since GRef PA implies the consistency statement Con(PA) for
PA in the presence of LB-TB.

According to deflationism, the main point of having a truth predicate is that it
increases one’s expressive power via its logico-linguistic function.Whenwe introduce
a new expression into our vocabulary, we usually do not expect that its introduction
by itself brings about any new substantive knowledge. From the deflationist point of

16 The idea of the proof of this claim is, roughly, to construct a one-to-one matching between each n ∈ N

and, say, the conjunction of n-many �0 = 0�. To carry out this proof, the base theory B only needs to
include I�1.
17 For other examples, L+

B -Ind is implied by the schema of induction on strings of alphabets, such as
Cn -IndFO in Ganea (2009) (in terms of Gödel numbering), and also by the schema of induction on the
construction of sentences.
18 A variety of equivalence results are known between theories of natural numbers and syntax. Some ‘pure’
theories of syntax, such as Grzegorczyk’s theory of concatenation and adjunctive set theory, are mutually
interpretable with Q; see Švejdar (2009) and Montagna and Mancini (1994); furthermore, the results of
augmenting them with the schema of syntactic induction become equivalent to PA; see Ganea (2009). Also,
from the model-theoretic viewpoint, Corcoran et al. (1974) showed that the structure of strings on a finite
alphabet is essentially the same as that of natural numbers.
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view, therefore, truth enables us to express infinite conjunctions, but it is not part of
a deflationary theory of truth to verify or refute each given infinite conjunction, no
matter how obvious its truth or falsity is. Hence, our proponent of the conservativeness
argument has to provide a special reasonwhy that particular infinite conjunctionGRef B
should be established by every adequate (deflationary) theory of truth.

I will first consider one key example of an argument for this claim and refute it,
by which I intend to give a preliminary picture of what kind of infinite conjunction
need not be a consequence of an adequate deflationary theory of truth. The argument
I will consider is a variation of Ketland’s ‘reflective argument’ (2005). The key thesis
behind it is Feferman’s influential view on ‘implicit commitment’: if one accepts
a mathematical theory S, then one is implicitly committed to accepting a number
of further statements, such as Con(S) and proof-theoretic reflection principles for
S, that are not provable in S (e.g., see Feferman 1991). Following Ketland, let us
call the ‘further statements’ to which one is implicitly committed in accepting S the
reflective consequences of S. Then, the argument goes that any adequate theory of
truth must derive the reflective consequences of its base theory B that are expressible
in the language L+

B and that GRef B is indeed among those reflective consequences.
However, Field’s thesis (F1) provides an immediate deflationist rebuttal to this type
of argument. Any implicit commitment to a reflective consequence of an initially
accepted theory is not something required by virtue of truth but rather required by
one’s very acceptance of the theory and one’s specific epistemic and/or mathematical
attitude toward the theory and/or its subject matter. Hence, the reflective consequences
of any given base theory and/or its subject matter is not ‘essential to truth’, and thus
it follows from (F1) that any non-conservativeness they cause does not undermine
deflationism. In conclusion, the ‘reflective argument’ fails to establish that GRef B,
or any other reflective consequence such as ‘all axioms of B are true’, ought to be a
consequence of an adequate theory of truth over B.

I have so far argued that it is not required of a deflationary theory of truth, say S, to
prove some statement P solely on the ground that P is a reflective consequence of the
base theory B of S. However, this does not exclude the possibility that the provability
of some reflective consequences turns out to be necessary part of S for some reason
other than their being reflective consequences of B. Now, it seems still possible and
reasonable to argue that a certain positive commitment to the logic one employs is a
precondition for formulating any theory B of one’s subject matter and any theory of
truth over B, regardless of one’s mathematical and/or epistemic attitude to B and its
subject matter, and there may be a non-conservative truth-theoretic principle that is
required, by this commitment to logic, to be a consequence of every adequate theory
of truth.19 There is one strong argument that expands on this point. First note that we
can formally express the following statement in L+

B :

T -ValLB : All logically valid LB-sentences are true.

19 In his rejoinder toShapiro (1998),Azzouni (1999, p. 542) says that ‘the capacity to establish (nonlogical!)
[emphasis added] truths and generalizations about [truths of non-semantic facts] goes quite beyond what a
first-order deflationist calls a deflationist theory of truth’. Hence, seemingly, he does not either exclude the
possibility that even a deflationary theory of truth is required to establish some logical truths.
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Then, Cieśliński (2010) made a significant observation that GRef PA is equivalent over
CT��PA� to T -ValLN

.20 He thereby suggests that ‘it is perhaps not somuch the relation
between truth and PA, but between truth and logic …which matters’ (p. 415). In other
words, T -ValLN

is a ‘reflective consequence’ not of the base theory PA and/or its
mathematical subject matter but rather a ‘reflective consequence’ of logic, to which
one is committed prior to having any theory of truth or anything else.

Cieśliński’s result may well give our deflationist a compelling reason to take the
provability of GRef PA as among the essential requirements for her theory of truth over
PA. Field’s and other existing deflationist counterarguments seem unable to cope with
this variation of the conservativeness argument, which supports (C2) by appealing to
the non-conservativeness of some principle concerning logic. However, the proof of
Cieśliński’s theorem is very peculiar to arithmetic and does not apply to theories of
truth over other subject matters, since it crucially depends on the fact that each instance
ϕ(0)∧∀x(ϕ(x) → ϕ(x +1)) → ϕ(n) on the numerals n of LN-Ind is logically valid,
but we do not expect the same for other mathematical axiom schemata such as the
collection schema of set theory. In fact, as we will see in Sect. 6, the principle T -ValLB

adds no substance to reasonably rich set-theoretic base theories B, and thus T -ValLB

is not equivalent to GRef B in general; furthermore, T -ValLB does not even imply the
statement ‘all axioms of B are true’ in general.

Let me summarise the argument in this section. Both the syntactic conservativeness
argument and Cieśliński’s argument point to certain general conditions for adequate
theories of truth derived from consideration of our ex-ante commitment in having
any theory of truth regardless of our choice of subject matter and base theory. This
is why Field’s and other existing defences of deflationism are unable to cope well
with the two arguments, since these are designed only to avoid the requirements for
non-conservative truth-theoretic principles that flow from our ex-post commitment
concerning an already chosen particular subject matter and/or base theory.

20 Cieśliński (2010) also showed that GRef PA is equivalent, modulo CT��PA�, to the principle ‘truth
is closed under provability over LN’. Let us call this principle T -ClsLB

; T -ClsLB
obviously implies

T -ValLB
in CT��B�. One could argue that the provability of this principle is also a necessary condition

for an adequate theory of truth by making use of the discussion on blind deduction in Sect. 3. Consider
the following argument: all that Karl believes are true; Judy said that what Karl believes contradicts what
Ikoma said; therefore, if what Judy said is true, then what Ikoma said is false. Let us assume that Karl has
infinitely many beliefs; one may well assume that he believes all (infinitely many) axioms of PA. The first
premise entails the truth of infinitely many sentences; in symbolism, this is expressed as ∀x(Bx → T x),
where B characterises the set of all sentences that Karl believes. In order to express that the infinitely
many sentences, which Karl believes, contradict what Ikoma said, we need to resort to something like the
provability predicate, and what Judy said would be thereby expressed as ‘the negation of what Ikoma said
is provable from the set of all sentences that Karl believes’: in symbolism, this is expressed as BewB (¬. z),
where z is the sentence Ikoma uttered; note that BewB (¬. z) is an LB-expression, and thus it is equivalent
to the truth of what Judy said. Then, in order to carry out the blind deduction at stake, we would need the
principle T -ClsLB

to deduce the falsity of z from BewB (¬. x) and ∀x(Bx → T x). Hence, a principle like
T -ClsLB

seems necessary for a theory of truth to enable us to carry out the kind of blind deduction in
question.
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5 Theory of syntax and arithmetic

In this section, I will discuss the legitimacy and significance of the assumption of
(Syn) through examination of a recently proposed new type of theory of truth.

When a theory of truth is formulated over an arithmetical base theory, the base
theory has to play two different roles at the same time, i.e., the roles of a theory
of arithmetic and a theory of syntax. The equivalence of syntactic and arithmetical
inductions in theories of truth over arithmetic, discussed in Sect. 4.1, comes from
this very entanglement of the two roles within a single theory. This is an inevitable
consequence under the assumption of (Syn). By contrast, in our ordinary informal
meta-mathematical discourse, the theory of syntax and that of natural numbers are
kept separate, and syntactic objects and natural numbers are treated as distinct objects.

Having reflected upon this dissonance between the customary methodology in
axiomatic theories of truth and our informal meta-mathematics, Heck (2009), Hal-
bach (2010, Ch. 21) and Leigh and Nicolai (2013) proposed a new type of theory of
truth in which a theory of syntax is given as a completely separate theory from the
base theory B, with a new domain of its own objects separate from the domain of the
non-semantic objects of B. This new type of theory of truth is quite versatile and can
be applied to literally any formal theory of any subject matter, whether or not it is rich
enough to develop a theory of syntax within it. Hence, the universality of truth, dis-
cussed in Sect. 2, is better captured by this formal setting than our current one with the
exclusive condition (Syn). More importantly, theories of truth of this type are always
conservative over their base theories even in the presence of the extended syntactic
induction as well as Cieśliński’s principle in terms of the separate ‘disentangled’ the-
ory of syntax.21 This general conservation result indicates that (Syn) is a crucial and
indispensable assumption implicit in the conservativeness argument: indeed, all the
arguments for the claim (C2) presented so far in the literature are only valid under the
assumption of (Syn) and, if we adopt theories of truth with a disentangled theory of
syntax, conservativeness results in all the known relevant cases. So, one easy way out
for deflationists from the predicament at issue, posed by the syntactic conservativeness
argument and Cieśliński’s argument, is to abandon the assumption of (Syn) by taking
up this new formal conception of ‘theory of truth’. However, this is not a genuine
solution to the problem. Theories of truth of this type with a disentangled theory of
syntax turn out to be unnatural and inappropriate when we think of the ultimate goal
of theories of truth.22

A primary purpose of the axiomatic approach to truth is to provide a minimal
framework for implementing the notion of truth onto a maximally rich theory in the
sense that we do not want to ascend beyond it to a meta-language and a meta-theory

21 With a theory of syntax completely separate from a theory of natural numbers, we can make a clear
formal distinction of arithmetical induction and syntactic induction in this new framework. Then we can
show that the compositional theory of typed truth over B with a disentangled theory of syntax, written as
CTD[B] in Leigh and Nicolai (2013), is conservative over B even with the addition of the full schema of
syntactic induction for the entire language: the same holds for the principles corresponding to Cieśliński’s
T -ValLB

and T -ClsLB
.

22 Halbach (2010, p. 320) also draws the same conclusion for a reason similar to mine.
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even richer than it in non-semantic content. A typical example of a maximally rich
theory is the theory within which one carries out all her mathematical investigation.
For instance, suppose one wants to give a theory of truth over the theory M of one’s
entire mathematics. If she wants to define a truth predicate over M by mathematical
means, she has to ascend to some meta-theory richer in mathematical content thanM
due to Tarski’s theorem; for example, ifM is ZF, then she has to ascend to some richer
theory, such as the Morse-Kelly theory MK of classes, to define the truth over ZF. In
this situation, one would prefer to dispense with ascent to any such meta-theory, as
otherwise hermathematicswould be enlarged by the newmathematical content of such
ameta-theory and thusMwould no longer be the theory of her entiremathematics.Here
is the point where the axiomatic approach to truth comes into play: we introduce truth
as an undefined primitive predicate and also as a non-mathematical logico-linguistic
notion, and then directly characterise it by listing its axioms,which requires no addition
ofmathematical substance.23 Another example of amaximally rich theory is the theory
W of one’s entire (non-semantic) science, say, the conglomerate of one’s current best
theories of mathematics, physics, chemistry, and so forth; then, the subject matter
of this theory is everything she investigates in science and its language is the (non-
semantic) part of her natural language used in her scientific discourse. Surely, she
would not like to change her theory of physics or any other scientific discipline only
for the sake of having a truth predicate for her natural language. Most philosophers, I
think, are ultimately interested in the theory of truth for such maximally rich theories
and subject matters and, as the above examples indicate, some of them, such asM and
W, are naturally presumed to be indeed quite ‘rich’ so that they intrinsically contain
a theory of syntax per se and even develop substantial meta-mathematics on the basis
of the theory of syntax therein.24

Now, for such ‘rich’ theories, adding another theory of syntax separately from
the existing theory of syntax intrinsically contained in them is quite unnatural and
even unsound. In the case of theories of truth with a disentangled theory of syntax,
many syntactic statements, such as the consistency statement for the base theory B,
are provable in terms of the newly added theory of syntax, but those statements are
not provable in terms of the intrinsic theory of syntax of B; namely, the two theories
of syntax behave differently and have incompatible consequences. Hence, while the
assumption of (Syn) is not necessary and theories of truth with a disentangled theory of
syntax behave ideally for deflationists inmany cases, where base theories are relatively
weak (‘poor’), the assumption of (Syn) is still indispensable and those theories with

23 Väänänen’s (2001) notion of urlogic can be regarded as the theory of our entire mathematics that is not
treated as an object of meta-mathematics such as model theory, and so it gives another important example
of a maximally rich theory; also see fn 2.
24 Some philosophers and mathematicians suspect that those very ‘rich’ theories such as ZF lack founda-
tional justification, and may refuse to accept them even as a maximally rich theory of their mathematical
investigation. For them, even a maximally rich theory may not be ‘rich’ in the sense at issue. In an extreme
case, one might only accept pure arithmetic as real mathematics; e.g., Hilbert’s finite standpoint. However,
as I will conclude below, the conservativeness argument limited to theories of truth over arithmetic cannot
achieve its goal of undermining deflationism anyway. The issue would be more subtle when one takes
an intermediate theory, which is richer than arithmetic but still not ‘rich’ in the sense at issue, as one’s
foundation of mathematics; e.g., a weak predicative fragment of second-order arithmetic. This case will be
considered in Sect. 7 to some extent.
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a disentangled theory of syntax are unnatural and inappropriate in other cases, where
base theories are ‘rich’.25 The consideration of maximally rich theories indicates that
there is indeed a case where theories of truth with a disentangled theory of syntax
are not appropriate and we really need to pursue axiomatic theories of truth over
a ‘rich’ base theory with the assumption of (Syn). Hence, theories of truth with a
disentangled theory of syntax do not provide a general solution to the dilemma posed
by the conservativeness argument, when we take a broader range of subject matters
and theories into account as the bases of theories of truth.

6 Beyond arithmetic

Now we have arrived at the main section of this paper, and I will elaborate on my
proposal.

The preceding discussion of the assumption of (Syn) gives a new perspective to
the debate on the conservativeness argument. It is theories of truth over ‘rich’ subject
matters and base theories that essentially need the assumption of (Syn). A typical
example of such a ‘rich’ subject matter (in mathematics) is set theory, but arithmetic is
deemed to be not ‘rich’ enough in the sense at issue. Arithmetic does not treat syntactic
objects as its intended subject matter, and any mathematical theory about or built up
on the basis of those syntactic objects is not part of arithmetic per se. So, the debate on
the conservativeness argument so far has been misplaced in an atypical formal setting
for the assumption of (Syn).

Does the non-conservativeness of some theories of truth obtained in the ‘atypical’
setting, where these theories of truth are formulated over arithmetic with the assump-
tion of (Syn), still imply the substantiality of truth? My answer is no. According to
the aforementioned folklore view, the mathematical structure that the theory of syntax
describes is essentially the same as the mathematical structure of natural numbers, and
thus arithmetic is indeed a minimal basis for theories of truth under the assumption
of (Syn). An arithmetical base theory B is at the same time a theory of syntax, and
the non-semantic base content and the syntactic content of a theory of truth over B
become almost identical. With this ‘entanglement’, a theory of truth over arithmetic
can then be seen as having little or no substantial non-semantic content towhich truth is
applied. This is an anomalous and singular situation. Accordingly, the fact thatCT�B�
is not conservative over an arithmetical base theory B is interpreted to mean that truth
is not conservative over a theory of syntax, but this is not a problem for deflationism,
because truth axioms and a theory of syntax always come in one package and it makes
little sense to separate and compare them in terms of conservativeness. Even if we
somehow separate and compare them, truth is a logico-linguistic device operating on

25 One might propose, as an alternative solution to the problem at issue, to adopt purely disquotational
theories of truth like TB, instead of CT, for the sake of conservativeness in the cost of the logico-linguistic
function of blind deduction; TB�B� is conservative over any base theory B even if B contains other axiom
schemata than arithmetical induction (with the proviso that B contains the schemata unrestrictedly forLB).
However, the cost would be not only blind deduction. One would likely have to give up self-applicability
as well, since theories of purely disquotational but self-applicable truth are often not conservative over
their base theories, when the axiom schemata are extended to the entire language; e.g., PUTB�PA� is not
conservative over PA (see Halbach 2009).
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syntactic objects, and thus it would be no surprise anyway that truth adds some syn-
tactic substance to a theory of syntax.26 Semantics always comes with syntax, and
syntax is not among the non-semantic subject matters on top of which deflationary
truth should be conservatively added; non-conservativeness over syntax is not what
deflationists would take as a sign of the substantiality of truth.27

Having reflected upon the fundamental motivation for (Syn) and observed the sin-
gularity of theories of truth over arithmetic, I now propose that we should exclude
arithmetic (and other ‘poor’ subject matters) from the range of the subject matters to
be taken into account in (C1) and we should turn to ‘richer’ subject matters for evalu-
ating the conservativeness argument. Our proponent of the conservativeness argument
has no choice but to accept this proposal, since the conservativeness argument based
solely on the formal results of theories of truth over arithmetic cannot undermine defla-
tionism: on the one hand, if theories of truth over arithmetic is given with an embedded
theory of syntax via coding and syntactic induction entangled with arithmetical induc-
tion, then the non-conservativeness of them does not imply the substantiality of truth;
on the other hand, if they are formulated with a disentangled theory of syntax and
syntactic induction in terms of it, then the conservativeness requirement (C1) is gen-
erally met and thus the non-conservativeness claim (C2) simply fails. In contrast to
arithmetic, some ‘rich’ subjectmatters do have substantially rich non-semantic content
besides its syntactic content and intrinsically contain a theory of syntax per se; hence,
the above argument against the conservativeness argument cannot be generalised to
the case where such a ‘rich’ subject matter is taken as the basis of theories of truth.
Among others, set theory is a typical example of such a ‘rich’ subject matter: it is
often taken as the foundation of mathematics and many would consider some standard
theories of sets, such as ZF, to be maximally rich in the aforementioned sense; also,
a theory of syntax per se is regarded as an intrinsic part of set theory, and set theory
is rich enough to develop substantial meta-mathematics on the basis of the theory of
syntax therein.

Now, let us turn to consider theories of truth over set theory with the assumption
of (Syn). Recall that the crucial difference at issue between arithmetic and set theory
is that set theory intrinsically contains a theory of syntax and is ‘rich’ enough to
implement substantial meta-mathematics on the basis of it. We should proceed with
this difference in mind. However, as the aforementioned folklore view goes, a variety

26 Let me give an illustrative analogy in support of this point. Consider a partial propositional logic only
with three connectives ∧, ∨, and → together with the ordinary introduction and elimination rules for these
connectives. If we add the negation ¬ as a new connective together with the ordinary rules for it, then we
can derive new tautologies that do not contain ¬; e.g., Peirce’s law. This fact could be described as the
non-conservativeness of the negation ¬ over the partial propositional logic. Now, one might well argue
that logical notions should not be substantial, but one would not conclude on the ground of this non-
conservativeness result that the negation¬ is substantial and thus not logical; these four connectives should
be taken as one package and it makes little sense to separate and compare them in terms of conservativeness;
also, those new logical truths are rather natural and expected consequences of the addition of the new logical
device ¬.
27 Even if we adopt theories of truth with a disentangled theory of syntax, the same non-conservativeness
results over the disentangled theory of syntax. However, this fact is not taken by proponents of those theories
as a problem for deflationism either, and they also claim that it does not imply the substantiality of truth;
see Nicolai (2015, Sect. 2.3).
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of different formulations of the theory of syntax, in terms of finite sequences, trees,
natural numbers, and so forth, share essentially the same inductive structure (cf. fn 17),
and set theory is rich enough to prove this fact; indeed, we usually need not distinguish
different formulations of the theory of syntax in the actual practice of mathematical
logic within set theory. Hence, in order to treat theories of truth over arithmetic and set
theory in a uniformway, I will assume that the schema of syntactic induction, nomatter
how it is (reasonably) defined, is equivalent to the schema of arithmetical induction,
and, in what follows, I will identify the schema of syntactic induction for L+∈ with
L+∈ -Ind expressed in terms of the standard translation ofLN intoL∈, whereL∈ (=LZF)
is the language of first-order set theory.28 Then, in sharp contrast to arithmetical base
theories, many theories of truth over sufficiently strong theories of sets, such as ZF,
become conservative even with the addition of L+∈ -Ind (equivalently, the schema of
syntactic induction for L+∈ ).
Theorem 1 IfB is anL∈-theory extendingZF, thenCT��B�+L+∈ -Ind is conservative
over B.29

Proof Suppose CT��B� +L+∈ -Ind 
 σ for an L∈-sentence σ . Let U be the collection
of the axioms of B used in the derivation of σ . By the Montague-Lévy reflection
principle, B proves that there exists an admissible set X such that X contains the set
of natural numbers (=ω), and

if ¬σ, then X is a transitive model of U and ¬σ.

Since X is admissible, we can define the truth class (or the full satisfaction class)
of X and interpret the truth predicate T (or the satisfaction predicate Sat) thereby.
Furthermore, the transitivity of X and ω ∈ X automatically verify L+∈ -Ind under this
interpretation. Hence, if ¬σ were the case, the deduction of σ in CT��B� + L+∈ -Ind
could be modeled in X and thus X would satisfy both σ and ¬σ , which is impossible.

��
We have the same phenomenon even with a relatively weak subject matter, second-

order arithmetic, although it is debatable whether second-order arithmetic is ‘rich’
enough in the sense at issue. Let Z2 denote the theory of full analysis (=�1∞-CA, see
Simpson 2009) over the language L2

N
of second-order arithmetic. Then, the following

holds30:

28 Even if we use a theory of syntax of a language of proper size class, such as L∞∈ (see fn 7), the
expressions of the language are defined essentially by ω-recursion anyway and thus any reasonably defined
syntactic induction for such a language is expected to be equivalent to arithmetical induction. Furthermore,
also in this setting, we can show the same statement as Theorem 1 in a parallel manner.
29 This is a modification of Fujimoto (2012, Theorem 20), which shows that CT��B� is conservative over
B ⊃ ZF evenwith the addition of the full separation schema forL+∈ . Thismodification yields amore general
conservation result: CT��B� + L+∈ -Ind is conservative over any L∈-theory B ⊃ KPω + �∞-Reflection
[see Rathjen (1994)]; as a matter of fact, the same holds for even weaker L∈-theories such as B = KPω

but the proof requires a slightly different argument making use of the fact stated in fn 30. Also note that the
presence of urelements would not affect the statement of the theorem and would not require any substantial
change of the proof either, as long as the class of urelements is set-sized.
30 Theorem 2 is shown in a completely parallel manner to Theorem 1 by using the ω-reflection principle
(see Simpson 2009, Lemma VIII.5.2) instead of the Montague-Lévy reflection principle. Let Bi be ACA0
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Theorem 2 If B is an L2
N

-theory extending Z2, then CT��B�+(L2
N
)+-Ind is conser-

vative over B.

These theorems tell us that, when the non-semantic content of a base theory B
is ‘rich’ enough, the extension of syntactic induction to L+

B does not add any non-
semantic substance.31 They also validate my claim in Sect. 4.2 that Cieśliński’s
argument only applies to arithmetic; for, if B is as in Theorems 1 or 2, then
CT��B�+L+

B -Ind proves Cieśliński’s principle T -ValLB . Furthermore, the same con-
servation result holds for many other axiomatic theories of truth, including most (if
not all) of the so far presented theories of self-applicable truth, over any base theory
B satisfying the condition of Theorems 1 or 2.32 That is to say, we can conservatively
add even type-free self-applicable truth to these base theories together with the full
schema of syntactic induction. Hence, if we adopt those ‘rich’ bases, we need not give
up either blind deduction nor self-applicability as the logico-linguistic functions of
truth.33

Let us summarise the points I have made. First, by Field’s theses (F1) and (F2),
any mathematical axiom schemata of ZF or Z2 postulated by virtue of its subject
matter, such as the collection schema of ZF and the comprehension schema of Z2,
need not be extended to L+∈ or (L2

N
)+ in order to obtain an adequate deflationary

theory of truth; only syntactic (arithmetical, equivalently) induction is required to
be extended because of its indefinite extensibility as a constitutive element of our
understanding of the bearers of truth. Second, as I have argued, even if an infinite
conjunction expressed in terms of T is a reflective consequence of ZF (or Z2), the
infinite conjunction, such as GRef ZF (or GRef Z2 ) and the statement ‘all axioms of ZF
(or Z2) are true’, need not be a consequence of an adequate deflationary theory of truth
solely on the ground of its being a reflective consequence of ZF (or Z2). As far as I

Footnote 30 continued
plus the schema Bi of bar induction; Bi is known to be proof-theoretically equivalent to the first-order
theory of inductive definitions ID1. Since Bi derives the ω-reflection principle and is closed under ω Turing
jumps, Theorem 2 can be strengthened to the following: CT��B� + (L2

N
)+-Ind is conservative over B for

any L2
N
-theory B ⊃ Bi.

31 Let B be PA plus the schema of transfinite induction up to εε0 for LN. As I mentioned in fn 6, CT�B�
is conservative over B. The same conservation holds even if we replace εε0 by many other ordinals such as
ϕ20, ϕε00, 	0, etc. Hence, even if B is an LN-theory, CT��B� + L+

N
-Ind is sometimes conservative over

B, when B contains axioms of ‘higher-order’ and non-purely arithmetical nature in the sense of Isaacson
(1987).
32 For instance, the Kripke–Feferman theories over ZF and Z2 are conservative over their bases, when
only syntactic induction is extended to the whole language and all the other axiom schemata are restricted
to the language of the base theory (see Fujimoto 2012).
33 The crucial point of the proofs of Theorems 1 and 2 is that the constructed transitive models and
ω-models keep the (first-order) arithmetical part unchanged. One might wonder why a similar proof is
not possible over (first-order) arithmetical base theories. Certain types of ‘reflection principles’ are indeed
provable in reasonably strong arithmetical theories; for instance, it is provable in PA, essentially due to the
arithmetised completeness theorem and the reflexivity ofPA, that if anLN-sentence ϕ holds then there is an
arithmetised model of ϕ. However, the domain of an arithmetised model thus constructed may have a quite
different structure from the setN of natural numbers, and we cannot expect the model to satisfy arithmetical
induction for arbitrary formulae that may contain the truth predicate for the model. Furthermore, the truth
predicate for such a model does not necessarily satisfy the axioms of CT�, since the formula expressing ‘x
is an LN-sentence’ may have a different meaning in the model.
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know, there has been presented no argument so far that compels deflationists to accept
the extension of thosemathematical axiom schemata or the provability of these infinite
conjunctions as necessary part of adequate deflationary theories of truth over ZF (or
Z2). Consequently,CT��ZF�+L+

N
-Ind andCT��Z2�+L+

N
-Ind can be (provisionally)

seen as adequate theories of truth from the deflationist point of view, but they are still
conservative over their base theories. By moving to ‘rich’ base theories, for which the
condition (Syn) is appropriately applied, the problems are suddenly dissipated.

7 The conservativeness requirement re-examined

In this section, I will consider a possible objection to my proposal, and introduce a
new issue into the debate through examination of that objection.

We should not hastily conclude that our deflationist has finally succeeded in refuting
the conservativeness argument. As the next proposition shows, not all base theories
of even ‘rich’ subject matters enjoy the same strong conservativeness property as ZF
and Z2 do.

Proposition 3 Let B be either an L2
N

- or L∈-theory such that B ⊂ F + LB-Ind for
some finitely axiomatisable LB-theory F. Then, CT��B�+L+

B -Ind proves GRef B, and
thus it is not conservative over B. The proof is standard and I omit it.

We have a similar non-conservativeness phenomenon concerning T -ValLB , but let us
focus on the indefinite extensibility of syntactic induction and its implications, such
as L+

B -Ind, for simplicity.34 For example, let ZFn (n ≥ 1) be the result of restricting
the two axiom schemata of ZF, i.e., the separation and collection schemata, to the
�n-formulae in the Lévy hierarchy. It is known that ZFn is finitely axiomatisable.
Put B = ZFn + L∈-Ind. This B satisfies the condition of Proposition 3. Therefore, it
follows that CT��B� + L+∈ -Ind is not conservative over B.35

Could one thereby form a new conservativeness argument by appealing to Propo-
sition 3 to the effect that she has found a counterexample, say, ZF79 + L∈-Ind, of
the conservativeness requirement (C1) and thus truth is substantial? As I will argue
below, this non-conservativeness result does not automatically entail the substantiality
of truth, and there remain more issues that one would have to discuss and settle before
concluding the substantiality of truth.

Firstly, conservativeness is not always required as an adequacy condition for defla-
tionary theories of truth. We have seen in the last section that the conservativeness
requirement (C1) should not be applied to theories of truth over arithmetic. Here I
will further argue that it need not either be applied to theories of truth over some base
theories of even ‘rich’ subject matters. According to the syntactic conservativeness
argument, the schema L+

B -Ind is required to be part of an adequate theory of truth by

34 LetB be as in Proposition 3 and supposeB further satisfies the following: (i)LB ⊃ LN; (ii) theLN-part
of B includes I�1 and plays the role of the theory of syntax for theories of truth over B. Then, we can show,
in a parallel manner to Cieśliński’s original theorem, that CT��B� + T -ValLB

is not conservative over B.
35 For another example, neither CT���1

n -CA�+(L2
N

)+-Ind nor CT���1
n -CA�+T -ValL2

N

is conservative

for any n ∈ N.
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our commitment to the indefinite extensibility of syntactic induction. Hence, if there is
any other principle derived from the same commitment but expressible in the base lan-
guageLB, then we are also committed to accepting it regardless of truth. In particular,
we are committed to accepting the full induction schemaLB-Ind for the base language
LB prior to adding truth to B. However, it is known that any finitely axiomatisable
theory B cannot prove LB-Ind (see Hájek and Pudlak 1993, Lemma 3.47). Hence,
any finitely axiomatisable theory B fails to fulfill the commitment to the indefinite
extensibility of syntactic induction.36 This indicates that, if non-conservativeness is
a sign of substantiality, the commitment to the indefinite extensibility of syntactic
induction is already fairly substantial regardless of truth. And if such commitment is
a necessary part of an adequate theory of truth, we have no good reason to require
the theory of truth to be conservative over all arbitrary base theories. Furthermore,
the syntactic structure of formal languages and our understanding of it might lead us
to commit ourselves to some other things of substance, in addition to the indefinite
extensibility of syntactic induction, which cause further non-conservativeness results;
for instance, constructibility of functions and objects by recursion along ω might be
considered as such. Therefore, our proponent of the conservativeness argument has to
demonstrate that there is indeed a case where (1) truth is still required to be conser-
vatively added to some base theory B in spite of the substantiality of the commitment
at issue concerning the syntactic structure of formal languages and (2) any adequate
theory of truth over that base theory B is non-conservative. This does not seem to be
an easy task. For instance, if a theory B is so ‘rich’ as to exhaust all our mathematical
commitment concerning the syntactic structure of formal languages and thereby make
the commitment negligibly insubstantial, then one may well insist on (1) for such B,
but we have just seen that an allegedly adequate theory of deflationary truth over some
natural candidates of such very ‘rich’ theories satisfying (1), such as ZF, is conserva-
tive; now, it is far from clear whether there is indeed any theory B that satisfies both
(1) and (2).

Secondly, we have to always ask whether the axiomatic approach to truth with the
assumption of (Syn) is indeed an appropriate (or necessary) formal setting in a given
context. First of all, some other type of theory of truth might be more appropriate than
axiomatic theories of truth: if the axiomatic approach is not taken, the conservativeness
argument is unlikely to go through (see fn 2). For instance, if one is working within set
theory, then the ordinary model theory or some semantic theory of truth might be more
appropriate than the axiomatic approach as the theory of truth for, say, second-order
arithmetic or real analysis. Next, even when the axiomatic approach is legitimately
taken, the condition (Syn) need not be assumed in all cases and one needs to examine
whether the assumption of (Syn) is necessary in a given case. I argued that ‘rich’ subject
matters essentially need the assumption of (Syn) and thiswas the reasonwhywe turned

36 A similar argument can be made against Cieśliński’s argument. Let B be as in fn 34 and further assume
that B has partial truth (satisfaction) predicates. Consider the following ‘partial realization’, T -ValLB

�k ,
of T -ValLB

expressible in the base language LB: ‘If σ is logically valid LB-sentence and its complexity
is ≤ k, then σ is true in terms of the partial truth predicate Tk for the sentences of complexity ≤ k.’ If we
take T -ValLB

as an implication of our commitment to logic, then we would also naturally accept the LB-
sentencesT -ValLB

�k for all k ∈ N as implications of the same commitment. Then,B+{T -ValLB
�k | k ∈ N}

is not conservative over any finitely axiomatisable B.
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to consider theories of truth over set theory. However, when a given subject matter is
not ‘rich’ in the sense at issue, our proponent of the conservativeness argument has
to somehow demonstrate that (Syn) is still an appropriate and necessary assumption
for theories of truth over that subject matter.37 Third, even if the subject matter in
question is ‘rich’, a given base theory B may not fully capture the relevant content of
the subject matter and sufficiently represent the ‘richness’ of it. For instance, the mere
fact that the language LB of a base theory B is the language L∈ of set theory does not
necessarily mean thatB fully captures the relevant content of set theory; theL∈-theory
ZF is the most natural and standard axiomatisation of set theory, and it presumably
fully captures all the relevant content of set theory at issue, but we can make up an
L∈-theory that is so weak or unnatural that we can’t even take it to be a theory of
sets. Here is an important difference between our new formal setting and the older
customary setting in which only arithmetical base theories are considered: in the older
setting, the most natural and standard (and even ‘complete’ according to Isaacson
1987) axiomatisation PA of arithmetic makes some allegedly adequate deflationary
theories of truth non-conservative; by contrast, in our new setting, the same theories
of truth over the standard theory ZF of sets are conservative; therefore, proponents
of the conservativeness argument now have to search the realm of much less natural
non-standard theories of the subject matter in question, such as ZF79 + L∈-Ind, for
evidence of the substantiality of truth.

All these indicate that the conservativeness requirement (C1) is to be posed only
to some limited range of base theories, and let us call such a base theory that falls
within the proper scope of (C1) an adequate basis for the conservativeness requirement
(‘adequate basis’ for short); note that this notion is relative to what adequacy condition
is set for theories of truth (and how it is justified), but let us assume that we are given
some fixed such. In other words, we now reject (C3) and replace it by the following:

(C4) Whenever a theory B is an adequate basis, any adequate theory of truth over B
must be conservative over B.

An immediate question is: what theories are counted as adequate bases? Presumably
ZF is counted as such, but it is highly questionable whether the same can be said
of ZF79 + L+∈ -Ind. Our proponent of the conservativeness argument needs to give a
non-ad hoc answer to this question in such a way that at least one adequate basis B
makes truth non-conservative. The burden of proof is now on the proponent, and this
does not look an easy task.38

37 For instance, if one takes a relatively weak subsystem of second-order arithmetic as her foundation of
mathematics, then the subsystem is maximally rich for her and the axiomatic approach to truth should be
taken for it; cf. fn 24. I do not have a conclusive answer to whether the conservativeness argument would
go through in such a case: the main issue here is whether or not (Syn) is necessary and (C1) is appropriately
applied to such a case.
38 For instance, a finitely axiomatisable theory, say, ZF2016, has higher consistency strength and inter-
pretability degree than B := ZF79 + L∈-Ind, and even proves the existence of a ‘standard’ model of
CT��B� +L+∈ -Ind in which all the deductive aspects of that theory of truth are realised. However, ZF2016
is not an adequate basis, since it fails to fulfill the commitment to the indefinite extensibility of syntactic
induction. Then, proponents of the conservativeness argument would have to give a non-ad hoc explanation
of why B is adequate while ZF2016 is not.
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8 Summary and conclusion

Two versions of the conservativeness argument were presented in Sect. 4,39 and we
have seen that neither a purely disquotational theory of truth nor a theory of truth
with a disentangled theory of syntax provides deflationists with a general solution to
the problem raised by them: an adequate deflationary theory of truth should contain
the compositional axioms of CT�, and there are some important cases where the con-
dition (Syn) should be assumed. Then, I argued that the conservativeness argument
solely based on the non-conservativeness of (axiomatic) theories of truth (with the
assumption of (Syn)) over arithmetic nonetheless fails to undermine deflationism, and
thereby concluded that we should turn to consider theories of truth over ‘richer’ subject
matters in order to properly evaluate the success (or failure) of the conservativeness
argument. However, it turned out that an adequate theory of deflationary truth is con-
servative over sufficiently strong theories of sets (or second-order arithmetic). This
conservation result and the consideration of theories of truth over these ‘richer’ bases
in Sect. 7 give a sharper focus to an issue that has not been sufficiently discussed so
far: What are adequate bases for the conservativeness requirement? This question also
relates the debate on deflationism more deeply and broadly to the philosophy of logic
and mathematics, since it involves the following questions: What axioms are needed
to fully capture the relevant content of a given subject matter? How should truth be
formally implemented in each context? In which case is the axiomatic approach with
the assumption of (Syn) appropriately applied and essentially needed? What theory is
‘rich’ enough to make our mathematical commitment concerning the syntactic struc-
ture of formal languages negligibly insubstantial? What theories are maximally rich?
And so on. There are more factors to be taken into account for the conservativeness
argument to go through than philosophers seem to have previously thought, and we
haven’t yet reached the stage in which we can make a final verdict on the validity of
the conservativeness argument: deflationary theories of truth over ‘rich’ subject mat-
ters have not yet been sufficiently explored, and more philosophical and mathematical
developments in this area are to be awaited.

Let me finally emphasise again that most philosophical debates on the axiomatic
theories of truth have so far been based on formal results about those theories over arith-
metic, and this is presumably because philosophers believe that those formal results
over arithmetic and their arguments on the basis of them can be generalised to other
cases. However, this extrapolation is not valid as I have argued. More generally, theo-
ries of truth over arithmetic are often compared and related to second-order arithmetic,
but recent research reveals that there are also a number of significant dissimilarities
between second-order arithmetic and second-order theories over other bases such as
set theory and the theory of real numbers; see Sato (2014, 2015); Schweber (2015)
and Hachtman (2017). These formal results indicate that the arithmetical basis shows
singular behaviour different from other bases. A primary source of the peculiarity of
arithmetic is the �1

1-completeness of the notion of well-foundedness, and this fact
is deeply related to the specific inductive nature of natural numbers in the sense that

39 Actually, I presented one more such type of the conservativeness argument in fn 20 from the perspective
of the logic-linguistic function of truth.
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N(=ω) is the least infinite ordinal and only contains finite entities, which also plays
the crucial role in the proof of Cieśliński’s theorem. All these formal results and
considerations seem to support my proposal.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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